1,199
Views
17
CrossRef citations to date
0
Altmetric
Review

Gel performance of surimi induced by various thermal technologies: A review

, , , , , ORCID Icon & ORCID Icon show all

References

  • Ahmed, J., H. S. Ramaswamy, I. Alli, and V. G. S. Raghavan. 2007. Protein denaturation, rheology, and gelation characteristics of radio-frequency heated egg white dispersions. International Journal of Food Properties 10 (1):145–61. doi: 10.1080/10942910600986970.
  • Arsyad, M. A., T. Akazawa, and M. Ogawa. 2019. Effects of olive leaf powder on mechanical properties of heat-induced surimi gel. Journal of Aquatic Food Product Technology 28 (1):2–13. doi: 10.1080/10498850.2018.1559904.
  • Benjakul, S., C. Chantarasuwan, and W. Visessanguan. 2003. Effect of medium temperature setting on gelling characteristics of surimi from some tropical fish. Food Chemistry 82 (4):567–74. doi: 10.1016/S0308-8146(03)00012-8.
  • Benjakul, S., and W. Visessanguan. 2003. Transglutaminase-mediated setting in bigeye snapper surimi. Food Research International 36 (3):253–66. doi: 10.1016/S0963-9969(02)00167-9.
  • Benjakul, S., W. Visessanguan, C. Thongkaew, and M. Tanaka. 2005. Effect of frozen storage on chemical and gel-forming properties of fish commonly used for surimi production in Thailand. Food Hydrocolloids. 19 (2):197–207. doi: 10.1016/j.foodhyd.2004.05.004.
  • Cando, D., B. Herranz, A. J. Borderias, and H. M. Moreno. 2016. Different additives to enhance the gelation of surimi gel with reduced sodium content. Food Chemistry 196:791–9. doi: 10.1016/j.foodchem.2015.10.022.
  • Cao, H., D. Fan, X. Jiao, J. Huang, J. Zhao, B. Yan, W. Zhou, W. Zhang, W. Ye, and H. Zhang. 2019a. Importance of thickness in electromagnetic properties and gel characteristics of surimi during microwave heating. Journal of Food Engineering 248:80–8. doi: 10.1016/j.jfoodeng.2019.01.003.
  • Cao, H., D. Fan, X. Jiao, J. Huang, J. Zhao, B. Yan, W. Zhou, W. Zhang, W. Ye, H. Zhang, et al. 2018a. Intervention of transglutaminase in surimi gel under microwave irradiation. Food Chemistry 268:378–85. doi: 10.1016/j.foodchem.2018.06.067.
  • Cao, H., D. Fan, X. Jiao, J. Huang, J. Zhao, B. Yan, W. Zhou, W. Zhang, and H. Zhang. 2018b. Effects of microwave combined with conduction heating on surimi quality and morphology. Journal of Food Engineering 228:1–11. doi: 10.1016/j.jfoodeng.2018.01.021.
  • Cao, H., D. Fan, X. Jiao, J. Huang, J. Zhao, B. Yan, W. Zhou, W. Zhang, and H. Zhang. 2018c. Heating surimi products using microwave combined with steam methods: Study on energy saving and quality. Innovative Food Science & Emerging Technologies 47:231–40. doi: 10.1016/j.ifset.2018.03.003.
  • Cao, H., X. Jiao, D. Fan, J. Huang, J. Zhao, B. Yan, W. Zhou, W. Zhang, W. Ye, and H. Zhang. 2019b. Catalytic effect of transglutaminase mediated by myofibrillar protein crosslinking under microwave irradiation. Food Chemistry 284:45–52. doi: 10.1016/j.foodchem.2019.01.097.
  • Cao, H., H. Zhu, Q. Wang, D. Fan, J. Huang, J. Zhao, X. Jiao, B. Yan, W. Zhou, and H. Zhang. 2020. Intervention on activity and structure of cathepsin L during surimi gel degradation under microwave irradiation. Food Hydrocolloids. 103:105705. doi: 10.1016/j.foodhyd.2020.105705.
  • Cao, H. W., X. D. Jiao, D. M. Fan, J. L. Huang, J. X. Zhao, B. W. Yan, W. G. Zhou, H. Zhang, and M. F. Wang. 2019c. Microwave irradiation promotes aggregation behavior of myosin through conformation changes. Food Hydrocolloids. 96:11–9. doi: 10.1016/j.foodhyd.2019.05.002.
  • Cao, Y., T. Xia, G. Zhou, and X. Xu. 2012. The mechanism of high pressure-induced gels of rabbit myosin. Innovative Food Science & Emerging Technologies 16:41–6. doi: 10.1016/j.ifset.2012.04.005.
