4,628
Views
4
CrossRef citations to date
0
Altmetric
Review

Caenorhabditis elegans as an emerging model in food and nutrition research: importance of standardizing base diet

, , , , , , , & ORCID Icon show all

References

  • Adenle, A. A., B. Johnsen, and N. J. Szewczyk. 2009. Review of the results from the International C. elegans first experiment (ICE-FIRST). Advances in Space Research: The Official Journal of the Committee on Space Research (COSPAR) 44 (2):210–6. doi: 10.1016/j.asr.2009.04.008.
  • Ai, L., F. Yang, J. Song, Y. Chen, L. Xiao, Q. Wang, L. Wang, H. Li, T. Lei, and Z. Huang. 2018. Inhibition of Abeta proteotoxicity by paeoniflorin in Caenorhabditis elegans through regulation of oxidative and heat shock stress responses. Rejuvenation Research 21 (4):304–12. doi: 10.1089/rej.2017.1966.
  • Alcántar-Fernández, J., R. E. Navarro, A. M. Salazar-Martínez, M. E. Pérez-Andrade, and J. Miranda-Ríos. 2018. Caenorhabditis elegans respond to high-glucose diets through a network of stress-responsive transcription factors. PLoS One 13 (7):e0199888. doi: 10.1371/journal.pone.0199888.
  • Alcántar-Fernández, J., A. González-Maciel, R. Reynoso-Robles, M. E. Pérez Andrade, A. J. Hernández-Vázquez, A. Velázquez-Arellano, and J. Miranda-Ríos. 2019. High-glucose diets induce mitochondrial dysfunction in Caenorhabditis elegans. PLoS One 14 (12):e0226652. doi: 10.1371/journal.pone.0226652.
  • Andrusiak, M. G, and Y. Jin. 2016. Context specificity of stress-activated mitogen-activated protein (MAP) kinase signaling: the story as told by Caenorhabditis elegans. The Journal of Biological Chemistry 291 (15):7796–804. doi: 10.1074/jbc.R115.711101.
  • Avery, L, and B. B. Shtonda. 2003. Food transport in the C. elegans pharynx. The Journal of Experimental Biology 206 (Pt 14):2441–57. doi: 10.1242/jeb.00433.
  • Avery, L, and Y.-J. You. 2012. C. elegans feeding. WormBook 1–23. doi: 10.1895/wormbook.1.150.1.
  • Bai, J., J. Li, R. Pan, Y. Zhu, X. Xiao, Y. Li, and C. Li. 2021. Polysaccharides from Volvariella volvacea inhibit fat accumulation in C. elegans dependent on the aak-2/nhr-49-mediated pathway. Journal of Food Biochemistry 45 (11):e13912. doi: 10.1111/jfbc.13912.
  • Bansal, A., L. J. Zhu, K. Yenand, and H. A. Tissenbaum. 2015. Uncoupling lifespan and healthspan in Caenorhabditis elegans longevity mutants. Proceedings of the National Academy of Sciences of the United States of America 112 (3):E277–E286. doi: 10.1073/pnas.1412192112.
  • Bargmann, C. I., E. Hartwieg, and H. R. Horvitz. 1993. Odorant-selective genes and neurons mediate olfaction in C. elegans. Cell 74 (3):515–27. doi: 10.1016/0092-8674(93)80053-H.
  • Barrès, R, and J. R. Zierath. 2016. The role of diet and exercise in the transgenerational epigenetic landscape of T2DM. Nature Reviews. Endocrinology 12 (8):441–51. doi: 10.1038/nrendo.2016.87.
  • Baugh, L. R, and P. J. Hu. 2020. Starvation responses throughout the Caenorhabditis elegans life cycle. Genetics 216 (4):837–78. doi: 10.1534/genetics.120.303565.
  • Berg, M., B. Stenuit, J. Ho, A. Wang, C. Parke, M. Knight, L. Alvarez-Cohen, and M. Shapira. 2016. Assembly of the Caenorhabditis elegans gut microbiota from diverse soil microbial environments. The ISME Journal 10 (8):1998–2009. doi: 10.1038/ismej.2015.253.
  • Bian, J., H. Zhang, S. Meng, and Y. Liu. 2018. Chemotaxis of Caenorhabditis elegans toward volatile organic compounds from Stropharia rugosoannulata induced by amino acids. Journal of Nematology 50 (1):3–8. doi: 10.21307/jofnem-2018-003.
