750
Views
7
CrossRef citations to date
0
Altmetric
Review

Phycobiliproteins, the pigment-protein complex form of natural food colorants and bioactive ingredients

, , , ORCID Icon & ORCID Icon

References

  • Adjali, A., I. Clarot, Z. Chen, E. Marchioni, and A. Boudier. 2022. Physicochemical degradation of phycocyanin and means to improve its stability: A short review. Journal of Pharmaceutical Analysis 12 (3):406–14. doi: 10.1016/j.jpha.2021.12.005.
  • Amarante, M. C. A., L. C. S. Corrêa Júnior, L. Sala, and S. J. Kalil. 2020. Analytical grade C-phycocyanin obtained by a single-step purification process. Process Biochemistry 90:215–22. doi: 10.1016/j.procbio.2019.11.020.
  • Antelo, F. S., J. A. Costa, and S. J. Kalil. 2008. Thermal degradation kinetics of the phycocyanin from Spirulina platensis. Biochemical Engineering Journal 41 (1):43–7. doi: 10.1016/j.bej.2008.03.012.
  • Ardiles, P., P. Cerezal-Mezquita, F. Salinas-Fuentes, D. Órdenes, G. Renato, and M. C. Ruiz-Domínguez. 2020. Biochemical composition and phycoerythrin extraction from red microalgae: A comparative study using green extraction technologies. Processes 8 (12):1628. doi: 10.3390/pr8121628.
  • Barbiroli, A., M. Marengo, D. Fessas, E. Ragg, S. Renzetti, F. Bonomi, and S. Iametti. 2017. Stabilization of beta-lactoglobulin by polyols and sugars against temperature-induced denaturation involves diverse and specific structural regions of the protein. Food Chemistry 234:155–62. doi: 10.1016/j.foodchem.2017.04.132.
  • Batista, M. A., N. C. A. Campos, M. P. C. Silvestre, and F. Yildiz. 2018. Whey and protein derivatives: Applications in food products development, technological properties and functional effects on child health. Cogent Food & Agriculture 4 (1):1509687. doi: 10.1080/23311932.2018.1509687.
  • Bekasova, O. D., V. A. Borzova, V. V. Shubin, L. I. Kovalyov, V. A. Stein-Margolina, and B. I. Kurganov. 2016. An increase in the resistance of R-phycoerythrin to thermal aggregation by silver nanoparticles synthesized in nanochannels of the pigment. Applied Biochemistry and Microbiology 52 (1):98–104. doi: 10.1134/S0003683816010026.
  • Bermejo, R., E. M. Talavera, J. M. Alvarez-Pez, and J. C. Orte. 1997. Chromatographic purification of biliproteins from Spirulina platensis high-performance liquid chromatographic separation of their α and β subunits. Journal of Chromatography A 778 (1–2):441–50. doi: 10.1016/S0021-9673(97)00577-3.
  • Bharathiraja, S., P. Manivasagan, M. Santha Moorthy, N. Q. Bui, B. Jang, T. T. V. Phan, W. K. Jung, Y. M. Kim, K. D. Lee, and J. Oh. 2018. Photo-based PDT/PTT dual model killing and imaging of cancer cells using phycocyanin-polypyrrole nanoparticles. European Journal of Pharmaceutics and Biopharmaceutics: Official Journal of Arbeitsgemeinschaft Fur Pharmazeutische Verfahrenstechnik e.V 123:20–30. doi: 10.1016/j.ejpb.2017.11.007.
  • Borowitzka, M. A. 2013. High-value products from microalgae-their development and commercialisation. Journal of Applied Phycology 25 (3):743–56. doi: 10.1007/s10811-013-9983-9.
  • Buecker, S., L. Grossmann, M. Loeffler, E. Leeb, and J. Weiss. 2022. Thermal and acidic denaturation of phycocyanin from Arthrospira platensis: Effects of complexation with λ-carrageenan on blue color stability. Food Chemistry 380:132157. doi: 10.1016/j.foodchem.2022.132157.
  • Chaiklahan, R., N. Chirasuwan, and B. Bunnag. 2012. Stability of phycocyanin extracted from Spirulina sp.: Influence of temperature, pH and preservatives. Process Biochemistry 47 (4):659–64. doi: 10.1016/j.procbio.2012.01.010.
  • Chakdar, H., and S. Pabbi. 2016. Cyanobacterial phycobilins: Production, purification, and regulation. In Frontier discoveries and innovations in interdisciplinary microbiology, ed. P. Shukla, 45–69. New Delhi: Springer. doi: 10.1007/978-81-322-2610-9_4.
  • Chakdar, H., S. Pabbi, R. P. Rastogi, D. Madamwar, and A. Pandey. 2017. Algal pigments for human health and cosmeceuticals. In Algal green chemistry, ed. 171–88. Amsterdam, Netherlands: Elsevier. doi: 10.1016/B978-0-444-63784-0.00009-6.
  • Chew, K. W., S. R. Chia, R. Krishnamoorthy, Y. Tao, D. T. Chu, and P. L. Show. 2019. Liquid biphasic flotation for the purification of C-phycocyanin from Spirulina platensis microalga. Bioresource Technology 288:121519. doi: 10.1016/j.biortech.2019.121519.
