865
Views
3
CrossRef citations to date
0
Altmetric
Review

Microalgae/cyanobacteria: the potential green future of vitamin B12 production

, , , , &

References

  • Aiking, H. 2011. Future protein supply. Trends in Food Science and Technology 22 (2–3):112–20. doi: 10.1016/j.tifs.2010.04.005.
  • Almeida, H. N., G. Q. Calixto, B. M. E. Chagas, D. M. A. Melo, F. M. Resende, M. A. F. Melo, and R. M. Braga. 2017. Characterization and pyrolysis of Chlorella vulgaris and Arthrospira platensis: Potential of bio-oil and chemical production by Py-GC/MS analysis. Environmental Science and Pollution Research International 24 (16):14142–50. doi: 10.1007/s11356-017-9009-2.
  • Arriola, M. B., N. Velmurugan, Y. Zhang, M. H. Plunkett, H. Hondzo, and B. M. Barney. 2018. Genome sequences of Chlorella sorokiniana UTEX 1602 and Micractinium conductrix SAG 241.80: Implications to maltose excretion by a green alga. The Plant Journal : For Cell and Molecular Biology 93 (3):566–86. doi: 10.1111/tpj.13789.
  • Aung, U. S. T. 2020. Study on the medium effect for the growth rate of Spirulina, Arthrospira platensis in natural seawater. In International Symposium Coastal Ecosystem and Biodiversity of Asia-Pacific: Achieving Sdg 14, 2020. Y. Wardiatno. Bristol: Iop Publishing Ltd, 420.
  • Badri, H., P. Monsieurs, I. Coninx, R. Wattiez, and N. Leys. 2015. Molecular investigation of the radiation resistance of edible cyanobacterium Arthrospira sp. PCC 8005. MicrobiologyOpen 4 (2):187–207. doi: 10.1002/mbo3.229.
  • Balaji, M., D. Thamilvanan, S. C. Vinayagam, and B. Balakumar. 2017. Anticancer, antioxidant activity and GC-MS analysis of selected micro algal members of chlorophyceae. International Journal of Pharmaceutical Sciences and Research 13:3302–14.
  • Bauer, L., K. Ranglova, J. Masojidek, B. Drosg, and K. Meixner. 2021. Digestate as sustainable nutrient source for microalgae-challenges and prospects. Applied Sciences 11 (3):1–21.
  • Benedetti, M., V. Vecchi, S. Barera, and L. Dall’Osto. 2018. Biomass from microalgae: The potential of domestication towards sustainable biofactories. Microbial Cell Factories 17:1–18.
  • Broad, G. M. 2020. Making meat, better: The metaphors of plant-based and cell-based meat innovation. Environmental Communication 14 (7):919–32. doi: 10.1080/17524032.2020.1725085.
  • Cecchin, M., L. Marcolungo, M. Rossato, L. Girolomoni, E. Cosentino, S. Cuine, Y. Li-Beisson, M. Delledonne, and M. Ballottari. 2019. Chlorella vulgaris genome assembly and annotation reveals the molecular basis for metabolic acclimation to high light conditions. The Plant Journal : For Cell and Molecular Biology 100 (6):1289–305. doi: 10.1111/tpj.14508.
  • Cheevadhanarak, S., K. Paithoonrangsarid, P. Prommeenate, W. Kaewngam, A. Musigkain, S. Tragoonrung, S. Tabata, T. Kaneko, J. Chaijaruwanich, D. Sangsrakru, et al. 2012. Draft genome sequence of Arthrospira platensis C1 (PCC9438). Standards in Genomic Sciences 6 (1):43–53. doi: 10.4056/sigs.2525955.
  • Clerico, E. M., J. L. Ditty, and S. S. Golden. 2007. Specialized techniques for site-directed mutagenesis in cyanobacteria. Methods in Molecular Biology 362:155–71.
  • Croft, M. T., A. D. Lawrence, E. Raux-Deery, M. J. Warren, and A. G. Smith. 2005. Algae acquire vitamin B12 through a symbiotic relationship with bacteria. Nature 438 (7064):90–3. doi: 10.1038/nature04056.