  • Bishop, N. A, and L. Guarente. 2007. Genetic links between diet and lifespan: shared mechanisms from yeast to humans. Nature Reviews. Genetics 8 (11):835–44. doi: 10.1038/nrg2188.
  • Bito, T., T. Misaki, Y. Yabuta, T. Ishikawa, T. Kawano, and F. Watanabe. 2017. Vitamin B12 deficiency results in severe oxidative stress, leading to memory retention impairment in Caenorhabditis elegans. Redox Biology 11:21–9. doi: 10.1016/j.redox.2016.10.013.
  • Blackwell, T. K., A. K. Sewell, Z. Wu, and M. Han. 2019. TOR signaling in Caenorhabditis elegans development, metabolism, and aging. Genetics 213 (2):329–60. doi: 10.1534/genetics.119.302504.
  • Brenner, S. 1974. The genetics of Caenorhabditis elegans. Genetics 77 (1):71–94. doi: 10.1093/genetics/77.1.71.
  • Brooks, K. K., B. Liang, and J. L. Watts. 2009. The influence of bacterial diet on fat storage in C. elegans. PLoS One 4 (10):e7545. doi: 10.1371/journal.pone.0007545.
  • Buecher, E. J., Jr, E. Hansen, and E. A. Yarwood. 1966. Ficoll activation of a protein essential for maturation of the free-living nematode Caenorhabditis briggsae. Proceedings of the Society for Experimental Biology and Medicine 121 (2):390–3. doi: 10.3181/00379727-121-30786.
  • C. elegans Sequencing Consortium. 1998. Genome sequence of the nematode C. elegans: a platform for investigating biology. Science 282 (5396):2012–8. doi: 10.1126/science.282.5396.2012.
  • Cabreiro, F., C. Au, K.-Y. Leung, N. Vergara-Irigaray, H. M. Cochemé, T. Noori, D. Weinkove, E. Schuster, N. D. E. Greene, and D. Gems. 2013. Metformin retards aging in C. elegans by altering microbial folate and methionine metabolism. Cell 153 (1):228–39. doi: 10.1016/j.cell.2013.02.035.
  • Cabreiro, F, and D. Gems. 2013. Worms need microbes too: microbiota, health and aging in Caenorhabditis elegans. EMBO Molecular Medicine 5 (9):1300–10. doi: 10.1002/emmm.201100972.
  • Calvo, D. R., P. Martorell, S. Genovés, and L. Gosálbez. 2016. Development of novel functional ingredients: need for testing systems and solutions with Caenorhabditis elegans. Trends in Food Science & Technology 54:197–203. doi: 10.1016/j.tifs.2016.05.006.
  • Castelein, N., D. Hoogewijs, A. De Vreese, B. P. Braeckman, and J. R. Vanfleteren. 2008. Dietary restriction by growth in axenic medium induces discrete changes in the transcriptional output of genes involved in energy metabolism in Caenorhabditis elegans. Biotechnology Journal 3 (6):803–12. doi: 10.1002/biot.200800003.
  • Çelen, İ., J. H. Doh, and C. R. Sabanayagam. 2018. Effects of liquid cultivation on gene expression and phenotype of C. elegans. BMC Genomics 19 (1):562. doi: 10.1186/s12864-018-4948-7.
  • Chantranupong, L., R. L. Wolfson, and D. M. Sabatini. 2015. Nutrient-sensing mechanisms across evolution. Cell 161 (1):67–83. doi: 10.1016/j.cell.2015.02.041.
  • Chaubey, M. G., S. N. Patel, R. P. Rastogi, D. Madamwar, and N. K. Singh. 2020. Cyanobacterial pigment protein allophycocyanin exhibits longevity and reduces Aβ-mediated paralysis in C. elegans: complicity of FOXO and NRF2 ortholog DAF-16 and SKN-1. 3 Biotech 10 (8):332. doi: 10.1007/s13205-020-02314-1.
  • Chen, H., S. Wang, A. Zhou, J. Miao, J. Liu, and S. Benjakul. 2020. A novel antioxidant peptide purified from defatted round scad (Decapterus maruadsi) protein hydrolysate extends lifespan in Caenorhabditis elegans. Journal of Functional Foods 68:103907. doi: 10.1016/j.jff.2020.103907.
  • Clemens, R. A., J. M. Jones, M. Kern, S.-Y. Lee, E. J. Mayhew, J. L. Slavin, and S. Zivanovic. 2016. Functionality of sugars in foods and health. Comprehensive Reviews in Food Science and Food Safety 15 (3):433–70. doi: 10.1111/1541-4337.12194.