  • Choi, W. Y., and H. Y. Lee. 2018. Kinetic analysis of stabilizing C-phycocyanin in the spirulina platensis extracts from ultrasonic process associated with effects of light and temperature. Applied Sciences 8 (9):1662. doi: 10.3390/app8091662.
  • Colla, L. M., C. D. Bertol, D. J. Ferreira, J. Bavaresco, J. A. V. Costa, and T. E. Bertolin. 2017. Thermal and photo-stability of the antioxidant potential of Spirulina platensis powder. Brazilian Journal of Biology = Revista Brasleira de Biologia 77 (2):332–9. doi: 10.1590/1519-6984.14315.
  • Cotas, J., A. Leandro, D. Pacheco, A. Gonçalves, and L. Pereira. 2020. A comprehensive review of the nutraceutical and therapeutic applications of red seaweeds (Rhodophyta). Life (Basel, Switzerland) 10 (3):19. doi: 10.3390/life10030019.
  • Cottas, A. G., E. J. Ribeiro, E. O. Watanabe, and J. d S. Ferreira. 2021. Evaluation of extraction methods and purification by aqueous two-phase systems of phycocyanin from Anabaena variabilis and Nostoc sp. Brazilian Journal of Chemical Engineering 38 (3):617–27. doi: 10.1007/s43153-021-00131-4.
  • da Costa Ores, J., M. C. A. de Amarante, and S. J. Kalil. 2016. Co-production of carbonic anhydrase and phycobiliproteins by Spirulina sp. and Synechococcus nidulans. Bioresource Technology 219:219–27. doi: 10.1016/j.biortech.2016.07.133.
  • Dagnino-Leone, J., C. P. Figueroa, M. L. Castañeda, A. D. Youlton, A. Vallejos-Almirall, A. Agurto-Muñoz, J. Pavón-Pérez, and C. Agurto-Muñoz. 2022. Phycobiliproteins: Structural aspects, functional characteristics, and biotechnological perspectives. Computational and Structural Biotechnology Journal 20:1506–27. doi: 10.1016/j.csbj.2022.02.016.
  • Dagnino-Leone, J., M. Figueroa, C. Mella, M. A. Vorphal, F. Kerff, A. J. Vásquez, M. Bunster, and J. Martínez-Oyanedel. 2017. Structural models of the different trimers present in the core of phycobilisomes from Gracilaria chilensis based on crystal structures and sequences. PloS One 12 (5):e0177540. doi: 10.1371/journal.pone.0177540.
  • Dagnino-Leone, J., M. Figueroa, E. Uribe, M. V. Hinrichs, D. Ortiz-López, J. Martínez-Oyanedel, and M. Bunster. 2020. Biosynthesis and characterization of a recombinant eukaryotic allophycocyanin using prokaryotic accessory enzymes. MicrobiologyOpen 9 (3):e989. doi: 10.1002/mbo3.989.
  • D”Agnolo, E., E. Murano, R. Rizzo, and S. Paoletti. 1993. A biliprotein from the red alga Gracilaria longa: Thermal stability of R-phycoerythrin. The Italian Journal of Biochemistry 42:316–8.
  • de Amarante, M. C. A., A. R. C. Braga, L. Sala, C. C. Moraes, and S. J. Kalil. 2020. Design strategies for C-phycocyanin purification: Process influence on purity grade. Separation and Purification Technology 252:117453. doi: 10.1016/j.seppur.2020.117453.
  • del Rio-Chanona, E. A., D. Zhang, Y. Xie, E. Manirafasha, and K. Jing. 2015. Dynamic simulation and optimization for Arthrospira platensis growth and C-phycocyanin production. Industrial & Engineering Chemistry Research 54 (43):10606–14. doi: 10.1021/acs.iecr.5b03102.
  • Devi, A. C., H. A. Tavanandi, K. Govindaraju, and K. S. M. S. Raghavarao. 2020. An effective method for extraction of high purity phycocyanins (C-PC and A-PC) from dry biomass of Arthrospira maxima. Journal of Applied Phycology 32 (2):1141–51. doi: 10.1007/s10811-019-02033-y.
  • Eggersdorfer, M., and A. Wyss. 2018. Carotenoids in human nutrition and health. Archives of Biochemistry and Biophysics 652:18–26. doi: 10.1016/j.abb.2018.06.001.
  • Faieta, M., L. Neri, A. Di Michele, C. D. Di Mattia, and P. Pittia. 2021. High hydrostatic pressure treatment of Arthrospira (Spirulina) platensis extracts and the baroprotective effect of sugars on phycobiliproteins. Innovative Food Science & Emerging Technologies 70:102693. doi: 10.1016/j.ifset.2021.102693.
  • Faieta, M., L. Neri, G. Sacchetti, A. Di Michele, and P. Pittia. 2020. Role of saccharides on thermal stability of phycocyanin in aqueous solutions. Food Research International (Ottawa, ON) 132:109093. doi: 10.1016/j.foodres.2020.109093.
  • Faieta, M., C. Toong, M. G. Corradini, R. D. Ludescher, and P. Pittia. 2022. Degradation kinetics of C-Phycocyanin under isothermal and dynamic thermal treatments. Food Chemistry 382:132266. doi: 10.1016/j.foodchem.2022.132266.
  • Falkeborg, M. F., M. C. Roda-Serrat, K. L. Burnaesand, and A. L. D. Nielsen. 2018. Stabilising phycocyanin by anionic micelles. Food Chemistry 239:771–80. doi: 10.1016/j.foodchem.2017.07.007.