  • Delrue, F., E. Alaux, L. Moudjaoui, C. Gaignard, G. Fleury, A. Perilhou, P. Richaud, M. Petitjean, and J. F. Sassi. 2017. Optimization of Arthrospira platensis (Spirulina) growth: From laboratory scale to pilot scale. Fermentation 3 (4):59–14. doi: 10.3390/fermentation3040059.
  • Dineshkumar, R., R. Narendran, and P. Sampathkumar. 2016. Cultivation of Spirulina platensis in different selective media. Indian Journal of Geo-Marine Sciences 45 (12):1749–54.
  • Edelmann, M., S. Aalto, B. Chamlagain, S. Kariluoto, and V. Piironen. 2019. Riboflavin, niacin, folate and vitamin B12 in commercial microalgae powders. Journal of Food Composition and Analysis 82:1–10.
  • EFSA Panel on Dietetic Products, Nutrition, and Allergies (NDA). 2015. Scientific opinion on Dietary Reference Values for cobalamin (vitamin B12). EFSA Journal 13 (7):4150.
  • FAO. 2009. How to feed the world in 2050. In Insights from an Expert Meeting at FAO. Rome: FAO.
  • Fujisawa, T., R. Narikawa, S. Okamoto, S. Ehira, H. Yoshimura, I. Suzuki, T. Masuda, M. Mochimaru, S. Takaichi, K. Awai, et al. 2010. Genomic structure of an economically important Cyanobacterium, Arthrospira (Spirulina) platensis NIES-39. DNA Research : An International Journal for Rapid Publication of Reports on Genes and Genomes 17 (2):85–103. doi: 10.1093/dnares/dsq004.
  • Galasso, C., A. Gentile, I. Orefice, A. Ianora, A. Bruno, D. M. Noonan, C. Sansone, A. Albini, and C. Brunet. 2019. Microalgal derivatives as potential nutraceutical and food supplements for human health: A focus on cancer prevention and interception. Nutrients 11 (6):1226. doi: 10.3390/nu11061226.
  • Gao, F., W. Guo, M. Zeng, Y. Feng, and G. Feng. 2019. Effect of microalgae as iron supplements on iron-deficiency anemia in rats. Food & Function 10 (2):723–32. doi: 10.1039/c8fo01834k.
  • Gershwin, M. E, and A. Belay. 2007. Spirulina in human nutrition and health. Boca Raton, Florida: CRC Press.
  • Gille, D., and A. Schmid. 2015. Vitamin B12 in meat and dairy products. Nutrition Reviews 73 (2):106–15. doi: 10.1093/nutrit/nuu011.
  • Grosshagauer, S., K. Kraemer, and V. Somoza. 2020. The true value of Spirulina. Journal of Agricultural and Food Chemistry 68 (14):4109–15. doi: 10.1021/acs.jafc.9b08251.
  • Grossman, A. 2016. Nutrient acquisition: The generation of bioactive vitamin B12 by microalgae. Current Biology : CB 26 (8):R319–321. doi: 10.1016/j.cub.2016.02.047.
  • Guangwen, M., and S. Paolo. 2011. Vitamin A, nutrition, and health values of algae: Spirulina, Chlorella, and Dunaliella. Journal of Pharmacy and Nutrition Sciences 1 (2):111–8. doi: 10.6000/1927-5951.2011.01.02.04.[Mismatch
  • Guccione, A., N. Biondi, G. Sampietro, L. Rodolfi, N. Bassi, and M. R. Tredici. 2014. Chlorella for protein and biofuels: From strain selection to outdoor cultivation in a Green Wall Panel photobioreactor. Biotechnology for Biofuels 7:1–12.
  • Hall, C., T. P. Dawson, J. I. Macdiarmid, R. B. Matthews, and P. Smith. 2017. The impact of population growth and climate change on food security in Africa: Looking ahead to 2050. International Journal of Agricultural Sustainability 15 (2):124–35. doi: 10.1080/14735903.2017.1293929.
