1,408
Views
18
CrossRef citations to date
0
Altmetric
Review

Citrus juice off-flavor during different processing and storage: Review of odorants, formation pathways, and analytical techniques

, , ORCID Icon, , , , , & show all

References

  • Ahmed, S., H. S. Rattanpal, K. Gul, R. A. Dar, and A. Sharma. 2019. Chemical composition, antioxidant activity and GC-MS analysis of juice and peel oil of grapefruit varieties cultivated in India. Journal of Integrative Agriculture 18 (7):1634–42. doi: 10.1016/S2095-3119(19)62602-X.
  • Allegrone, G., F. Belliardo, and P. Cabella. 2006. Comparison of volatile concentrations in hand-squeezed juices of four different lemon varieties. Journal of Agricultural and Food Chemistry 54 (5):1844–8. doi: 10.1021/jf051206s.
  • Amann, A. R. 2016. Characterization and pathway investigation of off-flavor formation in aged commercial apple and orange juice products. St. Paul, Minnesota, United States: University of Minnesota.
  • An, K., H. Liu, M. Fu, M. C. Qian, Y. Yu, J. Wu, G. Xiao, and Y. Xu. 2019. Identification of the cooked off-flavor in heat-sterilized lychee (Litchi chinensis Sonn.) juice by means of molecular sensory science. Food Chemistry 301:125282. doi: 10.1016/j.foodchem.2019.125282.
  • Aschoff, J. K., K. Knoblauch, C. Hüttner, A. L. Vásquez-Caicedo, R. Carle, and R. M. Schweiggert. 2016. Non-thermal pasteurization of orange (Citrus sinensis (L.) Osbeck) juices using continuous pressure change technology (PCT): A proof-of-concept. Food and Bioprocess Technology 9 (10):1681–91. doi: 10.1007/s11947-016-1754-6.
  • Averbeck, M., and P. H. Schieberle. 2009. Characterisation of the key aroma compounds in a freshly reconstituted orange juice from concentrate. European Food Research and Technology 229 (4):611–22. doi: 10.1007/s00217-009-1082-4.
  • Averbeck, M., and P. Schieberle. 2011. Influence of different storage conditions on changes in the key aroma compounds of orange juice reconstituted from concentrate. European Food Research and Technology 232 (1):129–42. doi: 10.1007/s00217-010-1366-8.
  • Ayhan, Z., H. W. Yeom, Q. H. Zhang, and D. B. Min. 2001. Flavor, color, and vitamin C retention of pulsed electric field processed orange juice in different packaging materials. Journal of Agricultural and Food Chemistry 49 (2):669–74. doi: 10.1021/jf000984b.
  • Bacigalupi, C., M. H. Lemaistre, N. Boutroy, C. Bunel, S. Peyron, V. Guillard, and P. Chalier. 2013. Changes in nutritional and sensory properties of orange juice packed in PET bottles: An experimental and modelling approach. Food Chemistry 141 (4):3827–36. doi: 10.1016/j.foodchem.2013.06.076.
  • Bai, J. H., E. Baldwin, G. McCollum, A. Plotto, J. Manthey, W. Widmer, G. Luzio, and R. Cameron. 2016. Changes in volatile and non-volatile flavor chemicals of “Valencia” orange juice over the harvest seasons. Foods 5 (4):4. doi: 10.3390/foods5010004.
  • Baldwin, E. A., J. H. Bai, A. Plotto, R. Cameron, G. Luzio, J. Narciso, J. Manthey, W. Widmer, and B. L. Ford. 2012. Effect of extraction method on quality of orange juice: Hand-squeezed, commercial-fresh squeezed and processed. Journal of the Science of Food and Agriculture 92 (10):2029–42. doi: 10.1002/jsfa.5587.
  • Baldwin, E., A. Plotto, J. Bai, J. Manthey, W. Zhao, S. Raithore, and M. Irey. 2018. Effect of abscission zone formation on orange (Citrus sinensis) fruit/juice quality for trees affected by huanglongbing (HLB). Journal of Agricultural and Food Chemistry 66 (11):2877–90. doi: 10.1021/acs.jafc.7b05635.
  • Barba, C., T. Thomas-Danguin, and E. Guichard. 2017. Comparison of stir bar sorptive extraction in the liquid and vapour phases, solvent-assisted flavour evaporation and headspace solid-phase microextraction for the (non)-targeted analysis of volatiles in fruit juice. LWT - Food Science and Technology 85:334–44. doi: 10.1016/j.lwt.2016.09.015.
  • Barboni, T., A. Muselli, F. Luro, J. M. Desjobert, and J. Costa. 2010. Influence of processing steps and fruit maturity on volatile concentrations in juices from clementine, mandarin, and their hybrids. European Food Research and Technology 231 (3):379–86. doi: 10.1007/s00217-010-1283-x.
  • Baxter, I. A., K. Easton, K. Schneebeli, and F. B. Whitfield. 2005. High pressure processing of Australian navel orange juices: Sensory analysis and volatile flavor profiling. Innovative Food Science & Emerging Technologies 6 (4):372–87. doi: 10.1016/j.ifset.2005.05.005.
  • Bazemore, R., K. Goodner, and R. Rouseff. 1999. Volatiles from unpasteurized and excessively heated orange juice analyzed with solid phase microextraction and GC-olfactometry. Journal of Food Science 64 (5):800–3. doi: 10.1111/j.1365-2621.1999.tb15915.x.
  • Bazemore, R., R. Rouseff, and M. Naim. 2003. Linalool in orange Juice: Origin and thermal stability. Journal of Agricultural and Food Chemistry 51 (1):196–9. doi: 10.1021/jf0257291.
  • Benjamin, G., Z. Tietel, and R. Porat. 2013. Effects of rootstock/scion combinations on the flavor of citrus fruit. Journal of Agricultural and Food Chemistry 61 (47):11286–94. doi: 10.1021/jf402892p.
  • Berlinet, C., P. Brat, J. Brillouet, and V. Ducruet. 2006. Ascorbic acid, aroma compounds and browning of orange juices related to PET packaging materials and pH. Journal of the Science of Food and Agriculture 86 (13):2206–12. doi: 10.1002/jsfa.2597.
  • Bezman, Y., R. L. Rouseff, and M. Naim. 2001. 2-Methyl-3-furanthiol and methional are possible off-flavors in stored orange juice: Aroma-similarity, NIF/SNIF GC-O, and GC analyses. Journal of Agricultural and Food Chemistry 49 (11):5425–32. doi: 10.1021/jf010724.
  • Bi, S., S. Sun, F. Lao, X. Liao, and J. Wu. 2020. Gas chromatography-mass spectrometry combined with multivariate data analysis as a tool for differentiating between processed orange juice samples on the basis of their volatile markers. Food Chemistry 311:125913. doi: 10.1016/j.foodchem.2019.125913.
  • Brendel, R., S. Schwolow, S. Rohn, and P. Weller. 2021. Volatilomic profiling of citrus juices by dual-detection HS-GC-MS-IMS and machine learning-an alternative authentication approach. Journal of Agricultural and Food Chemistry 69 (5):1727–38. doi: 10.1021/acs.jafc.0c07447.
  • Buettner, A., and P. Schieberle. 2001a. Evaluation of aroma differences between hand-squeezed juices from valencia late and navel oranges by quantitation of key odorants and flavor reconstitution experiments. Journal of Agricultural and Food Chemistry 49 (5):2387–94. doi: 10.1021/jf001363l.
  • Buettner, A., and P. Schieberle. 2001b. Evaluation of key aroma compounds in hand-squeezed grapefruit juice (Citrus paradisi Macfayden) by quantitation and flavor reconstitution experiments. Journal of Agricultural and Food Chemistry 49 (3):1358–63. doi: 10.1021/jf001235x.