  • Fekrat, F., B. Nami, H. Ghanavati, A. Ghaffari, and M. Shahbazi. 2019. Optimization of chitosan/activated charcoal-based purification of Arthrospira platensis phycocyanin using response surface methodology. Journal of Applied Phycology 31 (2):1095–105. doi: 10.1007/s10811-018-1626-8.
  • Ferraro, G., P. Imbimbo, A. Marseglia, A. Illiano, C. Fontanarosa, A. Amoresano, G. Olivieri, A. Pollio, D. M. Montiand, and A. Merlino. 2020. A thermophilic C-phycocyanin with unprecedented biophysical and biochemical properties. International Journal of Biological Macromolecules 150:38–51. doi: 10.1016/j.ijbiomac.2020.02.045.
  • Fratelli, C., M. Burck, M. C. A. Amarante, and A. R. C. Braga. 2021. Antioxidant potential of nature’s “something blue”: Something new in the marriage of biological activity and extraction methods applied to C-phycocyanin. Trends in Food Science & Technology 107:309–23. doi: 10.1016/j.tifs.2020.10.043.
  • Freitas, M. V., D. Pacheco, J. Cotas, T. Mouga, C. Afonso, and L. Pereira. 2021. Red Seaweed Pigments from a Biotechnological Perspective. Phycology 2 (1):1–29. doi: 10.3390/phycology2010001.
  • Galetović, A., F. Seura, V. Gallardo, R. Graves, J. Cortés, C. Valdivia, J. Núñez, C. Tapia, I. Neira, S. Sanzana, et al. 2020. Use of phycobiliproteins from atacama cyanobacteria as food colorants in a dairy beverage prototype. Foods (Basel, Switzerland) 9 (2):244. doi: 10.3390/foods9020244.
  • Galland-Irmouli, A. V. 1999. Etude des propriétés allergéniques et nutritionnelles de protéines d‘origine marine: Cabillaud, algue rouge Palmaria palmata [Study of the allergenic and nutritional properties of proteins of marine origin: Cabillaud, algue rouge Palmaria palmata]. PhD diss., Université Henri Poincaré-Nancy 1.
  • García, A. B., E. Longo, M. C. Murillo, and R. Bermejo. 2021. Using a B-phycoerythrin extract as a natural colorant: Application in milk-based products. Molecules (Basel, Switzerland) 26 (2):297. doi: 10.3390/molecules26020297.
  • Garcia-Pliego, E., M. Franco-Colin, P. Rojas-Franco, V. Blas-Valdivia, J. I. Serrano-Contreras, G. Pentón-Rol, and E. Cano-Europa. 2021. Phycocyanobilin is the molecule responsible for the nephroprotective action of phycocyanin in acute kidney injury caused by mercury. Food & Function 12 (7):2985–94. doi: 10.1039/d0fo03294h.
  • Gargouch, N., I. Karkouch, J. Elleuch, S. Elkahoui, P. Michaud, S. Abdelkafi, C. Laroche, and I. Fendri. 2018. Enhanced B-phycoerythrin production by the red microalga Porphyridium marinum: A powerful agent in industrial applications. International Journal of Biological Macromolecules 120 (Pt B):2106–14. doi: 10.1016/j.ijbiomac.2018.09.037.
  • Gdara, N. B., A. Belgacem, I. Khemiri, S. Mannai, and L. Bitri. 2018. Protective effects of phycocyanin on ischemia/reperfusion liver injuries. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie 102:196–202. doi: 10.1016/j.biopha.2018.03.025.
  • Ghosh, T., K. Bhayani, C. Paliwal, R. Maurya, K. Chokshi, I. Pancha, and S. Mishra. 2016. Cyanobacterial pigments as natural anti-hyperglycemic agents: An in vitro study. Frontiers in Marine Science 3 (146). doi: 10.3389/fmars.2016.00146.
  • Ghosh, T., and S. Mishra. 2020a. A natural cyanobacterial protein C-phycoerythrin as an HS- selective optical probe in aqueous systems. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy 239:118469. doi: 10.1016/j.saa.2020.118469.
  • Ghosh, T., and S. Mishra. 2020b. Studies on extraction and stability of C-phycoerythrin from a marine cyanobacterium. Frontiers in Sustainable Food Systems 4:102. doi: 10.3389/fsufs.2020.00102.
  • Gonzalez-Ramirez, E., M. Andujar-Sanchez, E. Ortiz-Salmeron, J. Bacarizo, C. Cuadri, T. Mazzuca-Sobczuk, M. J. Ibáñez, A. Cámara-Artigas, and S. Martinez-Rodriguez. 2014. Thermal and pH stability of the B-phycoerythrin from the red algae Porphyridium cruentum. Food Biophysics 9 (2):184–92. doi: 10.1007/s11483-014-9331-x.
  • Gu, Y., B. Liu, H. Du, Y. Zhang, and S. Qin. 2016. The research progress on isolation and purification of highpurified phycobiliprotein. Marine Science 40 (7):170–7. doi: 10.11759/hykx20121216001.
  • Hadiyanto, H., Christwardana, M., H. Sutanto, M. Suzery, D. Amelia, and R. F. Aritonang. 2018. Kinetic study on the effects of sugar addition on the thermal degradation of phycocyanin from Spirulina sp. Food Bioscience 22:85–90. doi: 10.1016/j.fbio.2018.01.007.