  • Chang, H. J., X. L. Xu, C. B. Li, M. Huang, D. Y. Liu, and G. H. Zhou. 2011. A comparison of heat-induced changes of intramuscular connective tissue and collagen of beef semitendinosus muscle during water bath and microwave heating. Journal of Food Process Engineering 34 (6):2233–50. doi: 10.1111/j.1745-4530.2009.00568.x.
  • Chen, X., R. K. Tume, Y. L. Xiong, X. l Xu, G. H. Zhou, C. G. Chen, and T. Nishiumi. 2018. Structural modification of myofibrillar proteins by high-pressure processing for functionally improved, value-added, and healthy muscle gelled foods. Critical Reviews in Food Science and Nutrition 58 (17):2981–3003. doi: 10.1080/10408398.2017.1347557.
  • Choi, W. S, and C. H. Lee. 2006. Large and small deformation studies of ohmic and water-bath heated surimi gel by TPA and creep test. Food Science & Biotechnology 15 (3):409–12.
  • Dai, Y., Q. N. Zhang, L. Wang, Y. Liu, X. M. Li, and R. T. Dai. 2014. Changes in shear parameters, protein degradation and ultrastructure of pork following water bath and ohmic cooking. Food and Bioprocess Technology 7 (5):1393–403. doi: 10.1007/s11947-013-1145-1.
  • de Alwis, A. A. P, and P. J. Fryer. 1990. The use of direct resistance heating in the food industry. Journal of Food Engineering 11 (1):3–27. doi: 10.1016/0260-8774(90)90036-8.
  • Ding, Y., R. Liu, J. Rong, and S. Xiong. 2014. Heat-induced denaturation and aggregation of actomyosin and myosin from yellowcheek carp during setting. Food Chemistry 149:237–43. doi: 10.1016/j.foodchem.2013.10.123.
  • Dong, J., X. Kou, L. Liu, L. Hou, R. Li, and S. Wang. 2021. Effect of water, fat, and salt contents on heating uniformity and color of ground beef subjected to radio frequency thawing process. Innovative Food Science & Emerging Technologies 68 (2):102604. doi: 10.1016/j.ifset.2021.102604.
  • Feng, D., Y. Xue, Z. Li, Y. Wang, and C. Xue. 2017. Effects of microwave radiation and water bath heating on the physicochemical properties of actomyosin from silver carp (Hypophthalmichthys molitrix) during setting. Journal of Food Processing and Preservation 41 (4):e13031. doi: 10.1111/jfpp.13031.
  • Fowler, M. R., and J. W. Park. 2015. Effect of salmon plasma protein on Pacific whiting surimi gelation under various ohmic heating conditions. LWT – Food Science and Technology 61 (2):309–15. doi: 10.1016/j.lwt.2014.12.049.
  • Fu, X. J., K. Hayat, Z. H. Li, Q. L. Lin, S. Y. Xu, and S. P. Wang. 2012. Effect of microwave heating on the low-salt gel from silver carp (Hypophthalmichthys molitrix) surimi. Food Hydrocolloids. 27 (2):301–8. doi: 10.1016/j.foodhyd.2011.09.009.
  • Fukuda, Y. 2014. Processing technology for walleye pollock: Surimi innovation. Fisheries Science 80 (2):205–11. doi: 10.1007/s12562-014-0724-z.
  • Gao, M., J. Tang, R. Villa-Rojas, Y. Wang, and S. Wang. 2011. Pasteurization process development for controlling Salmonella in in-shell almonds using radio frequency energy. Journal of Food Engineering 104 (2):299–306. doi: 10.1016/j.jfoodeng.2010.12.021.
  • Gomaa, A. I., J. Sedman, and A. A. Ismail. 2013. An investigation of the effect of microwave treatment on the structure and unfolding pathways of β-lactoglobulin using FTIR spectroscopy with the application of two-dimensional correlation spectroscopy (2D-COS). Vibrational Spectroscopy 65 (1):101–9. doi: 10.1016/j.vibspec.2012.11.019.
  • Gropper, M., O. Ramon, I. J. Kopelman, and S. Mizrahi. 1997. Effects of microwave reheating on surimi gel texture. Food Research International 30 (10):761–8. doi: 10.1016/S0963-9969(98)00043-X.
  • Guo, X. J., L. Shi, S. B. Xiong, Y. Hu, J. You, Q. L. Huang, and T. Yin. 2019a. Gelling properties of vacuum-freeze dried surimi powder as influenced by heating method and microbial transglutaminase. LWT 99:105–11. doi: 10.1016/j.lwt.2018.09.050.