  • Burdurlu, H. S., N. Koca, and F. Karadeniz. 2006. Degradation of vitamin C in citrus juice concentrates during storage. Journal of Food Engineering 74 (2):211–6. doi: 10.1016/j.jfoodeng.2005.03.026.
  • Cannon, R. J., and C. T. Ho. 2018. Volatile sulfur compounds in tropical fruits. Journal of Food and Drug Analysis 26 (2):445–68. doi: 10.1016/j.jfda.2018.01.014.
  • Cannon, R. J., A. Kazimierski, N. L. Curto, J. Li, L. Trinnaman, A. J. Jańczuk, D. Agyemang, N. C. Da Costa, and M. Z. Chen. 2015. Identification, synthesis, and characterization of novel sulfur-containing volatile compounds from the in-depth analysis of Lisbon lemon peels (Citrus limon L. Burm. f. cv. Lisbon). Journal of Agricultural and Food Chemistry 63 (7):1915–31. doi: 10.1021/jf505177r.
  • Cerdán-Calero, M., L. Izquierdo, and E. Sentandreu. 2013. Valencia Late orange juice preserved by pulp reduction and high pressure homogenization: Sensory quality and gas chromatography–mass spectrometry analysis of volatiles. LWT - Food Science and Technology 51 (2):476–83. doi: 10.1016/j.lwt.2012.11.016.
  • Cheng, C. X., M. Jia, Y. Gui, and Y. Q. Ma. 2020. Comparison of the effects of novel processing technologies and conventional thermal pasteurisation on the nutritional quality and aroma of Mandarin (Citrus unshiu) juice. Innovative Food Science & Emerging Technologies 64 (1):102425. doi: 10.1016/j.ifset.2020.102425.
  • Cheng, Y. J., G. J. Li, H. J. Wu, L. H. Huang, and H. Wang. 2021. Identification of light-induced key off-flavors in ponkan mandarin juice using MDGC-MS/O and GC-MS/PFPD. Journal of Agricultural and Food Chemistry 69 (47):14259–69. doi: 10.1021/acs.jafc.1c05465.
  • Cheng, Y. J., G. J. Li, H. J. Wu, G. L. Liang, and H. Wang. 2022. Flavor deterioration of mandarin juice during storage by MDGC-MS/O and GC-MS/PFPD. LWT 159:113132. doi: 10.1016/j.lwt.2022.113132.
  • Cheng, Y. J., R. Rouseff, G. J. Li, and H. J. Wu. 2020. Methanethiol, an off-flavor produced from the thermal treatment of mandarin juices: A study of citrus sulfur volatiles. Journal of Agricultural and Food Chemistry 68 (4):1030–7. doi: 10.1021/acs.jafc.9b06647.
  • Conrad, K. R., V. J. Davidson, D. L. Mulholland, I. J. Britt, and S. Yada. 2005. Influence of PET and PET/PEN blend packaging on ascorbic acid and color in juices exposed to fluorescent and UV light. Journal of Food Science 70 (1):E19–E25. doi: 10.1111/j.1365-2621.2005.tb09032.x.
  • Cserhalmi, Z., Á. Sass-Kiss, M. Tóth-Markus, and N. Lechner. 2006. Study of pulsed electric field treated citrus juices. Innovative Food Science & Emerging Technologies 7 (1–2):49–54. doi: 10.1016/j.ifset.2005.07.001.
  • Dagulo, L., M. D. Danyluk, T. M. Spann, M. F. Valim, R. Goodrich-Schneider, C. Sims, and R. Rouseff. 2010. Chemical characterization of orange juice from trees infected with citrus greening (Huanglongbing). Journal of Food Science 75 (2):C199–207. doi: 10.1111/j.1750-3841.2009.01495.x.
  • Dala-Paula, B. M., A. Plotto, J. Bai, J. A. Manthey, E. A. Baldwin, R. S. Ferrarezi, and M. B. A. Gloria. 2018. Effect of huanglongbing or greening disease on orange juice quality, a review. Frontiers in Plant Science 9 (1):1976. doi: 10.3389/fpls.2018.01976.
  • Demarcq, B., M. Cavailles, L. Lambert, C. Schippa, P. Ollitrault, and F. Luro. 2021. Characterization of odor-active compounds of Ichang lemon (Citrus wilsonii Tan.) and identification of its genetic interspecific origin by DNA genotyping. Journal of Agricultural and Food Chemistry 69 (10):3175–88. doi: 10.1021/acs.jafc.0c07894.
  • Dhuique-Mayer, C., M. Tbatou, M. Carail, C. Caris-Veyrat, M. Dornier, and M. J. Amiot. 2007. Thermal degradation of antioxidant micronutrients in citrus juice: Kinetics and newly formed compounds. Journal of Agricultural and Food Chemistry 55 (10):4209–16. doi: 10.1021/jf0700529.
  • Dorado, C., R. G. Cameron, J. A. Manthey, and K. L. Ferguson. 2021. Bench scale batch steam explosion of Florida red and white grapefruit juice processing residues. Future Foods 3:100020. doi: 10.1016/j.fufo.2021.100020.
  • Dreher, J. G., R. L. Rouseff, and M. Naim. 2003. GC-olfactometric characterization of aroma volatiles from the thermal degradation of thiamin in model orange juice. Journal of Agricultural and Food Chemistry 51 (10):3097–102. doi: 10.1021/jf034023j.
  • Elss, S., S. Kleinhenz, and P. Schreier. 2007. Odor and taste thresholds of potential carry-over/off-flavor compounds in orange and apple juice. LWT - Food Science and Technology 40 (10):1826–31. doi: 10.1016/j.lwt.2006.12.010.
  • Engel, W., W. Bahr, and P. Schieberle. 1999. Solvent assisted flavour evaporation – a new and versatile technique for the careful and direct isolation of aroma compounds from complex food matrices. European Food Research and Technology 209 (3–4):237–41. doi: 10.1007/s002170050486.
  • Fan, G., Y. X. Xu, X. M. Zhang, S. J. Lei, S. Z. Yang, and S. Y. Pan. 2011. Characteristics of immobilised β-glucosidase and its effect on bound volatile compounds in orange juice. International Journal of Food Science & Technology 46 (11):2312–20. doi: 10.1111/j.1365-2621.2011.02751.x.
  • Feng, S., F. G. J. Gmitter, J. W. Grosser, and Y. Wang. 2021. Identification of key flavor compounds in citrus Fruits: A flavoromics approach. ACS Food Science & Technology 1 (11):2076–85. doi: 10.1021/acsfoodscitech.1c00304.
  • Feng, S., L. Niu, J. H. Suh, W. L. Hung, and Y. Wang. 2018. Comprehensive metabolomics analysis of mandarins (Citrus reticulata) as a tool for variety, rootstock, and grove discrimination. Journal of Agricultural and Food Chemistry 66 (39):10317–26. doi: 10.1021/acs.jafc.8b03877.
  • Feng, S., J. H. Suh, F. G. Gmitter, and Y. Wang. 2018. Differentiation between Flavors of Sweet Orange (Citrus sinensis) and Mandarin (Citrus reticulata). Journal of Agricultural and Food Chemistry 66 (1):203–11. doi: 10.1021/acs.jafc.7b04968.
  • Fernández-Vázquez, R., C. M. Stinco, D. Hernanz, F. J. Heredia, and I. M. Vicario. 2013. Industrial orange juice debittering: Effect on volatile compounds and overall quality attributes. International Journal of Food Science & Technology 48 (9):1861–7. doi: 10.1111/ijfs.12163.