  • Hirose, Y., S. Chihong, M. Watanabe, C. Yonekawa, K. Murata, M. Ikeuchi, and T. Eki. 2019. Diverse chromatic acclimation processes regulating phycoerythrocyanin and rod-shaped phycobilisome in cyanobacteria. Molecular Plant 12 (5):715–25. doi: 10.1016/j.molp.2019.02.010.
  • Hsieh-Lo, M., G. Castillo, M. A. Ochoa-Becerra, and L. Mojica. 2019. Phycocyanin and phycoerythrin: Strategies to improve production yield and chemical stability. Algal Research 42:101600. doi: 10.1016/j.algal.2019.101600.
  • İlter, I., M. Koç, Z. Demirel, M. C. Dalay, and F. K. Ertekin. 2021. Improving the stability of phycocyanin by spray dried microencapsulation. Journal of Food Processing and Preservation 45 (7):e15646. doi: 10.1111/jfpp.15646.
  • Kannaujiya, V. K., S. Sundaram, and R. P. Sinha, eds. 2017. Phycobiliproteins: Recent developments and future applications. Singapore: Springer. doi: 10.1007/978-981-10-6460-9.
  • Kannaujiya, V. K., D. Kumar, V. Singh, and R. P. Sinha. 2021. Advances in phycobiliproteins research: Innovations and commercialization. In Natural bioactive compounds, ed. R. P. Sinha and D. P. Häder, 57–81. London, United Kingdom: Academic Press. doi: 10.1016/B978-0-12-820655-3.00004-5.
  • Kannaujiya, V. K., and R. P. Sinha. 2016. Thermokinetic stability of phycocyanin and phycoerythrin in food-grade preservatives. Journal of Applied Phycology 28 (2):1063–70. doi: 10.1007/s10811-015-0638-x.
  • Khatoon, H., L. K. Leong, N. A. Rahman, S. Mian, H. Begum, S. Banerjee, and A. Endut. 2018. Effects of different light source and media on growth and production of phycobiliprotein from freshwater cyanobacteria. Bioresource Technology 249:652–8. doi: 10.1016/j.biortech.2017.10.052.
  • Khoshakhlagh, K., A. Koocheki, M. Mohebbi, and A. Allafchian. 2017. Development and characterization of electrosprayed Alyssum homolocarpum seed gum nanoparticles for encapsulation of d-limonene. Journal of Colloid and Interface Science 490:562–75. doi: 10.1016/j.jcis.2016.11.067.
  • Landim Neves, M. I., E. K. Silva, and M. A. Meireles. 2021. Natural blue food colorants: Consumer acceptance, current alternatives, trends, challenges, and future strategies. Trends in Food Science & Technology 112:163–73. doi: 10.1016/j.tifs.2021.03.023.
  • Leney, A. C., A. Tschanz, and A. J. R. Heck. 2018. Connecting color with assembly in the fluorescent B-phycoerythrin protein complex. The FEBS Journal 285 (1):178–87. doi: 10.1111/febs.14331.
  • Liang, Y., M. B. Kaczmarek, A. K. Kasprzak, J. Tang, M. M. R. Shah, P. Jin, A. Klepacz-Smółka, J. J. Cheng, S. Ledakowicz, and M. Daroch. 2018. Thermosynechococcaceae as a source of thermostable C-phycocyanins: Properties and molecular insights. Algal Research 35:223–35. doi: 10.1016/j.algal.2018.08.037.
  • Li, W., Y. Pu, Z. Tang, F. Zhao, M. Xie, and S. Qin. 2020. Energy transfer dynamics in B-phycoerythrin from the red alga Porphyridium purpureum. Chinese Journal of Physics 66:24–35. doi: 10.1016/j.cjph.2020.03.025.
  • Li, W., H. Su, Y. Pu, J. Chen, L. Liu, Q. Liu, and S. Qin. 2019. Phycobiliproteins: Molecular structure, production, applications, and prospects. Biotechnology Advances 37 (2):340–53. doi: 10.1016/j.biotechadv.2019.01.008.
  • Liu, Q., W. Li, and S. Qin. 2020. Therapeutic effect of phycocyanin on acute liver oxidative damage caused by X-ray. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie 130:110553. doi: 10.1016/j.biopha.2020.110553.
  • Li, Y., Z. Zhang, and A. Abbaspourrad. 2021. Improved thermal stability of phycocyanin under acidic conditions by forming soluble complexes with polysaccharides. Food Hydrocolloids 119:106852. doi: 10.1016/j.foodhyd.2021.106852.
  • Ma, J., X. You, S. Sun, X. Wang, S. Qin, and S. Sui. 2020. Structural basis of energy transfer in Porphyridium purpureum phycobilisome. Nature 579 (7797):146–51. doi: 10.1038/s41586-020-2020-7.
  • Mahanil, K., A. Sensupa, J. Pekkoh, Y. Tragoolpua, and C. Pumas. 2021. Application of phycobiliproteins from Leptolyngbya sp. KC45 for natural illuminated colourant beverages. Journal of Applied Phycology 33 (6):3747–60. doi: 10.1007/s10811-021-02556-3.
  • Malairaj, S., S. Muthu, V. B. Gopal, P. Perumal, and R. Ramasamy. 2016. Qualitative and quantitative determination of R-phycoerythrin from Halymenia floresia (Clemente) C. Agardh by polyacrylamide gel using electrophoretic elution technique. Journal of Chromatography. A 1454:120–6. doi: 10.1016/j.chroma.2016.05.063.