  • Guo, Z. B., Z. Y. Li, J. Y. Wang, and B. D. Zheng. 2019b. Gelation properties and thermal gelling mechanism of golden threadfin bream myosin containing CaCl2 induced by high pressure processing. Food Hydrocolloids. 95:43–52. doi: 10.1016/j.foodhyd.2019.04.017.
  • Han, Z., M-j Cai, J.-H. Cheng, and D.-W. Sun. 2018. Effects of electric fields and electromagnetic wave on food protein structure and functionality: A review. Trends in Food Science & Technology 75:1–9. doi: 10.1016/j.tifs.2018.02.017.
  • Hemung, B. O., E. C. Y. Li-Chan, and J. Yongsawatdigul. 2008. Reactivity of fish and microbial transglutaminases on glutaminyl sites of peptides derived from threadfin bream myosin. Journal of Agricultural and Food Chemistry 56 (16):7510–6. doi: 10.1021/jf800856g.
  • Hemung, B. O., and J. Yongsawatdigul. 2005. Ca2+ affects physicochemical and conformational changes of threadfin bream myosin and actin in a setting model. Journal of Food Science 70 (8):c455–c460. doi: 10.1111/j.1365-2621.2005.tb11500.x.
  • Hoppe, P., E. Waterston, and H. Robert. 1996. Hydrophobicity variations along the surface of the coiled-coil rod may mediate striated muscle myosin assembly in Caenorhabditis elegans. The Journal of Cell Biology 135 (2):371–82. doi: 10.1083/jcb.135.2.371.
  • Hossain, M. I., K. Morioka, F. H. Shikha, and Y. Itoh. 2011. Effect of preheating temperature on the microstructure of walleye pollack surimi gels under the inhibition of the polymerisation and degradation of myosin heavy chain. Journal of the Science of Food and Agriculture 91 (2):247–52. doi: 10.1002/jsfa.4177.
  • Hosseini-Shekarabi, S. P., S. E. Hosseini, M. Soltani, A. Kamali, and T. Valinassab. 2015. Effect of heat treatment on the properties of surimi gel from black mouth croaker (Atrobucca nibe). International Food Research Journal 22 (1):363–71.
  • Hu, B., L. Han, Z. Gao, K. Zhang, S. Al-Assaf, K. Nishinari, G. O. Phillips, J. Yang, and Y. Fang. 2018a. Effects of temperature and solvent condition on phase separation induced molecular fractionation of gum arabic/hyaluronan aqueous mixtures. International Journal of Biological Macromolecules 116:683–90. doi: 10.1016/j.ijbiomac.2018.05.073.
  • Hu, Y., Y. Shao, C. Wu, C. Yuan, G. Ishimura, W. Liu, and S. Chen. 2018b. γ-PGA and MTGase improve the formation of epsilon-(γ-glutamyl) lysine cross-links within hairtail (Trichiurus haumela) surimi protein. Food Chemistry 242:330–7. doi: 10.1016/j.foodchem.2017.08.087.
  • Imtiaz-Ul-Islam, M., L. Hong, and T. Langrish. 2011. CO2 capture using whey protein isolate. Chemical Engineering Journal 171 (3):1069–81. doi: 10.1016/j.cej.2011.05.003.
  • Ji, L., Y. Xue, T. Zhang, Z. J. Li, and C. H. Xue. 2017. The effects of microwave processing on the structure and various quality parameters of Alaska pollock surimi protein-polysaccharide gels. Food Hydrocolloids. 63:77–84. doi: 10.1016/j.foodhyd.2016.08.011.
  • Jia, D., J. You, Y. Hu, R. Liu, and S. Xiong. 2015. Effect of CaCl2 on denaturation and aggregation of silver carp myosin during setting. Food Chemistry 185:212–8. doi: 10.1016/j.foodchem.2015.03.130.
  • Jia, R., Q. Q. Jiang, M. Kanda, J. Tokiwa, N. Nakazawa, K. Osako, and E. Okazaki. 2019. Effects of heating processes on changes in ice crystal formation, water holding capacity, and physical properties of surimi gels during frozen storage. Food Hydrocolloids. 90:254–65. doi: 10.1016/j.foodhyd.2018.12.029.
  • Jiao, X., H. Cao, D. Fan, J. Huang, J. Zhao, B. Yan, W. Zhou, W. Zhang, W. Ye, and H. Zhang. 2019. Effects of fish oil incorporation on the gelling properties of silver carp surimi gel subjected to microwave heating combined with conduction heating treatment. Food Hydrocolloids. 94:164–73. doi: 10.1016/j.foodhyd.2019.03.017.