  • Filho, E. G. A., T. H. S. Rodrigues, F. A. N. Fernandes, E. S. de Brito, P. J. Cullen, J. M. Frias, P. Bourke, R. S. Cavalcante, F. D. L. Almeida, and S. Rodrigues. 2019. An untargeted chemometric evaluation of plasma and ozone processing effect on volatile compounds in orange juice. Innovative Food Science & Emerging Technologies 53:63–9. doi: 10.1016/j.ifset.2017.10.001.
  • Firor, R. L., and B. D. Quimby. 2001. A comparison of sulfur selective detectors for low level analysis in gaseous streams. Wilmington, USA: Application Note provided by Agilent Technologies, Inc. Publication Number 5988-2426EN.
  • Gao, X. L., T. Feng, E. M. Liu, P. Shan, Z. K. Zhang, L. Liao, and H. L. Ma. 2021. Ougan juice debittering using ultrasound-aided enzymatic hydrolysis: Impacts on aroma and taste. Food Chemistry 345:128767. doi: 10.1016/j.foodchem.2020.128767.
  • Gao, J., B. P. Wu, L. X. Gao, H. R. Liu, B. Zhang, C. D. Sun, and K. S. Chen. 2018. Glycosidically bound volatiles as affected by ripening stages of Satsuma mandarin fruit. Food Chemistry 240:1097–105. doi: 10.1016/j.foodchem.2017.07.085.
  • Gavahian, M., and A. Farahnaky. 2018. Ohmic-assisted hydrodistillation technology: A review. Trends in Food Science & Technology 72:153–61. doi: 10.1016/j.tifs.2017.12.014.
  • Goh, R. M. V., A. Pua, K. H. Ee, Y. Huang, S. Q. Liu, B. Lassabliere, and B. Yu. 2021. Investigation of changes in non-traditional indices of maturation in Navel orange peel and juice using GC-MS and LC-QTOF/MS. Food Research International 148:110607. doi: 10.1016/j.foodres.2021.110607.
  • Goldenberg, L., Y. Yaniv, H. J. Choi, A. Doron-Faigenboim, N. Carmi, and R. Porat. 2016. Elucidating the biochemical factors governing off-flavor perception in mandarins. Postharvest Biology and Technology 120:167–79. doi: 10.1016/j.postharvbio.2016.06.009.
  • Goldenberg, L., Y. Yaniv, R. Porat, and N. Carmi. 2018. Mandarin fruit quality: A review. Journal of the Science of Food and Agriculture 98 (1):18–26. doi: 10.1002/jsfa.8495.
  • Gómez, A. H., J. Wang, G. X. Hu, and A. G. Pereira. 2007. Discrimination of storage shelf-life for mandarin by electronic nose technique. LWT - Food Science and Technology 40 (4):681–9. doi: 10.1016/j.lwt.2006.03.010.
  • Goodner, K. L., P. Jella, and R. L. Rouseff. 2000. Determination of vanillin in orange, grapefruit, tangerine, lemon, and lime juices using GC-olfactometry and GC-MS/MS. Journal of Agricultural and Food Chemistry 48 (7):2882–6. doi: 10.1021/jf990561d.
  • Gordon, R. M., T. L. Washington, C. A. Sims, R. Goodrich-Schneider, S. M. Baker, Y. Yagiz, and L. Gu. 2021. Performance of macroporous resins for debittering HLB-affected grapefruit juice and its impacts on furanocoumarin and consumer sensory acceptability. Food Chemistry 352:129367. doi: 10.1016/j.foodchem.2021.129367.
  • Grant-Preece, P., C. Barril, L. M. Schmidtke, G. R. Scollary, and A. C. Clark. 2017. Light-induced changes in bottled white wine and underlying photochemical mechanisms. Critical Reviews in Food Science and Nutrition 57 (4):743–54. doi: 10.1080/10408398.2014.919246.
  • Gupta, A. K., P. P. Sahu, and P. Mishra. 2021. Ultrasound aided debittering of bitter variety of citrus fruit juice: Effect on chemical, volatile profile and antioxidative potential. Ultrasonics Sonochemistry 81:105839. doi: 10.1016/j.ultsonch.2021.105839.
  • Hartyáni, P., I. Dalmadi, Z. Cserhalmi, D. B. Kántor, M. Tóth-Markus, and Á. Sass-Kiss. 2011. Physical–chemical and sensory properties of pulsed electric field and high hydrostatic pressure treated citrus juices. Innovative Food Science & Emerging Technologies 12 (3):255–60. doi: 10.1016/j.ifset.2011.04.008.
  • Hashizume, M., M. H. Gordon, and D. S. Mottram. 2007. Light-induced off-flavor development in cloudy apple juice. Journal of Agricultural and Food Chemistry 55 (22):9177–82. doi: 10.1021/jf0715727.
  • Herrera, C., R. Castro, C. Garcia-Barroso, and E. Duran-Guerrero. 2016. Development of a stir bar sorptive extraction method for the determination of volatile compounds in orange juices. Journal of Separation Science 39 (18):3586–93. doi: 10.1002/jssc.201600590.
  • Hijaz, F., F. G. Gmitter, J. Bai, E. Baldwin, A. Biotteau, C. Leclair, T. G. McCollum, and A. Plotto. 2020. Effect of fruit maturity on volatiles and sensory descriptors of four mandarin hybrids. Journal of Food Science 85 (5):1548–64. doi: 10.1111/1750-3841.15116.
  • Hinterholzer, A., and P. Schieberle. 1998. Identification of the most odour-active volatiles in fresh, hand-extracted juice of Valencia late oranges by odour dilution techniques. Flavour and Fragrance Journal 13 (1):49–55. AID-FFJ691>3.0 doi: 10.1002/(SICI)1099-1026(199801/02)13:1<49:.
  • Hoffmann, A., A. Heiden, and E. Pfannkoch. 2000. Flavor profiling of beverages by Stir Bar Sorptive Extraction (SBSE) and thermal desorption GC/MS/PFPD. Mülheim an der Ruhr, Germany: Application Note provided by Gerstel GmbH & Co.KG. Application Note 4/2000, 1–15.
  • Jabalpurwala, F., O. Gurbuz, and R. Rouseff. 2010. Analysis of grapefruit sulphur volatiles using SPME and pulsed flame photometric detection. Food Chemistry 120 (1):296–303. doi: 10.1016/j.foodchem.2009.09.079.
  • Jalili, V., A. Barkhordari, and A. Ghiasvand. 2020. A comprehensive look at solid-phase microextraction technique: A review of reviews. Microchemical Journal 152:104319. doi: 10.1016/j.microc.2019.104319.
  • Jia, X., Q. C. Deng, Y. Y. Yang, X. Xiang, X. P. Zhou, C. B. Tan, Q. Zhou, and F. H. Huang. 2021. Unraveling of the aroma-active compounds in virgin camellia oil (Camellia oleifera Abel) using gas chromatography–mass spectrometry–olfactometry, aroma recombination, and omission studies. Journal of Agricultural and Food Chemistry 69 (32):9043–55. doi: 10.1021/acs.jafc.0c07321.
  • Jia, M., C. Zhang, J. Zhou, C. X. Cheng, and Y. Q. Ma. 2022. Improving the quality of mandarin juice using a combination of filtration and standard homogenization. Food Chemistry 383:132522. doi: 10.1016/j.foodchem.2022.132522.
  • Jimenez-Sanchez, C., J. Lozano-Sanchez, A. Segura-Carretero, and A. Fernandez-Gutierrez. 2017a. Alternatives to conventional thermal treatments in fruit-juice processing. Part 1: Techniques and applications. Critical Reviews in Food Science and Nutrition 57 (3):501–23. doi: 10.1080/10408398.2013.867828.