  • Manirafasha, E., T. Ndikubwimana, X. Zeng, Y. Lu, and K. Jing. 2016. Phycobiliprotein: Potential microalgae derived pharmaceutical and biological reagent. Biochemical Engineering Journal 109:282–96. doi: 10.1016/j.bej.2016.01.025.
  • Martelli, G., C. Folli, L. Visai, M. Daglia, and D. Ferrari. 2014. Thermal stability improvement of blue colorant C-phycocyanin from Spirulina platensis for food industry applications. Process Biochemistry 49 (1):154–9. doi: 10.1016/j.procbio.2013.10.008.
  • Martins, N., C. L. Roriz, P. Morales, L. Barros, and I. C. Ferreira. 2016. Food colorants: Challenges, opportunities and current desires of agro-industries to ensure consumer expectations and regulatory practices. Trends in Food Science & Technology 52:1–15. doi: 10.1016/j.tifs.2016.03.009.
  • Meng, D., L. Zhang, Q. Wang, Y. Zhang, Y. Sun, H. Zhang, Z. Wang, Z. Zhouand, and R. Yang. 2021. Self-assembly of phycoerythrin with oligochitosan by electrostatic interaction for stabilization of phycoerythrin. Journal of Agricultural and Food Chemistry 69 (43):12818–27. doi: 10.1021/acs.jafc.1c05205.
  • Mishra, S. K., A. Shrivastav, and S. Mishra. 2008. Effect of preservatives for food grade C-PC from Spirulina platensis. Process Biochemistry 43 (4):339–45. doi: 10.1016/j.procbio.2007.12.012.
  • Mittal, R., R. Sharma, and K. S. M. S. Raghavarao. 2022. Novel adsorption approach for the enrichment of R-Phycoerythrin from marine macroalga Gelidium pusillum. Algal Research 62:102605. doi: 10.1016/j.algal.2021.102605.
  • Mittal, R., H. A. Tavanandi, V. A. Mantriand, and K. S. M. S. Raghavarao. 2017. Ultrasound assisted methods for enhanced extraction of phycobiliproteins from marine macro-algae, Gelidium pusillum (Rhodophyta). Ultrasonics Sonochemistry 38:92–103. doi: 10.1016/j.ultsonch.2017.02.030.
  • Munawaroh, H. S. H., G. G. Gumilar, C. R. Alifia, M. Marthania, B. Stellasary, G. Yuliani, A. P. Wulandari, I. Kurniawan, R. Hidayat, A. Ningrum, et al. 2020. Photostabilization of phycocyanin from Spirulina platensis modified by formaldehyde. Process Biochemistry 94:297–304. doi: 10.1016/j.procbio.2020.04.021.
  • Munier, M., S. Jubeau, A. Wijaya, M. Morançais, J. Dumay, L. Marchal, P. Jaouen, and J. Fleurence. 2014. Physicochemical factors affecting the stability of two pigments: R-phycoerythrin of Grateloupia turuturu and B-phycoerythrin of Porphyridium cruentum. Food Chemistry 150:400–7. doi: 10.1016/j.foodchem.2013.10.113.
  • Mysliwa-Kurdziel, B., and K. Solymosi. 2017. Phycobilins and phycobiliproteins used in food industry and medicine. Mini Reviews in Medicinal Chemistry 17 (13):1173–93. doi: 10.2174/1389557516666160912180155.
  • Neves, M. I. L., E. K. Silva, and M. A. A. Meireles. 2019. Trends and challenges in the industrialization of natural colorants. Food Public Health 9 (2):33–44. doi: 10.5923/j.fph.20190902.01.
  • Nguyen, H., P. T. M. Morançais, P. Déléris, J. Fleurence, C. T. Nguyen-Le, K. H. Vo, and J. Dumay. 2020. Purification of R-phycoerythrin from a marine macroalga Gracilaria gracilis by anion-exchange chromatography. Journal of Applied Phycology 32 (1):553–61. doi: 10.1007/s10811-019-01947-x.
  • Nowruzi, B., G. Sarvari, and S. Blanco. 2020. The cosmetic application of cyanobacterial secondary metabolites. Algal Research 49:101959. doi: 10.1016/j.algal.2020.101959.
  • Pagels, F., A. C. Guedes, H. M. Amaro, A. Kijjoa, and V. Vasconcelos. 2019. Phycobiliproteins from cyanobacteria: Chemistry and biotechnological applications. Biotechnology Advances 37 (3):422–43. doi: 10.1016/j.biotechadv.2019.02.010.
  • Pan-Utai, W., and S. Iamtham. 2019. Extraction, purification and antioxidant activity of phycobiliprotein from Arthrospira platensis. Process Biochemistry 82:189–98. doi: 10.1016/j.procbio.2019.04.014.
  • Pan-Utai, W., and S. Iamtham. 2020. Enhanced microencapsulation of C-phycocyanin from Arthrospira by freeze-drying with different wall materials. Food Technology and Biotechnology 58 (4):423–32. doi: 10.17113/ftb.58.04.20.6622.
  • Pan-Utai, W., W. Kahapana, and S. Iamtham. 2018. Extraction of C-phycocyanin from Arthrospira (Spirulina) and its thermal stability with citric acid. Journal of Applied Phycology 30 (1):231–42. doi: 10.1007/s10811-017-1155-x.