  • Colmenares, D., Q. Sun, P. Shen, Y. Yue, D. J. McClements, and Y. Park. 2016. Delivery of dietary triglycerides to Caenorhabditis elegans using lipid nanoparticles: nanoemulsion-based delivery systems. Food Chemistry 202:451–7. doi: 10.1016/j.foodchem.2016.02.022.
  • Coolon, J. D., K. L. Jones, T. C. Todd, B. C. Carr, and M. A. Herman. 2009. Caenorhabditis elegans genomic response to soil bacteria predicts environment-specific genetic effects on life history traits. PLoS Genetics 5 (6):e1000503. doi: 10.1371/journal.pgen.1000503.
  • Cypser, J. R., D. Kitzenberg, and S.-K. Park. 2013. Dietary restriction in C. elegans: recent advances. Experimental Gerontology 48 (10):1014–7. doi: 10.1016/j.exger.2013.02.018.
  • Darling, N. J, and S. J. Cook. 2014. The role of MAPK signalling pathways in the response to endoplasmic reticulum stress. Biochimica et Biophysica Acta 1843 (10):2150–63. doi: 10.1016/j.bbamcr.2014.01.009.
  • Day, E. A., R. J. Ford, and G. R. Steinberg. 2017. AMPK as a therapeutic target for treating metabolic diseases. Trends in Endocrinology and Metabolism: TEM 28 (8):545–60. doi: 10.1016/j.tem.2017.05.004.
  • Deline, M., J. Keller, M. Rothe, W.-H. Schunck, R. Menzel, and J. L. Watts. 2015. Epoxides derived from dietary dihomo-gamma-linolenic acid induce germ cell death in C. elegans. Scientific Reports 5:15417. doi: 10.1038/srep15417.
  • Depuydt, G., F. Xie, V. A. Petyuk, A. Smolders, H. M. Brewer, D. G. Camp, IIR. D. Smith, and B. P. Braeckman. 2014. LC-MS proteomics analysis of the insulin/IGF-1-deficient Caenorhabditis elegans daf-2(e1370) mutant reveals extensive restructuring of intermediary metabolism. Journal of Proteome Research 13 (4):1938–56. doi: 10.1021/pr401081b.
  • Dirksen, P., S. A. Marsh, I. Braker, N. Heitland, S. Wagner, R. Nakad, S. Mader, C. Petersen, V. Kowallik, P. Rosenstiel, et al. 2016. The native microbiome of the nematode Caenorhabditis elegans: gateway to a new host-microbiome model. BMC Biology 14:38. doi: 10.1186/s12915-016-0258-1.
  • Dirksen, P., A. Assié, J. Zimmermann, F. Zhang, A.-M. Tietje, S. A. Marsh, M. A. Félix, M. Shapira, C. Kaleta, H. Schulenburg, et al. 2020. CeMbio - the Caenorhabditis elegans microbiome resource. G3 (Bethesda, Md.) 10 (9):3025–39. doi: 10.1534/g3.120.401309.
  • Doh, J. H., A. B. Moore, İ. Çelen, M. T. Moore, and C. R. Sabanayagam. 2016. ChIP and Chips: introducing the WormPharm for correlative studies employing pharmacology and genome-wide analyses in C. elegans. Journal of Biological Methods 3 (2):e44. doi: 10.14440/jbm.2016.109.
  • Edwards, C., J. Canfield, N. Copes, A. Brito, M. Rehan, D. Lipps, J. Brunquell, S. D. Westerheide, and P. C. Bradshaw. 2015. Mechanisms of amino acid-mediated lifespan extension in Caenorhabditis elegans. BMC Genetics 16 (1):8. doi: 10.1186/s12863-015-0167-2.
  • Ewald, C. Y., J. I. Castillo-Quan, and T. K. Blackwell. 2018. Untangling longevity, dauer, and healthspan in Caenorhabditis elegans insulin/IGF-1-signalling. Gerontology 64 (1):96–104. doi: 10.1159/000480504.
  • Efeyan, A., W. C. Comb, and D. M. Sabatini. 2015. Nutrient-sensing mechanisms and pathways. Nature 517 (7534):302–10. doi: 10.1038/nature14190.
  • Estevez, A. O., K. L. Morgan, N. J. Szewczyk, D. Gems, and M. Estevez. 2014. The neurodegenerative effects of selenium are inhibited by FOXO and PINK1/PTEN regulation of insulin/insulin-like growth factor signaling in Caenorhabditis elegans. Neurotoxicology 41 (100):28–43. doi: 10.1016/j.neuro.2013.12.012.