  • Jimenez-Sanchez, C., J. Lozano-Sanchez, A. Segura-Carretero, and A. Fernandez-Gutierrez. 2017b. Alternatives to conventional thermal treatments in fruit-juice processing. Part 2: Effect on composition, phytochemical content, and physicochemical, rheological, and organoleptic properties of fruit juices. Critical Reviews in Food Science and Nutrition 57 (3):637–52. doi: 10.1080/10408398.2014.914019.
  • Jordán, M. J., K. L. Goodner, and J. Laencina. 2003. Deaeration and pasteurization effects on the orange juice aromatic fraction. LWT - Food Science and Technology 36 (4):391–6. doi: 10.1016/S0023-6438(03)00041-0.
  • Kato, M. 2012. Mechanism of carotenoid accumulation in citrus fruit. Journal of the Japanese Society for Horticultural Science 81 (3):219–33. doi: 10.1271/kagakutoseibutsu.49.843.
  • Khandpur, P., and P. R. Gogate. 2015. Understanding the effect of novel approaches based on ultrasound on sensory profile of orange juice. Ultrasonics Sonochemistry 27:87–95. doi: 10.1016/j.ultsonch.2015.05.001.
  • Kiefl, J., B. Kohlenberg, A. Hartmann, K. Obst, S. Paetz, G. Krammer, and S. Trautzsch. 2018. Investigation on key molecules of huanglongbing (HLB)-induced orange juice off-flavor. Journal of Agricultural and Food Chemistry 66 (10):2370–7. doi: 10.1021/acs.jafc.7b00892.
  • Kim, M. K., H. W. Jang, and K. G. Lee. 2018. Sensory and instrumental volatile flavor analysis of commercial orange juices prepared by different processing methods. Food Chemistry 267:217–22. doi: 10.1016/j.foodchem.2017.10.129.
  • Kim, M. K., M. Y. Kim, and K. G. Lee. 2016. Determination of furan levels in commercial orange juice products and its correlation to the sensory and quality characteristics. Food Chemistry 211:654–60. doi: 10.1016/j.foodchem.2016.05.114.
  • Kim, M. K., Y. J. Lee, H. S. Kwak, and M. W. Kang. 2013. Identification of sensory attributes that drive consumer liking of commercial orange juice products in Korea. Journal of Food Science 78 (9):S1451–S1458. doi: 10.1111/1750-3841.12227.
  • Kokkinidou, S., and D. G. Peterson. 2014. Control of Maillard-type off-flavor development in ultrahigh-temperature-processed bovine milk by phenolic chemistry. Journal of Agricultural and Food Chemistry 62 (32):8023–33. doi: 10.1021/jf501919y.
  • Kranz, P., P. Adler, and B. Kunz. 2011a. Investigation of citrus flavor adsorption during debittering of grapefruit juice using kinetic modeling and response surface methodology. Food Science and Biotechnology 20 (3):715–24. doi: 10.1007/s10068-011-0101-y.
  • Kranz, P., P. Adler, and B. Kunz. 2011b. Sorption of citrus flavour compounds on XAD-7HP resin during the debittering of grapefruit juice. International Journal of Food Science & Technology 46 (1):30–6. doi: 10.1111/j.1365-2621.2010.02442.x.
  • Kumar, S., M. Khadka, R. Mishra, D. Kohli, and S. Upadhaya. 2017. Effects of conventional and microwave heating pasteurization on physiochemical properties of Pomelo (Citrus maxima) juice. Journal of Food Processing & Technology 8 (7):1–8. doi: 10.4172/2157-7110.1000683.
  • Leizerson, S., and E. Shimoni. 2005. Stability and sensory shelf life of orange juice pasteurized by continuous ohmic heating. Journal of Agricultural and Food Chemistry 53 (10):4012–8.
  • Li, M. B., W. Z. Zhang, M. Q. Zhang, Y. H. Yin, Z. J. Liu, X. S. Hu, and J. J. Yi. 2022. Effect of centrifugal pre-treatment on flavor change of cloudy orange juice: Interaction between pectin and aroma release. Food Chemistry 374:131705. doi: 10.1016/j.foodchem.2021.131705.
  • Li, S. J., Y. X. Hu, W. Liu, Y. Chen, F. Wang, X. N. Lu, and W. J. Zheng. 2020. Untargeted volatile metabolomics using comprehensive two-dimensional gas chromatography-mass spectrometry–A solution for orange juice authentication. Talanta 217:121038. doi: 10.1016/j.talanta.2020.121038.
  • Li, X., J. N. Ren, G. Fan, and S. Y. Pan. 2018. Changes of aroma compounds and qualities of freshly-squeezed orange juice during storage. Journal of Food Science and Technology 55 (11):4530–43. doi: 10.1007/s13197-018-3389-2.
  • Liang, Z., P. Zhang, and Z. Fang. 2022. Modern technologies for extraction of aroma compounds from fruit peels: A review. Critical Reviews in Food Science and Nutrition 62 (5):1284–307. doi: 10.1080/10408398.2020.1840333.
  • Lin, J., P. Jella, and R. L. Rouseff. 2002. Gas chromatography—olfactometry and chemiluminescence characterization of grapefruit juice volatile sulfur compounds. In Heteroatomic aroma compounds, vol. 826:102–112. Washington, DC: American Chemical Society. doi: 10.1021/bk-2002-0826.ch006.
  • Lin, J., R. L. Rouseff, S. Barros, and M. Naim. 2002. Aroma composition changes in early season grapefruit juice produced from thermal concentration. Journal of Agricultural and Food Chemistry 50 (4):813–9. doi: 10.1021/jf011154g.
  • Lu, Q., Y. Peng, C. Zhu, and S. Pan. 2018. Effect of thermal treatment on carotenoids, flavonoids and ascorbic acid in juice of orange cv. Cara Cara. Food Chemistry 265 (NOV.1):39–48. doi: 10.1016/j.foodchem.2018.05.072.
  • Luo, D., X. Pang, X. Xu, S. Bi, W. Zhang, and J. Wu. 2018. Identification of cooked off-flavor components and analysis of their formation mechanisms in melon juice during thermal processing. Journal of Agricultural and Food Chemistry 66 (22):5612–20. doi: 10.1021/acs.jafc.8b01019.
  • Luo, D., X. Xu, S. Bi, Y. Liu, and J. Wu. 2019. Study of the inhibitors of cooked off-flavor components in heat-treated XiZhou melon juice. Journal of Agricultural and Food Chemistry 67 (37):10401–11. doi: 10.1021/acs.jafc.9b03398.
  • Lv, R., Q. Kong, H. Mou, and X. Fu. 2017. Effect of guar gum on stability and physical properties of orange juice. International Journal of Biological Macromolecules 98:565–74. doi: 10.1016/j.ijbiomac.2017.02.031.
  • Mahanta, B. P., P. K. Bora, P. Kemprai, G. Borah, M. Lal, and S. Haldar. 2021. Thermolabile essential oils, aromas and flavours: Degradation pathways, effect of thermal processing and alteration of sensory quality. Food Research International (Ottawa, ON) 145:110404. doi: 10.1016/j.foodres.2021.110404.
  • Mall, V., I. Sellami, and P. Schieberle. 2018a. Identification and quantitation of four new 2-alkylthiazolidine-4-carboxylic acids formed in orange juice by a reaction of saturated aldehydes with cysteine. Journal of Agricultural and Food Chemistry 66 (42):11073–82. doi: 10.1021/acs.jafc.8b04333.