  • Jiao, X., B. Yan, J. Huang, J. Zhao, H. Zhang, W. Chen, and D. Fan. 2021. Redox proteomic analysis reveals microwave-induced oxidation modifications of myofibrillar proteins from silver carp (Hypophthalmichthys molitrix). Journal of Agricultural and Food Chemistry 69 (33):9706–15. doi: 10.1021/acs.jafc.1c03045.
  • Joseph, D., T. Lanier, and D. D. Hamann. 1994. Temperature and pH affect transglutaminase – Catalyzed “setting” of crude fish actomyosin. Journal of Food Science 59 (5):1018–23. doi: 10.1111/j.1365-2621.1994.tb08180.x.
  • Jung, H., J. H. Moon, J. W. Park, and W. B. Yoon. 2020. Texture of surimi-canned corn mixed gels with conventional water bath cooking and ohmic heating. Food Bioscience 35:100580. doi: 10.1016/j.fbio.2020.100580.
  • Konno, K. 2017. Myosin denaturation study for the quality evaluation of fish muscle-based products. Food Science and Technology Research 23 (1):9–21. doi: 10.3136/fstr.23.9.
  • Konno, K., K. Imamura, and C. H. Yuan. 2011. Myosin denaturation and cross-linking in Alaska pollack salted surimi during its preheating process as affected by temperature. Food Science and Technology Research 17 (5):423–8. doi: 10.3136/fstr.17.423.
  • Lanier, T., P. Carvajal, and J. Yongsawatdigul. 2004. Surimi gelation chemistry. In Surimi and surimi seafood, ed. Park, J. W., 435–89. 2nd ed. Boca Raton, FL, USA: CRC Press.
  • Lee, M. G., W. B. Yoon, and J. W. Park. 2017. Combined effect of pH and heating conditions on the physical properties of Alaska pollock surimi gels. Journal of Texture Studies 48 (3):215–20. doi: 10.1111/jtxs.12230.
  • Li, Z., Q. Sun, Y. Zheng, J. Wang, Y. Tian, B. Zheng, and Z. Guo. 2020. Effect of two-step microwave heating on the gelation properties of golden threadfin bream (Nemipterus virgatus) myosin. Food Chemistry 328:127104. doi: 10.1016/j.foodchem.2020.127104.
  • Liang, F., Y. Zhu, T. Ye, S. Jiang, L. Lin, and J. Lu. 2020. Effect of ultrasound assisted treatment and microwave combined with water bath heating on gel properties of surimi-crabmeat mixed gels. LWT 133:110098. doi: 10.1016/j.lwt.2020.110098.
  • Lin, T. M, and J. W. Park. 2008. Solubility of salmon myosin as affected by conformational changes at various ionic strengths and pH. Journal of Food Science 63 (2):215–8. doi: 10.1111/j.1365-2621.1998.tb15712.x.
  • Lin, X., W. Yang, D. Xu, and L. Wang. 2015. Effect of electron irradiation and heat on the structure of hairtail surimi. Radiation Physics and Chemistry 114:50–4. doi: 10.1016/j.radphyschem.2015.05.028.
  • Liu, X., D. Feng, L. Ji, T. Zhang, Y. Xue, and C. Xue. 2018. Effects of microwave heating on the gelation properties of heat-induced Alaska Pollock (Theragra chalcogramma) surimi. Food Science and Technology International = Ciencia y Tecnologia de Los Alimentos Internacional 24 (6):497–506. doi: 10.1177/1082013218768411.
  • Lund, M. N., R. Lametsch, M. S. Hviid, O. N. Jensen, and L. H. Skibsted. 2007. High-oxygen packaging atmosphere influences protein oxidation and tenderness of porcine longissimus dorsi during chill storage. Meat Science 77 (3):295–303. doi: 10.1016/j.meatsci.2007.03.016.
  • Luo, X. L., R. J. Yang, W. Zhao, Z. Z. Cheng, and X. Y. Jiang. 2010. Gelling prpoperties of Spanish Mackerel (Scomberomorus niphonius) surimi as affected by washing process and high pressure. International Journal of Food Engineering 6 (4):1–16. doi: 10.2202/1556-3758.1913.
  • Martín-Sánchez, A., C. Navarro, J. Pérez-Álvarez, and V. Kuri. 2009. Alternatives for efficient and sustainable production of surimi: A review. Comprehensive Reviews in Food Science and Food Safety 8 (4):359–74. doi: 10.1111/j.1541-4337.2009.00087.x.