  • Fang, Z., Y. Chen, G. Wang, T. Feng, M. Shen, B. Xiao, J. Gu, W. Wang, J. Li, and Y. Zhang. 2019. Evaluation of the antioxidant effects of acid hydrolysates from Auricularia auricular polysaccharides using a Caenorhabditis elegans model. Food & Function 10 (9):5531–43. doi: 10.1039/C8FO02589D.
  • Félix, M.-A, and F. Duveau. 2012. Population dynamics and habitat sharing of natural populations of Caenorhabditis elegans and C. briggsae. BMC Biology 10:59. doi: 10.1186/1741-7007-10-59.
  • Flavel, M. R., A. Mechler, M. Shahmiri, E. R. Mathews, A. E. Franks, W. Chen, D. Zanker, B. Xian, S. Gao, J. Luo, et al. 2018. Growth of Caenorhabditis elegans in defined media is dependent on presence of particulate matter. G3 (Bethesda, Md.) 8 (2):567–75. doi: 10.1534/g3.117.300325.
  • Fontana, L, and L. Partridge. 2015. Promoting health and longevity through diet: from model organisms to humans. Cell 161 (1):106–18. doi: 10.1016/j.cell.2015.02.020.
  • Forsythe, M. E., D. C. Love, B. D. Lazarus, E. J. Kim, W. A. Prinz, G. Ashwell, M. W. Krause, and J. A. Hanover. 2006. Caenorhabditis elegans ortholog of a diabetes susceptibility locus: Oga-1 (O-GlcNAcase) knockout impacts O-GlcNAc cycling, metabolism, and dauer. Proceedings of the National Academy of Sciences of the United States of America 103 (32):11952–7. doi: 10.1073/pnas.0601931103.
  • Franco-Juárez, B., F. Mejía-Martínez, E. Moreno-Arriola, A. Hernández-Vázquez, S. Gómez-Manzo, J. Marcial-Quino, R. Arreguín-Espinosa, A. Velázquez-Arellano, and D. Ortega-Cuellar. 2018. A high glucose diet induces autophagy in a HLH-30/TFEB-dependent manner and impairs the normal lifespan of C. elegans. Aging 10 (10):2657–67. doi: 10.18632/aging.101577.
  • Franks, C. J., L. Holden-Dye, K. Bull, S. Luedtke, and R. J. Walker. 2006. Anatomy, physiology and pharmacology of Caenorhabditis elegans pharynx: a model to define gene function in a simple neural system. Invertebrate Neuroscience: IN 6 (3):105–22. doi: 10.1007/s10158-006-0023-1.
  • Frézal, L, and M.-A. Félix. 2015. The natural history of model organisms: C. elegans outside the Petri dish. eLife 4:e05849. doi: 10.7554/eLife.05849.
  • Garcia, A. M., M. L. Ladage, D. R. Dumesnil, K. Zaman, V. Shulaev, R. K. Azad, and P. A. Padilla. 2015. Glucose induces sensitivity to oxygen deprivation and modulates insulin/IGF-1 signaling and lipid biosynthesis in Caenorhabditis elegans. Genetics 200 (1):167–84. doi: 10.1534/genetics.115.174631.
  • Garsin, D. A., J. M. Villanueva, J. Begun, D. H. Kim, C. D. Sifri, S. B. Calderwood, G. Ruvkun, and F. M. Ausubel. 2003. Long-lived C. elegans daf-2 mutants are resistant to bacterial pathogens. Science 300 (5627):1921. doi: 10.1126/science.1080147.
  • GBD 2017 Diet Collaborators. 2019. Health effects of dietary risks in 195 countries, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet 393 (10184):1958–72. doi: 10.1016/S0140-6736(19)30041-8.
  • Gentile, C. L, and T. L. Weir. 2018. The gut microbiota at the intersection of diet and human health. Science 362 (6416):776–80. doi: 10.1126/science.aau5812.
  • Gerbaba, T. K., L. Green-Harrison, and A. G. Buret. 2017. Modeling host-microbiome interactions in Caenorhabditis elegans. Journal of Nematology 49 (4):348–56. doi: 10.21307/jofnem-2017-082.
  • Ghosh, D. D., D. Lee, X. Jin, H. R. Horvitz, and M. N. Nitabach. 2021. C. elegans discriminates colors to guide foraging. Science 371 (6533):1059–63. doi: 10.1126/science.abd3010.