  • Mall, V., I. Sellami, and P. Schieberle. 2018b. New degradation pathways of the key aroma compound 1-penten-3-one during storage of not-from-concentrate orange juice. Journal of Agricultural and Food Chemistry 66 (42):11083–91. doi: 10.1021/acs.jafc.8b04334.
  • Mamede, M. E. O., and G. M. Pastore. 2006. Study of methods for the extraction of volatile compounds from fermented grape must. Food Chemistry 96 (4):586–90. doi: 10.1016/j.foodchem.2005.03.013.
  • Marsanasco, M., and S. D. V. Alonso. 2021. Physicochemical, functional, and sensory characterization of orange juice containing food additives with bioactive compounds under heat treatment and storage conditions. Food Bioscience 44:101393. doi: 10.1016/j.fbio.2021.101393.
  • Martens, M., H. Hogekamp, R. Boerrigter-Eenling, and C. Ponne. 2014. Evaluation of monolithic material sorptive extraction (MMSE) as an alternative aroma extraction technique. In Flavour Science, chap. 77, 411–415. Amsterdam: Elsevier. doi:10.1016/B978-0-12-398549-1.00077-5.
  • Martins, C. P. C., R. N. Cavalcanti, T. S. F. Cardozo, S. M. Couto, J. T. Guimarães, C. F. Balthazar, R. S. Rocha, T. C. Pimentel, M. Q. Freitas, R. S. L. Raices, et al. 2021. Effects of microwave heating on the chemical composition and bioactivity of orange juice-milk beverages. Food Chemistry 345 (3):128746. doi: 10.1016/j.foodchem.2020.128746.
  • Martins, C., P. C. Cavalcanti, R. N. Couto, S. M. Moraes, J. Esmerino, E. A. Silva, M. C. Raices, R. S. L. Gut, J. A. W. Ramaswamy, H. S. Tadini, et al. 2019. Microwave processing: Current background and effects on the physicochemical and microbiological aspects of dairy products. Comprehensive Reviews in Food Science and Food Safety 18 (1):67–83. doi: 10.1111/1541-4337.12409.
  • Mastello, R. B., M. Capobiango, S. T. Chin, M. Monteiro, and P. J. Marriott. 2015. Identification of odour-active compounds of pasteurised orange juice using multidimensional gas chromatography techniques. Food Research International (Ottawa, ON) 75:281–8. doi: 10.1016/j.foodres.2015.06.014.
  • Mastello, R. B., N. S. Janzantti, A. Bisconsin-Júnior, and M. Monteiro. 2018. Impact of HHP processing on volatile profile and sensory acceptance of Pêra-Rio orange juice. Innovative Food Science & Emerging Technologies 45:106–14. doi: 10.1016/j.ifset.2017.10.008.
  • Mastello, R. B., N. S. Janzantti, and M. Monteiro. 2015. Volatile and odoriferous compounds changes during frozen concentrated orange juice processing. Food Research International 77:591–8. doi: 10.1016/j.foodres.2015.10.007.
  • Mishra, S., A. Sachan, A. S. Vidyarthi, and S. G. Sachan. 2014. Transformation of ferulic acid to 4-vinylguaiacol as a major metabolite: A microbial approach. Reviews in Environmental Science and Bio/Technology 13 (4):377–85. doi: 10.1007/s11157-014-9348-0.
  • Mottram, D. S., and H. R. Mottram. 2002. An overview of the contribution of sulfur-containing compounds to the aroma in heated foods. In Heteroatomic aroma compounds (Vol. 826, pp. 73–92). Washington, DC: American Chemical Society. doi: 10.1021/bk-2002-0826.ch004.
  • Naim, M., S. Wainish, U. Zehavi, H. Peleg, R. L. Rouseff, and S. Nagy. 1993. Inhibition by thiol compounds of off-flavor formation in stored orange juice. 2. Effect of L-cysteine and N-acetyl-L-cysteine on p-vinylguaiacol formation. Journal of Agricultural and Food Chemistry 41 (9):1355–8. doi: 10.1021/jf00033a002.
  • Nakanishi, A., Y. Fukushima, N. Miyazawa, K. Yoshikawa, T. Maeda, and Y. Kurobayashi. 2017a. Identification of rotundone as a potent odor-active compound of several kinds of fruits. Journal of Agricultural and Food Chemistry 65 (22):4464–71. doi: 10.1021/acs.jafc.7b00929.
  • Nakanishi, A., Y. Fukushima, N. Miyazawa, K. Yoshikawa, T. Maeda, and Y. Kurobayashi. 2017b. Quantitation of rotundone in grapefruit (Citrus paradisi) peel and juice by stable isotope dilution assay. Journal of Agricultural and Food Chemistry 65 (24):5026–33. doi: 10.1021/acs.jafc.7b01319.
  • Ni, H., P. Hong, H. F. Ji, H. Sun, Y. H. Chen, A. F. Xiao, and F. Chen. 2015. Comparative analyses of aromas of fresh, naringinase-treated and resin-absorbed juices of pummelo by GC-MS and sensory evaluation. Flavour and Fragrance Journal 30 (3):245–53. doi: 10.1002/ffj.3239.
  • Nie, Y., and T. Albinus. 2012. Comparison of EG-Silicone-SBSE and derivatization-PDMS-SBSE for the analysis of phenolic compounds and off-flavors in water. Gerstel Application Note 12:1–12.
  • Nisperos-Carriedo, M. O., and P. E. Shaw. 1990. Comparison of volatile flavor components in fresh and processed orange juices. Journal of Agricultural and Food Chemistry 38 (4):1048–52. doi: 10.1021/jf00094a029.
  • Obenland, D., S. Collin, B. Mackey, J. Sievert, and M. L. Arpaia. 2011. Storage temperature and time influences sensory quality of mandarins by altering soluble solids, acidity and aroma volatile composition. Postharvest Biology and Technology 59 (2):187–93. doi: 10.1016/j.postharvbio.2010.09.011.
  • Obenland, D., S. Collin, J. Sievert, and M. L. Arpaia. 2013. Mandarin flavor and aroma volatile composition are strongly influenced by holding temperature. Postharvest Biology and Technology 82:6–14. doi: 10.1016/j.postharvbio.2013.02.013.
  • Obenland, D., S. Collin, J. Sievert, K. Fjeld, J. Doctor, and M. L. Arpaia. 2008. Commercial packing and storage of navel oranges alters aroma volatiles and reduces flavor quality. Postharvest Biology and Technology 47 (2):159–67. doi: 10.1016/j.postharvbio.2007.06.015.
  • Pacheco, M. D., J. I. Christian, and B. Feng. 2012. Study of Maillard reaction inhibitors for the sugar cane processing. American Journal of Food Technology 7 (8):470–8. doi: 10.3923/ajft.2012.470.478.
  • Pan, X., W. T. Zhang, F. Lao, R. F. Mi, X. J. Liao, D. S. Luo, and J. H. Wu. 2021. Isolation and identification of putative precursors of the volatile sulfur compounds and their inhibition methods in heat-sterilized melon juices. Food Chemistry 343:128459. doi: 10.1016/j.foodchem.2020.128459.
  • Paniagua-Martínez, I., A. Mulet, M. A. García-Alvarado, and J. Benedito. 2018. Orange juice processing using a continuous flow ultrasound-assisted supercritical CO 2 system: Microbiota inactivation and product quality. Innovative Food Science & Emerging Technologies 47:362–70. doi: 10.1016/j.ifset.2018.03.024.
  • Paravisini, L., and D. G. Peterson. 2019. Mechanisms non-enzymatic browning in orange juice during storage. Food Chemistry 289:320–7. doi: 10.1016/j.foodchem.2019.03.049.