  • Pérez-Rico, D. A., J. L. Alarcón-Jiménez, E. González-Morales, L. F. Guerra-Álvarez, J. C. Ramírez-Vázquez, H. Gutiérrez-Pulido, and F. M. E. Escalante. 2020. Phycocyanin thermo-photostability: An accelerated life-test analysis. Journal of the Mexican Chemical Society 64 (3):218–29. doi: 10.29356/jmcs.v64i3.1157.
  • Pez Jaeschke, D., I. R. Teixeira, L. D. F. Marczak, and G. D. Mercali. 2021. Phycocyanin from Spirulina: A review of extraction methods and stability. Food Research International (Ottawa, ON) 143:110314. doi: 10.1016/j.foodres.2021.110314.
  • Porav, A. S., M. Bocăneală, A. Fălămaş, D. F. Bogdan, L. Barbu-Tudoran, A. Hegeduş, and N. Dragoş. 2020. Sequential aqueous two-phase system for simultaneous purification of cyanobacterial phycobiliproteins. Bioresource Technology 315:123794. doi: 10.1016/j.biortech.2020.123794.
  • Puzorjov, A., K. E. Dunn, and A. J. McCormick. 2021. Production of thermostable phycocyanin in a mesophilic cyanobacterium. Metabolic Engineering Communications 13:e00175. doi: 10.1016/j.mec.2021.e00175.
  • Puzorjov, A., and A. J. McCormick. 2020. Phycobiliproteins from extreme environments and their potential applications. Journal of Experimental Botany 71 (13):3827–42. doi: 10.1093/jxb/eraa139.
  • Qiang, X., L. Wang, J. Niu, X. Gong, and G. Wang. 2021. Phycobiliprotein as fluorescent probe and photosensitizer: A systematic review. International Journal of Biological Macromolecules 193 (Pt B):1910–7. doi: 10.1016/j.ijbiomac.2021.11.022.
  • Rahman, D. Y., F. D. Sarian, A. Van Wijk, M. Martinez-Garcia, and M. J. E. C. Van der Maarel. 2017. Thermostable phycocyanin from the red microalga Cyanidioschyzon merolae, a new natural blue food colorant. Journal of Applied Phycology 29 (3):1233–9. doi: 10.1007/s10811-016-1007-0.
  • Reddy, A., D. F. Norris, S. S. Momeni, B. Waldo, and J. D. Ruby. 2016. The pH of beverages in the United States. The Journal of the American Dental Association 147 (4):255–63. doi: 10.1016/j.adaj.2015.10.019.
  • Romay, C., J. Armesto, D. Remirez, R. González, N. Ledón, and I. García. 1998. Antioxidant and anti-inflammatory properties of C-phycocyanin from blue-green algae. Inflammation Research 47 (1):36–41. doi: 10.1007/s000110050256.
  • Ruiz-Domínguez, M. C., M. Jáuregui, E. Medina, C. Jaime, and P. Cerezal. 2019. Rapid green extractions of C-phycocyanin from Arthrospira maxima for functional applications. Applied Sciences 9 (10):1987. doi: 10.3390/app9101987.
  • Saluri, M., M. Kaldmäe, and R. Tuvikene. 2019. Extraction and quantification of phycobiliproteins from the red alga Furcellaria lumbricalis. Algal Research 37:115–23. doi: 10.1016/j.algal.2018.11.013.
  • Sathuvan, M., R. Thangam, G. Venkateshbabu, K. L. Cheong, H. Kang, and Y. Liu. 2022. Single-step purified R-phycoerythrin transmits cellular imaging functionalities in vitro. International Journal of Biological Macromolecules 194:563–70. doi: 10.1016/j.ijbiomac.2021.11.099.
  • Schmatz, D. A., D. J. d S. Mastrantonio, J. A. V. Costa, and M. G. d Morais. 2020. Encapsulation of phycocyanin by electrospraying: A promising approach for the protection of sensitive compounds. Food and Bioproducts Processing 119:206–15. doi: 10.1016/j.fbp.2019.07.008.
  • Sekar, S., and M. Chandramohan. 2008. Phycobiliproteins as a commodity: Trends in applied research, patents and commercialization. Journal of Applied Phycology 20 (2):113–36. doi: 10.1007/s10811-007-9188-1.
  • Senthilkumar, N., R. Thangam, P. Murugan, V. Suresh, C. Kurinjimalar, G. Kavitha, S. Sivasubramanian, and R. Rengasamy. 2018. Hepato-protective effects of R-phycoerythrin-rich protein extract of Portieria hornemannii (Lyngbye) Silva against DEN-induced hepatocellular carcinoma. Journal of Food Biochemistry 42 (6):e12695. doi: 10.1111/jfbc.12695.
  • Seyedi, S., P. Parvin, A. Jafargholi, S. Jelvani, M. Shahabi, M. Shahbazi, P. Mohammadimatin, and A. Moafi. 2020. Fluorescence properties of Phycocyanin and Phycocyanin-human serum albumin complex. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy 239:118468. doi: 10.1016/j.saa.2020.118468.