  • Meng, L., X. Jiao, B. Yan, J. Huang, J. Zhao, H. Zhang, W. Chen, and D. Fan. 2021. Effect of fish mince size on physicochemical and gelling properties of silver carp (Hypophthalmichthys molitrix) surimi gel. LWT 149:111912. doi: 10.1016/j.lwt.2021.111912.
  • Monto, A. R., M. Li, X. Wang, G. Y. A. Wijaya, T. Shi, Z. Xiong, L. Yuan, W. Jin, J. Li, and R. Gao. 2021. Recent developments in maintaining gel properties of surimi products under reduced salt conditions and use of additives. Critical Reviews in Food Science and Nutrition. doi: 10.1080/10408398.2021.1931024.
  • Moon, J. H., W. B. Yoon, and J. W. Park. 2017. Assessing the textural properties of Pacific whiting and Alaska pollock surimi gels prepared with carrot under various heating rates. Food Bioscience 20:12–8. doi: 10.1016/j.fbio.2017.07.008.
  • Murphy, R. Y., and B. P. Marks. 2000. Effect of meat temperature on proteins, texture, and cook loss for ground chicken breast patties. Poultry Science 79 (1):99–104. doi: 10.1093/ps/79.1.99.
  • Nguyen, V.-T., J. W. Park, N. Liqiong, N. Nakazawa, K. Osako, and E. Okazaki. 2020. Textural properties of heat-induced gels prepared using different grades of Alaska pollock surimi under ohmic heating. Food Science and Technology Research 26 (2):205–14. doi: 10.3136/fstr.26.205.
  • Nunes, L., and G. M. Tavares. 2019. Thermal treatments and emerging technologies: Impacts on the structure and techno-functional properties of milk proteins. Trends in Food Science & Technology 90:88–99. doi: 10.1016/j.tifs.2019.06.004.
  • Núñez-Flores, R., D. Cando, A. J. Borderías, and H. M. Moreno. 2018. Importance of salt and temperature in myosin polymerization during surimi gelation. Food Chemistry 239:1226–34. doi: 10.1016/j.foodchem.2017.07.028.
  • Oliveira, M., and A. S. Franca. 2002. Microwave heating of foodstuffs. Journal of Food Engineering 53 (4):347–59. doi: 10.1016/S0260-8774(01)00176-5.
  • Pao, D., K. Thumanu, and J. Yongsawatdigul. 2021. Gelation and vibrational spectroscopy of tropical surimi induced by ascorbic acid and hydrogen peroxide. Journal of Food Science 86 (3):881–91. doi: 10.1111/1750-3841.15638.
  • Park, J. W., T. M. Lin, and J. Yongsawatdigul. 1997. New developments in manufacturing of surimi and surimi seafood. Food Reviews International 13 (4):577–610. doi: 10.1080/87559129709541141.
  • Pataro, G., G. Donsì, and G. Ferrari. 2011. Aseptic processing of apricots in syrup by means of a continuous pilot scale ohmic unit. LWT – Food Science and Technology 44 (6):1546–54. doi: 10.1016/j.lwt.2011.01.026.
  • Pereira, R. N., R. M. Rodrigues, Ó. L. Ramos, F. Xavier Malcata, J. A. Teixeira, and A. A. Vicente. 2016. Production of whey protein-based aggregates under ohmic heating. Food and Bioprocess Technology 9 (4):576–87. doi: 10.1007/s11947-015-1651-4.
  • Petcharat, T, and S. Benjakul. 2018. Effect of gellan incorporation on gel properties of bigeye snapper surimi. Food Hydrocolloids. 77:746–53. doi: 10.1016/j.foodhyd.2017.11.016.
  • Pouzot, M., T. Nicolai, R. W. Visschers, and M. Weijers. 2005. X-ray and light scattering study of the structure of large protein aggregates at neutral pH. Food Hydrocolloids. 19 (2):231–8. doi: 10.1016/j.foodhyd.2004.06.003.
  • Ramírez, J., R. M. Uresti, G. Velazquez, and M. Vázquez. 2011. Food hydrocolloids as additives to improve the mechanical and functional properties of fish products: A review. Food Hydrocolloids. 25 (8):1842–52. doi: 10.1016/j.foodhyd.2011.05.009.
  • Redondo, D., M. E. Venturini, R. Oria, and E. Arias. 2016. Inhibitory effect of microwaved thinned nectarine extracts on polyphenol oxidase activity. Food Chemistry 197 (Pt A):603–10. doi: 10.1016/j.foodchem.2015.11.009.