  • Peng, C., R. Li, H. Ni, L. J. Li, and Q. B. Li. 2021. The effects of α‐L‐rhamnosidase, β‐D‐glucosidase, and their combination on the quality of orange juice. Journal of Food Processing and Preservation 45 (7):e15604. doi: 10.1111/jfpp.15604.
  • Perez-Cacho, P. R., and R. Rouseff. 2008. Processing and storage effects on orange juice aroma: A review. Journal of Agricultural and Food Chemistry 56 (21):9785–96. doi: 10.1021/jf801244j.
  • Perez-Cacho, P. R., K. Mahattanatawee, J. M. Smoot, and R. Rouseff. 2007. Identification of sulfur volatiles in canned orange juices lacking orange flavor. Journal of Agricultural and Food Chemistry 55 (14):5761–7. doi: 10.1021/jf0703856.
  • Perez-Cacho, P. R., M. D. Danyluk, and R. Rouseff. 2011. GC–MS quantification and sensory thresholds of guaiacol in orange juice and its correlation with Alicyclobacillus spp. Food Chemistry 129 (1):45–50. doi: 10.1016/j.foodchem.2011.04.014.
  • Pérez-López, A. J., D. Saura, J. Lorente, and N. A. Carbonell-Barrachina. 2006. Limonene, linalool, α-terpineol, and terpinen-4-ol as quality control parameters in mandarin juice processing. European Food Research and Technology 222 (3–4):281–5. doi: 10.1007/s00217-005-0055-5.
  • Pérez-López, A. J., J. M. López-Nicolás, and A. A. Carbonell-Barrachina. 2007. Effects of organic farming on minerals contents and aroma composition of Clemenules mandarin juice. European Food Research and Technology 225 (2):255–60. doi: 10.1007/s00217-006-0412-z.
  • Plotto, A., C. A. Margaría, K. L. Goodner, and E. A. Baldwin. 2008. Odour and flavour thresholds for key aroma components in an orange juice matrix: Esters and miscellaneous compounds. Flavour and Fragrance Journal 23 (6):398–406. doi: 10.1002/ffj.1888.
  • Plotto, A., E. Baldwin, G. McCollum, J. Manthey, J. Narciso, and M. Irey. 2010. Effect of liberibacter infection (huanglongbing or ­“greening” disease) of citrus on orange juice flavor quality by sensory evaluation. Journal of Food Science 75 (4):S220–S230. doi: 10.1111/j.1750-3841.2010.01580.x.
  • Polydera, A. C., N. G. Stoforos, and P. S. Taoukis. 2005. Quality degradation kinetics of pasteurised and high pressure processed fresh Navel orange juice: Nutritional parameters and shelf life. Innovative Food Science & Emerging Technologies 6 (1):1–9. doi: 10.1016/j.ifset.2004.10.004.
  • Qian, J. Y., G. M. Yan, S. H. Huo, C. H. Dai, H. L. Ma, and J. Kan. 2021. Effects of pulsed magnetic field on microbial and enzymic inactivation and quality attributes of orange juice. Journal of Food Processing and Preservation 45 (6):e15533. doi: 10.1111/jfpp.15533.
  • Qiu, S., J. Wang, and D. Du. 2017. Assessment of high pressure processed mandarin juice in the headspace by using electronic nose and chemometric analysis. Innovative Food Science & Emerging Technologies 42:33–41. doi: 10.1016/j.ifset.2017.05.003.
  • Ren, J. N., Y. N. Tai, M. Dong, J. H. Shao, S. Z. Yang, S. Y. Pan, and G. Fan. 2015. Characterisation of free and bound volatile compounds from six different varieties of citrus fruits. Food Chemistry 185:25–32. doi: 10.1016/j.foodchem.2015.03.142.
  • Roland, A., C. Viel, F. Reillon, S. Delpech, P. Boivin, R. Schneider, and L. Dagan. 2016. First identification and quantification of glutathionylated and cysteinylated precursors of 3‐mercaptohexan‐1‐ol and 4‐methyl‐4‐mercaptopentan‐2‐one in hops (Humulus lupulus). Flavour and Fragrance Journal 31 (6):455–63. doi: 10.1002/ffj.3337.
  • Rouseff, R. L., F. A. Jabalpurwala, O. Gurbuz, and K. Mahattanatawee. 2009. Analysis of sulfur volatiles in coffee, wine, and grapefruit juice using GC-PFPD and GC-O. ACS National Meeting Book of Abstracts 238:249.
  • Rouseff, R. L., P. R. Perez-Cacho, and F. Jabalpurwala. 2009. Historical review of citrus flavor research during the past 100 years. Journal of Agricultural and Food Chemistry 57 (18):8115–24. doi: 10.1021/jf900112y.
  • Seideneck, R., and P. Schieberle. 2011. Comparison of the key aroma compounds in hand-squeezed and unpasteurised, commercial NFC juices prepared from Brazilian Pera Rio oranges. European Food Research and Technology 232 (6):995–1005. doi: 10.1007/s00217-011-1473-1.
  • Sellami, I., V. Mall, and P. Schieberle. 2018. Changes in the key odorants and aroma profiles of hamlin and valencia orange juices not from concentrate (NFC) during chilled storage. Journal of Agricultural and Food Chemistry 66 (28):7428–40. doi: 10.1021/acs.jafc.8b02257.
  • Selli, S., and H. Kelebek. 2011. Aromatic profile and odour-activity value of blood orange juices obtained from Moro and Sanguinello (Citrus sinensis L. Osbeck). Industrial Crops and Products 33 (3):727–33. doi: 10.1016/j.indcrop.2011.01.016.
  • Shaw, P. E., and C. W. Wilson. 1982. Volatile sulfides in headspace gases of fresh and processed citrus juices. Journal of Agricultural and Food Chemistry 30 (4):685–8. doi: 10.1021/jf00112a015.
  • Shaw, P. E., J. M. Ammons, and R. S. Braman. 1980. Vofatile sulfur compounds infresh orange and grapefruit juices: Identification, quantitation, and possible importance to juice flavor. Journal of Agricultural and Food Chemistry 28 (4):778–81. doi: 10.1021/jf60230a039.
  • Shaw, P. E., M. G. Moshonas, C. J. Hearn, and K. L. Goodner. 2000. Volatile constituents in fresh and processed juices from grapefruit and new grapefruit hybrids. Journal of Agricultural and Food Chemistry 48 (6):2425–9. doi: 10.1021/jf0001076.
  • Shaw, P. E., R. L. Rouseff, K. L. Goodner, R. Bazemore, H. E. Nordby, and W. W. Widmer. 2000. Comparison of headspace GC and electronic sensor techniques for classification of processed orange juices. LWT - Food Science and Technology 33 (5):331–4. doi: 10.1006/fstl.2000.0661.
  • Sheung, K. S. M., S. K. Sastry, and D. B. Min. 2007. Diffusion coefficient of orange juice flavor compounds into packaging materials: A mathematical model. LWT - Food Science and Technology 40 (1):157–63. doi: 10.1016/j.lwt.2005.09.002.
  • Shi, J. X., E. E. Goldschmidt, R. Goren, and R. Porat. 2007. Molecular, biochemical and anatomical factors governing ethanol fermentation metabolism and accumulation of off-flavors in mandarins and grapefruit. Postharvest Biology and Technology 46 (3):242–51. doi: 10.1016/j.postharvbio.2007.05.009.
  • Shui, M., T. Feng, Y. Tong, H. Zhuang, C. Lo, H. Sun, L. Chen, and S. Song. 2019. Characterization of key aroma compounds and construction of flavor base module of Chinese sweet oranges. Molecules 24 (13):2384–13. doi: 10.3390/molecules24132384.