  • Heal, K. R., W. Qin, F. Ribalet, A. D. Bertagnolli, W. Coyote-Maestas, L. R. Hmelo, J. W. Moffett, A. H. Devol, E. V. Armbrust, D. A. Stahl, et al. 2017. Two distinct pools of B12 analogs reveal community interdependencies in the ocean. Proceedings of the National Academy of Sciences of the United States of America 114 (2):364–9. doi: 10.1073/pnas.1608462114.
  • Helliwell, K. E., A. D. Lawrence, A. Holzer, U. J. Kudahl, S. Sasso, B. Krautler, D. J. Scanlan, M. J. Warren, and A. G. Smith. 2016. Cyanobacteria and eukaryotic algae use different chemical variants of vitamin B12. Current Biology : CB 26 (8):999–1008. doi: 10.1016/j.cub.2016.02.041.
  • Hodgkin, D. C., J. Kamper, M. Mackay, J. Pickworth, K. N. Trueblood, and J. G. White. 1956. Structure of vitamin B12. Nature 178 (4524):64–6. doi: 10.1038/178064a0.
  • Ip, P. F, and F. Chen. 2005. Production of astaxanthin by the green microalga Chlorella zofingiensis in the dark. Process Biochemistry 40 (2):733–8. doi: 10.1016/j.procbio.2004.01.039.
  • Kawata, Y., S. Yano, H. Kojima, and M. Toyomizu. 2004. Transformation of Spirulina platensis strain C1 (Arthrospira sp. PCC9438) with Tn5 transposase-transposon DNA-cation liposome complex. Marine Biotechnology (New York, N.Y.) 6 (4):355–63. doi: 10.1007/s10126-003-0037-1.
  • Khandual, S., E. O. L. Sanchez, H. E. Andrews, and J. D. P. de la Rosa. 2021. Phycocyanin content and nutritional profile of Arthrospira platensis from Mexico: Efficient extraction process and stability evaluation of phycocyanin. BMC Chemistry 15 (1):1–13. doi: 10.1186/s13065-021-00746-1.
  • Kim, J., K. S. Chang, S. Lee, and E. Jin. 2021. Establishment of a genome editing tool using CRISPR-Cas9 in Chlorella vulgaris UTEX395. International Journal of Molecular Sciences 22 (2):1–11.
  • Koyande, A. K., K. W. Chew, K. Rambabu, Y. Tao, D. T. Chu, and P. L. Show. 2019. Microalgae: A potential alternative to health supplementation for humans. Food Science and Human Wellness 8 (1):16–24. doi: 10.1016/j.fshw.2019.03.001.
  • Kunin, V., R. Sorek, and P. Hugenholtz. 2007. Evolutionary conservation of sequence and secondary structures in CRISPR repeats. Genome Biology 8 (4):R61–7. doi: 10.1186/gb-2007-8-4-r61.
  • Lau, K. Y., D. Pleissner, and C. S. K. Lin. 2014. Recycling of food waste as nutrients in Chlorella vulgaris cultivation. Bioresource Technology 170:144–51. doi: 10.1016/j.biortech.2014.07.096.
  • Lin, W. R, and I. S. Ng. 2020. Development of CRISPR/Cas9 system in Chlorella vulgaris FSP-E to enhance lipid accumulation. Enzyme and Microbial Technology 133:1–8.
  • Lopez-Rodriguez, A., J. Mayorga, D. Flaig, G. Fuentes, J. Cotabarren, W. D. Obregon, and P. I. Gomez. 2021. Comparison of two strains of the edible cyanobacteria Arthrospira: Biochemical characterization and antioxidant properties. Food Bioscience 42:101144. doi: 10.1016/j.fbio.2021.101144.
  • Lurling, M., F. Eshetu, E. J. Faassen, S. Kosten, and V. L. M. Huszar. 2013. Comparison of cyanobacterial and green algal growth rates at different temperatures. Freshwater Biology 58 (3):552–9. doi: 10.1111/j.1365-2427.2012.02866.x.