  • Reed, Z. H., W. Guilford, and J. W. Park. 2011. Thermal denaturation of tilapia myosin and its subunits as affected by constantly increasing temperature. Journal of Food Science 76 (7):C1018–1024. doi: 10.1111/j.1750-3841.2011.02326.x.
  • Reed, Z. H., and J. W. Park. 2011a. Rheological and biochemical characterization of salmon myosin as affected by constant heating rate. Journal of Food Science 76 (2):C343–349. doi: 10.1111/j.1750-3841.2010.02024.x.
  • Reed, Z. H, and J. W. Park. 2011b. Thermophysical characterization of tilapia myosin and its subfragments. Journal of Food Science 76 (7):C1050–1055. doi: 10.1111/j.1750-3841.2011.02330.x.
  • Santhi, D., A. Kalaikannan, and S. Sureshkumar. 2017. Factors influencing meat emulsion properties and product texture: A review. Critical Reviews in Food Science and Nutrition 57 (10):2021–7. doi: 10.1080/10408398.2013.858027.
  • Sharp, A, and G. Offer. 1992. The mechanism of formation of gels from myosin molecules. Journal of the Science of Food and Agriculture 58 (1):63–73. doi: 10.1002/jsfa.2740580112.
  • Shi, T., Z. Y. Xiong, W. G. Jin, L. Yuan, Q. C. Sun, Y. H. Zhang, X. T. Li, and R. C. Gao. 2020. Suppression mechanism of l-arginine in the heat-induced aggregation of bighead carp (Aristichthys nobilis) myosin: The significance of ionic linkage effects and hydrogen bond effects. Food Hydrocolloids. 102:105596. doi: 10.1016/j.foodhyd.2019.105596.
  • Singh, R. K, and D. Deshpande. 2019. Functional properties of marinated chicken breast meat during heating in a pilot-scale radio-frequency oven. International Journal of Food Properties 22 (1):1985–97. doi: 10.1080/10942912.2019.1698604.
  • Somjid, P., W. Panpipat, L. Z. Cheong, and M. Chaijan. 2021. Reduced washing cycle for sustainable mackerel (Rastrelliger kanagurta) surimi production: Evaluation of bio-physico-chemical, rheological, and gel-forming properties. Foods 10 (11):2717. doi: 10.3390/foods10112717.
  • Sun, L. C., Y. C. Lin, W. F. Liu, X. J. Qiu, K. Y. Cao, G. M. Liu, and M. J. Cao. 2019. Effect of pH shifting on conformation and gelation properties of myosin from skeletal muscle of blue round scads (Decapterus maruadsi). Food Hydrocolloids. 93:137–45. doi: 10.1016/j.foodhyd.2019.02.026.
  • Tadpitchayangkoon, P., J. W. Park, and J. Yongsawatdigul. 2012. Gelation characteristics of tropical surimi under water bath and ohmic heating. LWT - Food Science and Technology 46 (1):97–103. doi: 10.1016/j.lwt.2011.10.020.
  • Tang, J. 2015. Unlocking potentials of microwaves for food safety and quality. Journal of Food Science 80 (8):E1776–E1793. doi: 10.1111/1750-3841.12959.
  • Tang, S., G. Feng, R. Gao, J. Ren, X. Zhou, H. Wang, H. Xu, Y. Zhao, and M. Zeng. 2019. Thermal gel degradation (Modori) in sturgeon (Acipenseridae) surimi gels. Journal of Food Science 84 (12):3601–7. doi: 10.1111/1750-3841.14919.
  • Tian, X., W. Wu, Q. Yu, M. Hou, F. Jia, X. Li, and R. Dai. 2016. Quality and proteome changes of beef M. longissimus dorsi cooked using a water bath and ohmic heating process. Innovative Food Science & Emerging Technologies 34:259–66. doi: 10.1016/j.ifset.2016.02.013.
  • Tolano-Villaverde, I. J., W. Torres-Arreola, V. M. Ocaño-Higuera, and E. Marquez-Rios. 2015. Thermal gelation of myofibrillar proteins from aquatic organisms. CyTA – Journal of Food 14 (3):1–7. doi: 10.1080/19476337.2015.1116024.
  • Visessanguan, W., S. Benjakul, and H. An. 2003. Purification and characterization of cathepsin L in arrowtooth flounder (Atheresthes stomias) muscle. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology 134 (3):477–87. doi: 10.1016/S1096-4959(02)00293-2.
  • Wang, C., X. Kou, X. Zhou, R. Li, and S. Wang. 2021a. Effects of layer arrangement on heating uniformity and product quality after hot air assisted radio frequency drying of carrot. Innovative Food Science & Emerging Technologies 69 (8):102667. doi: 10.1016/j.ifset.2021.102667.