  • Song, X. B., G. N. Wang, L. Zhu, F. P. Zheng, J. Ji, J. Y. Sun, H. H. Li, M. Q. Huang, Q. Z. Zhao, M. M. Zhao, et al. 2021. Comparison of two cooked vegetable aroma compounds, dimethyl disulfide and methional, in Chinese Baijiu by a sensory-guided approach and chemometrics. LWT-Food Science and Technology 146:111427. doi: 10.1016/j.lwt.2021.111427.
  • Song, X. B., L. Zhu, X. L. Wang, F. P. Zheng, M. M. Zhao, Y. P. Liu, H. H. Li, F. Y. Zhang, Y. H. Zhang, and F. Chen. 2019. Characterization of key aroma-active sulfur-containing compounds in Chinese Laobaigan Baijiu by gas chromatography-olfactometry and comprehensive two-dimensional gas chromatography coupled with sulfur chemiluminescence detection. Food Chemistry 297:124959. doi: 10.1016/j.foodchem.2019.124959.
  • Souza, V. R. D., V. Popović, S. Bissonnette, I. Ros, L. Mats, L. Duizer, K. Warriner, and T. Koutchma. 2020. Quality changes in cold pressed juices after processing by high hydrostatic pressure, ultraviolet-c light and thermal treatment at commercial regimes. Innovative Food Science & Emerging Technologies 64:102398. doi: 10.1016/j.ifset.2020.102398.
  • Sumitani, H., S. Suekane, Y. Sakai, and K. Tatsuka. 1991. FPD-GC determination of S-methylmethioninesulfonium in satsuma mandarin juice. Agricultural and Biological Chemistry 55 (11):2899–900. doi: 10.1080/00021369.1991.10871032.
  • Sun, Y., Q. Xu, W. Peng, Y. Xue, and P. Sun. 2021. Synergistic effects of ultrasound and beta-d-glucosidase in aroma of orange juice. Journal of Food Science 86 (6):2374–86. doi: 10.1111/1750-3841.15671.
  • Sun, Y., W. Peng, L. Zeng, Y. Xue, W. Lin, X. Ye, R. Guan, and P. Sun. 2021. Using power ultrasound to release glycosidically bound volatiles from orange juice: A new method. Food Chemistry 344:128580. doi: 10.1016/j.foodchem.2020.128580.
  • Tietel, Z., A. Plotto, E. Fallik, E. Lewinsohn, and R. Porat. 2011. Taste and aroma of fresh and stored mandarins. Journal of the Science of Food and Agriculture 91 (1):14–23. doi: 10.1002/jsfa.4146.
  • Tietel, Z., R. Porat, K. Weiss, and D. Ulrich. 2011. Identification of aroma-active compounds in fresh and stored ‘Mor’ mandarins. International Journal of Food Science & Technology 46 (11):2225–31. doi: 10.1111/j.1365-2621.2011.02740.x.
  • Tietel, Z., E. Bar, E. Lewinsohn, E. Feldmesser, E. Fallik, and R. Porat. 2010. Effects of wax coatings and postharvest storage on sensory quality and aroma volatile composition of ‘Mor’ mandarins. Journal of the Science of Food and Agriculture 90 (6):995–1007. doi: 10.1002/jsfa.3909.
  • Tietel, Z., E. Fallik, and R. Porat. 2011. Sensory and aroma profiling of fresh and stored ‘Or’ mandarins. IInd is on Citrus Biotechnology. Acta Horticulturae 892:373–382. doi: 10.17660/actahortic.2011.892.46.
  • Tietel, Z., E. Feldmesser, E. Lewinsohn, E. Fallik, and R. Porat. 2011. Changes in the transcriptome of ‘Mor’ mandarin flesh during storage: Emphasis on molecular regulation of fruit flavor deterioration. Journal of Agricultural and Food Chemistry 59 (8):3819–27. doi: 10.1021/jf104614s.
  • Tietel, Z., E. Lewinsohn, E. Fallik, and R. Porat. 2011. Elucidating the roles of ethanol fermentation metabolism in causing off-flavors in mandarins. Journal of Agricultural and Food Chemistry 59 (21):11779–85. doi: 10.1021/jf203037v.
  • Tuşa, F. D., Z. Moldovan, G. Schmutzer, D. A. Magdaş, A. Dehelean, M. Vlassa, and M. D. Lazar. 2012. Analysis of flavor compounds by GC/MS after liquid-liquid extraction from fruit juices. AIP Conference Proceedings 1425 (53):53–7. doi: 10.1063/1.3681965.
  • Ummarat, N., M. L. Arpaia, and D. Obenland. 2015. Physiological, biochemical and sensory characterization of the response to waxing and storage of two mandarin varieties differing in postharvest ethanol accumulation. Postharvest Biology and Technology 109:82–96. doi: 10.1016/j.postharvbio.2015.06.005.
  • United States Department of Agriculture. 2022. Citrus: World markets and trade. https://apps.fas.usda.gov/psdonline/circulars/citrus.pdf) (accessed July 2022).
  • Vadivel, V., A. Moncalvo, R. Dordoni, and G. Spigno. 2017. Effects of an acid/alkaline treatment on the release of antioxidants and cellulose from different agro-food wastes. Waste Management (New York, NY) 64 (jun):305–14. doi: 10.1016/j.wasman.2017.03.010.
  • Van Willige, R. W. G., J. P. H. Linssen, A. Legger-Huysman, and A. G. J. Voragen. 2003. Influence of flavour absorption by food-packaging materials (low-density polyethylene, polycarbonate and polyethylene terephthalate) on taste perception of a model solution and orange juice. Food Additives and Contaminants 20 (1):84–91. doi: 10.1080/0265203021000031582.
  • Velázquez‐Estrada, R. M., M. M. Hernández‐Herrero, B. Guamis‐López, and A. X. Roig‐Saguès. 2019. Influence of ultra‐high pressure homogenisation on physicochemical and sensorial properties of orange juice in comparison with conventional thermal processing. International Journal of Food Science & Technology 54 (5):1858–64. doi: 10.1111/ijfs.14089.
  • Vervoort, L., T. Grauwet, B. T. Kebede, I. Van der Plancken, R. Timmermans, M. Hendrickx, and A. Van Loey. 2012. Headspace fingerprinting as an untargeted approach to compare novel and traditional processing technologies: A case-study on orange juice pasteurisation. Food Chemistry 134 (4):2303–12. doi: 10.1016/j.foodchem.2012.03.096.
  • Wahia, H., C. Zhou, A. T. Mustapha, R. Amanor-Atiemoh, L. Mo, O. A. Fakayode, and H. Ma. 2020. Storage effects on the quality quartet of orange juice submitted to moderate thermosonication: Predictive modeling and odor fingerprinting approach. Ultrasonics Sonochemistry 64:104982. doi: 10.1016/j.ultsonch.2020.104982.
  • Wang, H., P. Li, S.-H. Sun, Q.-D. Zhang, Y. Su, Y.-L. Zong, and J.-P. Xie. 2014. Comparison of liquid–liquid extraction, simultaneous distillation extraction, ultrasound-assisted solvent extraction, and headspace solid-phase microextraction for the determination of volatile compounds in jujube extract by gas chromatography/mass spectrometry. Analytical Letters 47 (4):654–74. doi: 10.1080/00032719.2013.845899.
  • Wang, K. W., and Z. Z. Xu. 2022. Comparison of freshly squeezed, Non-thermally and thermally processed orange juice based on traditional quality characters, untargeted metabolomics, and volatile overview. Food Chemistry 373 (Pt B):131430. doi: 10.1016/j.foodchem.2021.131430.
  • Wang, X. G., M. Le, and R. Stuetz. 2021. Calibration methods for VSCs measured on AS-TD-GC-SCD. Environmental Monitoring and Assessment 194 (1):25. doi: 10.1007/s10661-021-09690-y.