  • Madhubalaji, C., V. Rashmi, V. S. Chauhan, and R. Sarada. 2021. Improvement in vitamin B 12 status of Wistar rats by supplementing the diet with Chlorella vulgaris biomass. Journal of Food Science and Technology 58 (11):4270–81. doi: 10.1007/s13197-020-04901-9.
  • Markou, G. 2015. Fed-batch cultivation of Arthrospira and Chlorella in ammonia-rich wastewater: Optimization of nutrient removal and biomass production. Bioresource Technology 193:35–41. doi: 10.1016/j.biortech.2015.06.071.
  • Melo, T., L. Santos, P. Martins, and A. Vilas. 2021. A case of vitamin B12 deficiency with some unusual features. European Journal of Medical Case Reports 5 (1):1–3. doi: 10.24911/ejmcr/173-1560272435.
  • Michael, A., M. S. Kyewalyanga, and C. V. Lugomela. 2019. Biomass and nutritive value of Spirulina (Arthrospira fusiformis) cultivated in a cost-effective medium. Annals of Microbiology 69 (13):1387–95. doi: 10.1007/s13213-019-01520-4.
  • Mofeed, J. 2019. Stimulating gamma-linolenic acid productivity by Arthrospira platensis (Spirulina platensis) under different culture conditions (temperatures, light regime, and H2O2 stress). Egyptian Academic Journal of Biological Sciences, G Microbiology 11 (1):89–99. doi: 10.21608/eajbsg.2019.85014.
  • Neher, B. D., S. M. Azcarate, J. M. Camina, and M. Savio. 2018. Nutritional analysis of Spirulina dietary supplements: Optimization procedure of ultrasound-assisted digestion for multielemental determination. Food Chemistry 257:295–301. doi: 10.1016/j.foodchem.2018.03.011.
  • Nowicka-Krawczyk, P., R. Mühlsteinová, and T. Hauer. 2019. Detailed characterization of the Arthrospira type species separating commercially grown taxa into the new genus Limnospira (Cyanobacteria). Scientific Reports 9 (1):694. doi: 10.1038/s41598-018-36831-0.
  • Ogbonna, J. C, and H. Tanaka. 2000. Light requirement and photosynthetic cell cultivation–Development of processes for efficient light utilization in photobioreactors. Journal of Applied Phycology 12 (3/5):207–18. doi: 10.1023/A:1008194627239.
  • Ötleş, S, and R. Pire. 2001. Fatty acid composition of Chlorella and Spirulina microalgae species. Journal of AOAC International 84 (6):1708–14. doi: 10.1093/jaoac/84.6.1708.
  • Panzeca, C., A. Tovar-Sanchez, S. Agustí, I. Reche, C. M. Duarte, G. T. Taylor, and S. A. Sañudo‐Wilhelmy. 2006. B vitamins as regulators of phytoplankton dynamics. Eos, Transactions American Geophysical Union 87 (52):593–6. doi: 10.1029/2006EO520001.
  • Papalia, T., R. Sidari, and M. R. Panuccio. 2019. Impact of different storage methods on bioactive compounds in Arthrospira platensis biomass. Molecules 24 (15):2810. doi: 10.3390/molecules24152810.
  • Piao, Y., M. Yamashita, N. Kawaraichi, R. Asegawa, H. Ono, and Y. Murooka. 2004. Production of vitamin B12 in genetically engineered Propionibacterium freudenreichii. Journal of Bioscience and Bioengineering 98 (3):167–73. doi: 10.1016/S1389-1723(04)00261-0.
  • Rani, K., N. Sandal, and P. Sahoo. 2018. A comprehensive review on chlorella-its composition, health benefits, market and regulatory scenario. The Pharma Innovation Journal 7 (7):584–9.
  • Rizzo, G, and A. S. Laganà. 2020. A review of vitamin B12. Molecular Nutrition 1: 105–29.