  • Wang, G., M. M. Liu, L. W. Cao, J. Yongsawatdigul, S. B. Xiong, and R. Liu. 2018. Effects of different NaCl concentrations on self-assembly of silver carp myosin. Food Bioscience 24:1–8. doi: 10.1016/j.fbio.2018.05.002.
  • Wang, J., J. Tang, J. W. Park, B. Rasco, Z. Tang, and Z. Qu. 2019a. Thermal gelation of Pacific whiting surimi in microwave assisted pasteurization. Journal of Food Engineering 258:18–26. doi: 10.1016/j.jfoodeng.2019.04.001.
  • Wang, J. Y., Z. Y. Li, B. D. Zheng, Y. Zhang, and Z. B. Guo. 2019b. Effect of ultra-high pressure on the structure and gelling properties of low salt golden threadfin bream (Nemipterus virgatus) myosin. LWT 100:381–90. doi: 10.1016/j.lwt.2018.10.053.
  • Wang, L., X. Wang, J. Ma, K. Yang, X. Feng, X. You, S. Wang, Y. Zhang, G. Xiong, L. Wang, et al. 2021b. Effects of radio frequency heating on water distribution and structural properties of grass carp myofibrillar protein gel. Food Chemistry 343:128557. doi: 10.1016/j.foodchem.2020.128557.
  • Wang, L., K. Yang, X. Wang, D. Wu, X. You, J. Ma, Y. Zhang, G. Xiong, L. Wang, and W. Sun. 2022. Gel properties and thermal gelling mechanism in myofibrillar protein of grass carp (Ctenopharyngodon idellus) under the synergistic effects of radio frequency combined with magnetic field. Journal of Food Science 87 (4):1662–71. doi: 10.1111/1750-3841.16103.
  • Wang, Q., X. Jiao, B. Yan, L. Meng, H. Cao, J. Huang, J. Zhao, H. Zhang, W. Chen, and D. Fan. 2021c. Inhibitory effect of microwave heating on cathepsin L-induced degradation of myofibrillar protein gel. Food Chemistry 357:129745. doi: 10.1016/j.foodchem.2021.129745.
  • Wang, R., R. Gao, F. Xiao, X. Zhou, H. Wang, H. Xu, C. Gong, P. Huang, and Y. Zhao. 2019c. Effect of chicken breast on the physicochemical properties of unwashed sturgeon surimi gels. LWT 113:108306. doi: 10.1016/j.lwt.2019.108306.
  • Wang, X-x., Y-s Li, Y. Zhou, F. Ma, P-j Li, and C-g Chen. 2019d. Effect of resistant corn starch on the thermal gelling properties of chicken breast myosin. Food Hydrocolloids. 96:681–7. doi: 10.1016/j.foodhyd.2019.06.013.
  • Wei, L., L. W. Cao, S. B. Xiong, J. You, Y. Hu, and R. Liu. 2019. Effects of pH on self-assembly of silver carp myosin at low temperature. Food Bioscience 30:100420. doi: 10.1016/j.fbio.2019.100420.
  • Wei, S., Y. Yang, X. Feng, S. Li, L. Zhou, J. Wang, and X. Tang. 2020. Structures and properties of chicken myofibrillar protein gel induced by microwave heating. International Journal of Food Science & Technology 55 (7):2691–9. doi: 10.1111/ijfs.14522.
  • Xiong, Z., T. Shi, W. Zhang, Y. Kong, L. Yuan, and R. Gao. 2021. Improvement of gel properties of low salt surimi using low-dose l-arginine combined with oxidized caffeic acid. LWT 145:111303. doi: 10.1016/j.lwt.2021.111303.
  • Xu, Y., and X. Xu. 2021. Modification of myofibrillar protein functional properties prepared by various strategies: A comprehensive review. Comprehensive Reviews in Food Science and Food Safety 20 (1):458–500. doi: 10.1111/1541-4337.12665.
  • Yan, B., X. Jiao, H. Zhu, Q. Wang, J. Huang, J. Zhao, H. Cao, W. Zhou, W. Zhang, W. Ye, et al. 2020. Chemical interactions involved in microwave heat-induced surimi gel fortified with fish oil and its formation mechanism. Food Hydrocolloids. 105:105779. doi: 10.1016/j.foodhyd.2020.105779.
  • Yarnpakdee, S., S. Benjakul, W. Visessanguan, and K. Kijroongrjana. 2009. Autolysis of goatfish (Mulloidichthys martinicus) mince: Characterisation and effect of washing and skin inclusion. Food Chemistry 114 (4):1339–44. doi: 10.1016/j.foodchem.2008.11.014.