  • Sharma, R., B. Bhunia, A. Mondal, T. Kanti Bandyopadhyay, I. Devi, G. Oinam, R. Prasanna, G. Abraham, and O. Nath Tiwari. 2020. Statistical optimization of process parameters for improvement of phycobiliproteins (PBPs) yield using ultrasound-assisted extraction and its kinetic study. Ultrasonics Sonochemistry 60:104762. doi: 10.1016/j.ultsonch.2019.104762.
  • Sharma, R., P. C. Nath, K. Vanitha, O. N. Tiwari, T. K. Bandyopadhyay, and B. Bhunia. 2021. Effects of different monosaccharides on thermal stability of phycobiliproteins from Oscillatoria sp. (BTA-170): Analysis of kinetics, thermodynamics, colour and antioxidant properties. Food Bioscience 44 (Part 4):101354. doi: 10.1016/j.fbio.2021.101354.
  • Sintra, T. E., S. S. Bagagem, F. G. Ahsaie, A. Fernandes, M. Martins, I. P. E. Macário, J. L. Pereira, F. J. M. Gonçalves, G. Pazuki, J. A. P. Coutinho, et al. 2021. Sequential recovery of C-phycocyanin and chlorophylls from Anabaena cylindrica. Separation and Purification Technology 255:117538. doi: 10.1016/j.seppur.2020.117538.
  • Soares, R. R., A. M. Azevedo, J. M. Van Alstine, and M. R. Aires-Barros. 2015. Partitioning in aqueous two-phase systems: Analysis of strengths, weaknesses, opportunities and threats. Biotechnology Journal 10 (8):1158–69. doi: 10.1002/biot.201400532.
  • Sonani, R. R., R. P. Rastogi, and D. Madamwar. 2015. Antioxidant potential of phycobiliproteins: Role in anti-aging research. Biochemistry & Analytical Biochemistry 4 (2):1000172. doi: 10.4172/2161-1009.1000172.
  • Sonani, R. R., N. K. Singh, J. Kumar, D. Thakarand, and D. Madamwar. 2014. Concurrent purification and antioxidant activity of phycobiliproteins from Lyngbya sp. A09DM: An antioxidant and anti-aging potential of phycoerythrin in Caenorhabditis elegans. Process Biochemistry 49 (10):1757–66. doi: 10.1016/j.procbio.2014.06.022.
  • Spence, C. 2018. What is so unappealing about blue food and drink? International Journal of Gastronomy and Food Science 14:1–8. doi: 10.1016/j.ijgfs.2018.08.001.
  • Srivastava, A., M. Kalwani, H. Chakdar, S. Pabbi, and P. Shukla. 2022. Biosynthesis and biotechnological interventions for commercial production of microalgal pigments: A review. Bioresource Technology 352:127071. doi: 10.1016/j.biortech.2022.127071.
  • Sukhinov, D. V., K. V. Gorin, A. O. Romanov, P. M. Gotovtsev, and Y. E. Sergeeva. 2021. Increased C-phycocyanin extract purity by flocculation of Arthrospira platensis with chitosan. Algal Research 58:102393. doi: 10.1016/j.algal.2021.102393.
  • Sun, L., S. Wang, and Z. Qiao. 2006. Chemical stabilization of the phycocyanin from cyanobacterium Spirulina platensis. Journal of Biotechnology 121 (4):563–9. doi: 10.1016/j.jbiotec.2005.08.017.
  • Suzery, M., H. Hadiyanto, D. Majid, D. Setyawan, and H. Sutanto. 2017. Improvement of stability and antioxidant activities by using phycocyanin-chitosan encapsulation technique. IOP Conference Series: Earth and Environmental Science 55:012052. doi: 10.1088/1755-1315/55/1/012052.
  • Suzery, M., D. Setyawan, D. Majid, and H. Sutanto. 2017. Encapsulation of phycocyanin-alginate for high stability and antioxidant activity. IOP Conference Series: Earth and Environmental Science 55 (1):012030. doi: 10.1088/1755-1315/55/1/012030.
  • Tan, H. T., N. Khong, Y. S. Khaw, S. A. Ahmad, and F. M. Yusoff. 2020. Optimization of the freezing-thawing method for extracting phycobiliproteins from Arthrospira sp. Molecules (Basel, Switzerland) 25 (17):3894. doi: 10.3390/molecules25173894.
  • Tavanandi, H. A., A. C. Devi, and K. S. M. S. Raghavarao. 2018. A newer approach for the primary extraction of allophycocyanin with high purity and yield from dry biomass of Arthrospira platensis. Separation and Purification Technology 204:162–74. doi: 10.1016/j.seppur.2018.04.057.
  • Tavanandi, H. A., R. Mittal, J. Chandrasekhar, and K. S. M. S. Raghavarao. 2018. Simple and efficient method for extraction of C-Phycocyanin from dry biomass of Arthospira platensis. Algal Research 31:239–51. doi: 10.1016/j.algal.2018.02.008.
  • Tavanandi, H. A., P. Vanjari, and K. S. M. S. Raghavarao. 2019. Synergistic method for extraction of high purity Allophycocyanin from dry biomass of Arthrospira platensis and utilization of spent biomass for recovery of carotenoids. Separation and Purification Technology 225:97–111. doi: 10.1016/j.seppur.2019.05.064.
  • Triani, R., and E. A. Foegeding. 2019. Heat stability of whey protein ingredients based on state diagrams. International Dairy Journal 91:25–35. doi: 10.1016/j.idairyj.2018.12.006.