  • Roessner, C. A., P. J. Santander, and A. I. Scott. 2001. Multiple biosynthetic pathways for vitamin B12: Variations on a central theme. Vitamins & Hormones 61:267–97.
  • Safari, R., Z. Raftani Amiri, and R. E. Kenari. 2020. Antioxidant and antibacterial activities of C-phycocyanin from common name Spirulina platensis. Iranian Journal of Fisheries Sciences 19 (4):1911–27.
  • Safi, C., B. Zebib, O. Merah, P. Y. Pontalier, and C. Vaca-Garcia. 2014. Morphology, composition, production, processing and applications of Chlorella vulgaris: A review. Renewable and Sustainable Energy Reviews 35:265–78. doi: 10.1016/j.rser.2014.04.007.
  • Sassano, C. E. N., L. A. Gioielli, L. S. Ferreira, M. S. Rodrigues, S. Sato, A. Converti, and J. C. M. Carvalho. 2010. Evaluation of the composition of continuously-cultivated Arthrospira (Spirulina) platensis using ammonium chloride as nitrogen source. Biomass and Bioenergy 34 (12):1732–8. doi: 10.1016/j.biombioe.2010.07.002.
  • Scherer, L, and S. Pfister. 2016. Global biodiversity loss by freshwater consumption and eutrophication from swiss food consumption. Environmental Science & Technology 50 (13):7019–28. doi: 10.1021/acs.est.6b00740.
  • Serra-Maia, R., O. Bernard, A. Goncalves, S. Bensalem, and F. Lopes. 2016. Influence of temperature on Chlorella vulgaris growth and mortality rates in a photobioreactor. Algal Research 18:352–9. doi: 10.1016/j.algal.2016.06.016.
  • Sharp, J. 2016. Substances generally recognized as safe. https://www.federalregister.gov/documents/2016/08/17/2016-19164/substances-generally-recognized-as-safe#p-1.
  • Shibata, S., Y. Natori, T. Nishihara, K. Tomisaka, K. Matsumoto, H. Sansawa, and V. C. Nguyen. 2003. Antioxidant and anti-cataract effects of Chlorella on rats with streptozotocin-induced diabetes. Journal of Nutritional Science and Vitaminology 49 (5):334–9. doi: 10.3177/jnsv.49.334.
  • Smetana, S., M. Sandmann, S. Rohn, D. Pleissner, and V. Heinz. 2017. Autotrophic and heterotrophic microalgae and cyanobacteria cultivation for food and feed: Life cycle assessment. Bioresource Technology 245 (Pt A):162–70. doi: 10.1016/j.biortech.2017.08.113.
  • Sotiroudis, T. G., and T. S. Georgios. 2013. “Health aspects of Spirulina (Arthrospira) microalga food supplement”. Journal of the Serbian Chemical Society 78 (3):395–405.
  • Stucken, K., R. Koch, and T. Dagan. 2013. Cyanobacterial defense mechanisms against foreign DNA transfer and their impact on genetic engineering. Biological Research 46 (4):373–82. doi: 10.4067/S0716-97602013000400009.
  • Tan, X. B., Y. L. Zhang, L. B. Yang, H. Q. Chu, and J. Guo. 2016. Outdoor cultures of Chlorella pyrenoidosa in the effluent of anaerobically digested activated sludge: The effects of pH and free ammonia. Bioresource Technology 200:606–15. doi: 10.1016/j.biortech.2015.10.095.
  • Tang, H. Y., M. Chen, K. Y. S. Ng, and S. O. Salley. 2012. Continuous microalgae cultivation in a photobioreactor. Biotechnology and Bioengineering 109 (10):2468–74. doi: 10.1002/bit.24516.
  • Tokusoglu, O, and M. K. Unal. 2003. Biomass nutrient profiles of three microalgae: Spirulina platensis, Chlorella vulgaris, and Isochrisis galbana. Journal of Food Science 68 (4):1144–8.