  • Yasui, T., M. Ishioroshi, and K. Samejima. 1982. Effect of actomyosin on heat-induced gelation of myosin. Agricultural and Biological Chemistry 46 (4):1049–59.
  • Yin, T., Y. He, L. Liu, L. Shi, S. Xiong, J. You, Y. Hu, and Q. Huang. 2019. Structural and biochemical properties of silver carp surimi as affected by comminution method. Food Chemistry 287:85–92. doi: 10.1016/j.foodchem.2019.02.066.
  • Yongsawatdigul, J., and P. Piyadhammaviboon. 2004. Inhibition of autolytic activity of lizardfish surimi by proteinase inhibitors. Food Chemistry 87 (3):447–55. doi: 10.1016/j.foodchem.2003.12.019.
  • Yongsawatdigul, J, and S. Sinsuwan. 2007. Aggregation and conformational changes of tilapia actomyosin as affected by calcium ion during setting. Food Hydrocolloids. 21 (3):359–67. doi: 10.1016/j.foodhyd.2006.04.006.
  • Yu, N. N., Y. S. Xu, Q. X. Jiang, and W. S. Xia. 2017. Molecular forces involved in heat-induced freshwater surimi gel: Effects of various bond disrupting agents on the gel properties and protein conformation changes. Food Hydrocolloids. 69:193–201. doi: 10.1016/j.foodhyd.2017.02.003.
  • Yuan, L., Q. L. Dang, J. L. Mu, X. P. Feng, and R. C. Gao. 2018. Mobility and redistribution of waters within bighead carp (Aristichthys nobilis) heat-induced myosin gels. International Journal of Food Properties 21 (1):835–49. doi: 10.1080/10942912.2018.1476872.
  • Yuan, L., Y. A. Liu, J. Ge, X. P. Feng, and R. C. Gao. 2017. Effects of heat treatment at two temperatures on the myosin cluster of bighead carp for gel formation. CyTA – Journal of Food 15 (4):574–81. doi: 10.1080/19476337.2017.1321045.
  • Zhang, H., Y. Zhu, S. Chen, C. Xu, Y. Yu, X. Wang, and W. Shi. 2018a. Determination of the effects of different high-temperature treatments on texture and aroma characteristics in Alaska pollock surimi. Food Science & Nutrition 6 (8):2079–91. doi: 10.1002/fsn3.763.
  • Zhang, L., F. Zhang, and X. Wang. 2016. Changes of protein secondary structures of pollock surimi gels under high-temperature (100 °C and 120 °C) treatment. Journal of Food Engineering 171:159–63. doi: 10.1016/j.jfoodeng.2015.10.025.
  • Zhang, L. L., Y. Xue, J. Xu, Z. J. Li, and C. H. Xue. 2013. Effects of high-temperature treatment (⩾100 °C) on Alaska Pollock (Theragra chalcogramma) surimi gels. Journal of Food Engineering 115 (1):115–20. doi: 10.1016/j.jfoodeng.2012.10.006.
  • Zhang, L. T., Q. Li, J. Shi, B. W. Zhu, and Y. K. Luo. 2018b. Changes in chemical interactions and gel properties of heat-induced surimi gels from silver carp (Hypophthalmichthys molitrix) fillets during setting and heating: Effects of different washing solutions. Food Hydrocolloids. 75:116–24. doi: 10.1016/j.foodhyd.2017.09.007.
  • Zhang, Y., S. Li, S. Jin, F. Li, J. Tang, and Y. Jiao. 2021. Radio frequency tempering multiple layers of frozen tilapia fillets: The temperature distribution, energy consumption, and quality. Innovative Food Science & Emerging Technologies 68:102603. doi: 10.1016/j.ifset.2021.102603.
  • Zhu, Y., Y. Wang, J. Li, F. Li, C. Teng, and X. Li. 2017. Effects of water-extractable arabinoxylan on the physicochemical properties and structure of wheat gluten by thermal treatment. Journal of Agricultural and Food Chemistry 65 (23):4728–35. doi: 10.1021/acs.jafc.7b00837.
  • Zhuang, X. B., W. G. Zhang, R. Liu, Y. F. Liu, L. J. Xing, M. Y. Han, Z. L. Kang, X. L. Xu, and G. H. Zhou. 2017. Improved gel functionality of myofibrillar proteins incorporation with sugarcane dietary fiber. Food Research International 100 (pt.1):586–94. doi: 10.1016/j.foodres.2017.07.063.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.