  • Wang, Y., S. Y. Wang, S. Fabroni, S. Feng, P. Rapisarda, and R. Rouseff. 2020. Chemistry of citrus flavor. In The genus citrus, chap. 22, 447–70. Amsterdam: Elsevier. doi: 10.1016/B978-0-12-812163-4.00022-X.
  • Wei, X., M. Song, C. Chen, H. Tong, G. Liang, and F. G. GmitterJr. 2018. Juice volatile composition differences between Valencia orange and its mutant Rohde Red Valencia are associated with carotenoid profile differences. Food Chemistry 245:223–32. doi: 10.1016/j.foodchem.2017.10.066.
  • Wibowo, S., T. Grauwet, B. T. Kebede, M. Hendrickx, and A. V. Loey. 2015. Study of chemical changes in pasteurised orange juice during shelf-life: A fingerprinting-kinetics evaluation of the volatile fraction. Food Research International (Ottawa, ON) 75:295–304. doi: 10.1016/j.foodres.2015.06.020.
  • Williams, P. J., C. R. Strauss, and B. Wilson. 1980. Hydroxylated linalool derivatives as precursors of volatile monoterpenes of muscat grapes. Journal of Agricultural and Food Chemistry 28 (4):766–71. doi: 10.1021/jf60230a037.
  • Wolter, C., A. Gessler, and P. Winterhalter. 2010. Comparison of different methods for the determination of the limonene content in orange juice. Deutsche Lebensmittel-Rundschau 106:624–6.
  • Xiao, Z., Q. Wu, Y. Niu, M. Wu, J. Zhu, X. Zhou, X. Chen, H. Wang, J. Li, and J. Kong. 2017. Characterization of the key aroma compounds in five varieties of mandarins by gas chromatography-olfactometry, odor activity values, aroma recombination, and omission analysis. Journal of Agricultural and Food Chemistry 65 (38):8392–401. doi: 10.1021/acs.jafc.7b02703.
  • Xu, L., Z. Xu, S. Kelly, and X. Liao. 2020. Integrating untargeted metabolomics and targeted analysis for not from concentrate and from concentrate orange juices discrimination and authentication. Food Chemistry 329:127130. doi: 10.1016/j.foodchem.2020.127130.
  • Yang, X., F. Yang, Y. Liu, J. Li, and H.-L. Song. 2020. Identification of key off-flavor compounds in thermally treated watermelon juice via gas chromatography-olfactometry-mass spectrometry, aroma recombination, and omission experiments. Foods 9 (2):227. doi: 10.3390/foods9020227.
  • Yang, Y. N., P. Pei, J. Y. Sun, Y. M. Jia, C. Y. Wan, Q. Zhou, and F. H. Huang. 2022. Investigation of volatile thiol contributions to rapeseed oil by odor active value measurement and perceptual interactions. Food Chemistry 373 (Pt B):131607. doi: 10.1016/j.foodchem.2021.131607.
  • Yeom, H. W., C. B. Streaker, Q. H. Zhang, and D. B. Min. 2000. Effects of pulsed electric fields on the quality of orange juice and comparison with heat pasteurization. Journal of Agricultural and Food Chemistry 48 (10):4597–605. doi: 10.1021/jf000306p.
  • Yi, Z., T. Feng, H. Zhuang, R. Ye, M. Li, and T. Liu. 2016. Comparison of different extraction methods in the analysis of volatile compounds in pomegranate juice. Food Analytical Methods 9 (8):2364–73. doi: 10.1007/s12161-016-0410-0.
  • Yu, P., Y. Yang, J. Sun, X. Jia, C. Zheng, Q. Zhou, and F. Huang. 2022. Identification of volatile sulfur-containing compounds and the precursor of dimethyl sulfide in cold-pressed rapeseed oil by GC-SCD and UPLC-MS/MS. Food Chemistry 367:130741. doi: 10.1016/j.foodchem.2021.130741.
  • Yu, Y., J. Bai, C. Chen, A. Plotto, E. A. Baldwin, and F. G. Gmitter. 2018. Comparative analysis of juice volatiles in selected mandarins, mandarin relatives and other citrus genotypes. Journal of the Science of Food and Agriculture 98 (3):1124–31. doi: 10.1002/jsfa.8563.
  • Yuan, H., J. Zhang, D. Nageswaran, and L. Li. 2015. Carotenoid metabolism and regulation in horticultural crops. Horticulture Research 2:15036. doi: 10.1038/HORTRES.2015.36.
  • Zhang, H. P., Y. X. Xie, C. H. Liu, S. L. Chen, S. S. Hu, Z. Z. Xie, X. X. Deng, and J. Xu. 2017. Comprehensive comparative analysis of volatile compounds in citrus fruits of different species. Food Chemistry 230:316–26. doi: 10.1016/j.foodchem.2017.03.040.
  • Zhang, J. K., H. L. Liu, R. X. Sun, Y. Zhao, R. R. Xing, N. Yu, T. T. Deng, X. Ni, and Y. Chen. 2022. Volatolomics approach for authentication of not-from-concentrate (NFC) orange juice based on characteristic volatile markers using headspace solid phase microextraction (HS-SPME) combined with GC-MS. Food Control 136:108856. doi: 10.1016/j.foodcont.2022.108856.
  • Zhang, L., A. Shah, and F. C. J. Michel. 2019. Synthesis of 5-hydroxymethylfurfural from fructose and inulin catalyzed by magnetically-recoverable Fe3O4@SiO2@TiO2–HPWnanoparticles. Journal of Chemical Technology & Biotechnology 94 (10):3393–402. doi: 10.1002/jctb.6153.
  • Zhang, W., P. Dong, F. Lao, J. Liu, X. Liao, and J. Wu. 2019. Characterization of the major aroma-active compounds in Keitt mango juice: Comparison among fresh, pasteurization and high hydrostatic pressure processing juices. Food Chemistry 289:215–22. doi: 10.1016/j.foodchem.2019.03.064.
  • Zhang, Y. F., Y. Q. Wu, S. R. Chen, B. B. Yang, H. Zhang, X. G. Wang, M. Granvogl, and Q. Z. Jin. 2021. Flavor of rapeseed oil: An overview of odorants, analytical techniques, and impact of treatment. Comprehensive Reviews in Food Science and Food Safety 20 (4):3983–4018. doi: 10.1111/1541-4337.12780.
  • Zheng, H., Q. Zhang, J. Quan, Q. Zheng, and W. Xi. 2016. Determination of sugars, organic acids, aroma components, and carotenoids in grapefruit pulps. Food Chemistry 205:112–21. doi: 10.1016/j.foodchem.2016.03.007.
  • Zhou, L., X. Bi, Z. Xu, Y. Yang, and X. Liao. 2015. Effects of high-pressure CO2 processing on flavor, texture, and color of foods. Critical Reviews in Food Science and Nutrition 55 (6):750–68. doi: 10.1080/10408398.2012.677871.
  • Zhou, Q., G. Li, Z. Ou-Yang, X. Yi, L. Huang, and H. Wang. 2020. Volatile organic compounds profiles to determine authenticity of sweet orange juice using head space gas chromatography coupled with multivariate analysis. Foods 9 (4):505. doi: 10.3390/foods9040505.
  • Zhu, C. H., Q. Lu, X. Y. Zhou, J. X. Li, J. Q. Yue, Z. R. Wang, and S. Y. Pan. 2020. Metabolic variations of organic acids, amino acids, fatty acids and aroma compounds in the pulp of different pummelo varieties. LWT 130:109445. doi: 10.1016/j.lwt.2020.109445.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.