  • Ulagesan, S., T. J. Nam, and Y. H. Choi. 2021. Extraction and purification of R-phycoerythrin alpha subunit from the marine red algae Pyropia Yezoensis and its biological activities. Molecules 26 (21):6479. doi: 10.3390/molecules26216479.
  • Vásquez-Suárez, A., F. Lobos-González, A. Cronshaw, J. Sepúlveda-Ugarte, M. Figueroa, J. Dagnino-Leone, M. Bunster, and J. Martínez-Oyanedel. 2018. The γ33 subunit of R-phycoerythrin from Gracilaria chilensis has a typical double linked phycourobilin similar to β subunit. Plos One 13 (4):e0195656. doi: 10.1371/journal.pone.0195656.
  • Vieira, M. V., L. M. Pastrana, and P. Fuciños. 2020. Microalgae encapsulation systems for food, pharmaceutical and cosmetics applications. Marine Drugs 18 (12):644. doi: 10.3390/md18120644.
  • Wagoner, T. B., and E. A. Foegeding. 2017. Whey protein-pectin soluble complexes for beverage applications. Food Hydrocolloids 63:130–8. doi: 10.1016/j.foodhyd.2016.08.027.
  • Wan, M., H. Zhao, J. Guo, L. Yan, D. Zhang, W. Bai, and Y. Li. 2021. Comparison of C-phycocyanin from extremophilic Galdieria sulphuraria and Spirulina platensis on stability and antioxidant capacity. Algal Research 58:102391. doi: 10.1016/j.algal.2021.102391.
  • Wu, Q., L. Liu, A. Miron, B. Klímová, D. Wan, and K. Kuča. 2016. The antioxidant, immunomodulatory, and anti-inflammatory activities of Spirulina: An overview. Archives of Toxicology 90 (8):1817–40. doi: 10.1007/s00204-016-1744-5.
  • Wu, H.-L., G.-H. Wang, W.-Z. Xiang, T. Li, and H. He. 2016. Stability and antioxidant activity of food-grade phycocyanin isolated from Spirulina platensis. International Journal of Food Properties 19 (10):2349–62. doi: 10.1080/10942912.2015.1038564.
  • Xie, J., S. Chen, and Z. Wen. 2021. Effects of light intensity on the production of phycoerythrin and polyunsaturated fatty acid by microalga Rhodomonas salina. Algal Research 58:102397. doi: 10.1016/j.algal.2021.102397.
  • Xu, Y., Q. Wang, and Y. Hou. 2020. Efficient purification of R-phycoerythrin from marine algae (Porphyra yezoensis) based on a deep eutectic solvents aqueous two-phase system. Marine Drugs 18 (12):618. doi: 10.3390/md18120618.
  • Yan, M., B. Liu, X. Jiao, and S. Qin. 2014. Preparation of phycocyanin microcapsules and its properties. Food and Bioproducts Processing 92 (1):89–97. doi: 10.1016/j.fbp.2013.07.008.
  • Yang, R., T. Ma, L. Shi, Q. Wang, L. Zhang, F. Zhang, Z. Wang, and Z. Zhou. 2022. The formation of phycocyanin-egcg complex for improving the color protection stability exposing to light. Food Chemistry 370:130985. doi: 10.1016/j.foodchem.2021.130985.
  • Yoshida, C., M. Murakami, A. Niwa, M. Takeya, and T. Osanai. 2021. Efficient extraction and preservation of thermotolerant phycocyanins from red alga Cyanidioschyzon merolae. Journal of Bioscience and Bioengineering 131 (2):161–7. doi: 10.1016/j.jbiosc.2020.09.021.
  • Yu, J. 2017. Application of an ultrafine shearing method for the extraction of C-phycocyanin from Spirulina platensis. Molecules 22 (11):2023. doi: 10.3390/molecules22112023.
  • Yu, P., Y. Wu, G. Wang, T. Jia, and Y. Zhang. 2017. Purification and bioactivities of phycocyanin. Critical Reviews in Food Science and Nutrition 57 (18):3840–9. doi: 10.1080/10408398.2016.1167668.
  • Zhang, Z., S. Cho, Y. Dadmohammadi, Y. Li, and A. Abbaspourrad. 2021. Improvement of the storage stability of C-phycocyanin in beverages by high-pressure processing. Food Hydrocolloids 110:106055. doi: 10.1016/j.foodhyd.2020.106055.
  • Zhang, Z., Y. Li, and A. Abbaspourrad. 2020. Improvement of the colloidal stability of phycocyanin in acidified conditions using whey protein-phycocyanin interactions. Food Hydrocolloids 105:105747. doi: 10.1016/j.foodhyd.2020.105747.
  • Zhang, S., Z. Zhang, Y. Dadmohammadi, Y. Li, A. Jaiswal, and A. Abbaspourrad. 2021. Whey protein improves the stability of C-phycocyanin in acidified conditions during light storage. Food Chemistry 344:128642. doi: 10.1016/j.foodchem.2020.128642.
  • Zheng, Y., L. Mo, W. Zhang, Y. Duan, J. Huang, C. Chen, Y. Gao, X. Shi, F. Li, J. Yang, et al. 2019. Phycocyanin fluorescent probe from Arthrospira platensis: Preparation and application in LED-CCD fluorescence density strip qualitative detection system. Journal of Applied Phycology 31 (2):1107–15. doi: 10.1007/s10811-018-1631-y.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.