  • Torres-Tiji, Y., F. J. Fields, and S. P. Mayfield. 2020. Microalgae as a future food source. Biotechnology Advances 41:1–13.
  • Tudor, C., E. C. Gherasim, F. V. Dulf, and A. Pintea. 2021. In vitro bioaccessibility of macular xanthophylls from commercial microalgal powders of Arthrospira platensis and Chlorella pyrenoidosa. Food Science & Nutrition 9 (4):1896–906. doi: 10.1002/fsn3.2150.
  • Uribe-Wandurraga, Z. N., M. Igual, J. Reino-Moyón, P. García-Segovia, and J. Martínez-Monzó. 2021. Effect of microalgae (Arthrospira platensis and Chlorella vulgaris) addition on 3D printed cookies. Food Biophysics 16 (1):27–39. doi: 10.1007/s11483-020-09642-y.
  • Vogiatzoglou, A., A. D. Smith, E. Nurk, P. Berstad, C. A. Drevon, P. M. Ueland, S. E. Vollset, G. S. Tell, and H. Refsum. 2009. Dietary sources of vitamin B-12 and their association with plasma vitamin B-12 concentrations in the general population: the Hordaland Homocysteine study. The American Journal of Clinical Nutrition 89 (4):1078–87. doi: 10.3945/ajcn.2008.26598.
  • Walworth, N. G., M. D. Lee, C. Suffridge, P. P. Qu, F. X. Fu, M. A. Saito, E. A. Webb, S. A. Sanudo-Wilhelmy, and D. A. Hutchins. 2018. Functional genomics and phylogenetic evidence suggest genus-wide cobalamin production by the globally distributed marine nitrogen fixer Trichodesmium. Frontiers in Microbiology 9:1–12. doi: 10.3389/fmicb.2018.00189.
  • Watanabe, F., Y. Yabuta, Y. Tanioka, and T. Bito. 2013. Biologically active vitamin B12 compounds in foods for preventing deficiency among vegetarians and elderly subjects. Journal of Agricultural and Food Chemistry 61 (28):6769–75. doi: 10.1021/jf401545z.
  • Woortman, D. V., T. Fuchs, L. Striegel, M. Fuchs, N. Weber, T. B. Bruck, and M. Rychlik. 2019. Microalgae a superior source of folates: Quantification of folates in halophile microalgae by stable isotope dilution assay. Frontiers in Bioengineering and Biotechnology 7:481–11. doi: 10.3389/fbioe.2019.00481.
  • World Health Organization. 2019. The state of food security and nutrition in the world 2019: Safeguarding against economic slowdowns and downturns. Rome, Italy: Food & Agriculture Org.
  • Yamamoto, M., M. Fujishita, A. Hirata, and S. Kawano. 2004. Regeneration and maturation of daughter cell walls in the autospore-forming green alga Chlorella vulgaris (Chlorophyta, Trebouxiophyceae). Journal of Plant Research 117 (4):257–64. doi: 10.1007/s10265-004-0154-6.
  • Yang, X., Y. Li, Y. Li, D. Ye, L. Yuan, Y. Sun, D. Han, and Q. Hu. 2019. Solid matrix-supported supercritical CO(2) enhances extraction of gamma-linolenic acid from the Cyanobacterium Arthrospira (Spirulina) platensis and bioactivity evaluation of the molecule in Zebrafish. Marine Drugs 17 (4):203–223.
  • Yeh, K. L., J. S. Chang, and W. M. Chen. 2010. Effect of light supply and carbon source on cell growth and cellular composition of a newly isolated microalga Chlorella vulgaris ESP-31. Engineering in Life Sciences 10 (3):201–8. doi: 10.1002/elsc.200900116.
  • Zhao, F. Q., X. W. Zhang, C. W. Liang, J. Y. Wu, Q. Y. Bao, and S. Qin. 2006. Genome-wide analysis of restriction-modification system in unicellular and filamentous cyanobacteria. Physiological Genomics 24 (3):181–90. doi: 10.1152/physiolgenomics.00255.2005.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.