  • Giese, G. E., M. D. Walker, O. Ponomarova, H. Zhang, X. Li, G. Minevich, and A. J. Walhout. 2020. Caenorhabditis elegans methionine/S-adenosylmethionine cycle activity is sensed and adjusted by a nuclear hormone receptor. eLife 9:e60259. doi: 10.7554/eLife.60259.
  • Gómez-Orte, E., E. Cornes, A. Zheleva, B. Sáenz-Narciso, M. de Toro, M. Iñiguez, R. López, J.-F. San-Juan, B. Ezcurra, B. Sacristán, et al. 2018. Effect of the diet type and temperature on the C. elegans transcriptome. Oncotarget 9 (11):9556–71. doi: 10.18632/oncotarget.23563.
  • Gomez-Amaro, R. L., E. R. Valentine, M. Carretero, S. E. LeBoeuf, S. Rangaraju, C. D. Broaddus, G. M. Solis, J. R. Williamson, and M. Petrascheck. 2015. Measuring food intake and nutrient absorption in Caenorhabditis elegans. Genetics 200 (2):443–54. doi: 10.1534/genetics.115.175851.
  • Gottschling, D.-C, and F. Döring. 2019. Is C. elegans a suitable model for nutritional science? Genes & Nutrition 14:1. doi: 10.1186/s12263-018-0625-3.
  • Gourgou, E, and N. Chronis. 2016. Chemically induced oxidative stress affects ASH neuronal function and behavior in C. elegans. Scientific Reports 6:38147. doi: 10.1038/srep38147.
  • Greene, J. S., M. Brown, M. Dobosiewicz, I. G. Ishida, E. Z. Macosko, X. Zhang, R. A. Butcher, D. J. Cline, P. T. McGrath, and C. I. Bargmann. 2016. Balancing selection shapes density-dependent foraging behaviour. Nature 539 (7628):254–8. doi: 10.1038/nature19848.
  • Guo, K., L. Su, Y. Wang, H. Liu, J. Lin, P. Cheng, X. Yin, M. Liang, Q. Wang, and Z. Huang. 2020. Antioxidant and anti-aging effects of a sea cucumber protein hydrolyzate and bioinformatic characterization of its composing peptides. Food & Function 11 (6):5004–16. doi: 10.1039/d0fo00560f.
  • Gusarov, I., L. Gautier, O. Smolentseva, I. Shamovsky, S. Eremina, A. Mironov, and E. Nudler. 2013. Bacterial nitric oxide extends the lifespan of C. elegans. Cell 152 (4):818–30. doi: 10.1016/j.cell.2012.12.043.
  • Gusarov, I., B. Pani, L. Gautier, O. Smolentseva, S. Eremina, I. Shamovsky, O. Katkova-Zhukotskaya, A. Mironov, and E. Nudler. 2017. Glycogen controls Caenorhabditis elegans lifespan and resistance to oxidative stress. Nature Communications 8:15868. doi: 10.1038/ncomms15868.
  • Hahm, J.-H., S. Kim, R. DiLoreto, C. Shi, S.-J V. Lee, C. T. Murphy, and H. G. Nam. 2015. C. elegans maximum velocity correlates with healthspan and is maintained in worms with an insulin receptor mutation. Nature Communications 6 (1):8919. doi: 10.1038/ncomms9919.
  • Hahn, O., L. F. Drews, A. Nguyen, T. Tatsuta, L. Gkioni, O. Hendrich, Q. Zhang, T. Langer, S. Pletcher, M. J. O. Wakelam, et al. 2019. A nutritional memory effect counteracts benefits of dietary restriction in old mice. Nature Metabolism 1 (11):1059–73. doi: 10.1038/s42255-019-0121-0.
  • Han, S., E. A. Schroeder, C. G. Silva-García, K. Hebestreit, W. B. Mair, and A. Brunet. 2017. Mono-unsaturated fatty acids link H3K4me3 modifiers to C. elegans lifespan. Nature 544 (7649):185–90. doi: 10.1038/nature21686.
  • Hanover, J. A., M. E. Forsythe, P. T. Hennessey, T. M. Brodigan, D. C. Love, G. Ashwell, and M. Krause. 2005. A Caenorhabditis elegans model of insulin resistance: altered macronutrient storage and dauer formation in an OGT-1 knockout. Proceedings of the National Academy of Sciences of the United States of America 102 (32):11266–71. doi: 10.1073/pnas.0408771102.
  • Heger, P., M. Kroiher, N. Ndifon, and E. Schierenberg. 2010. Conservation of MAP kinase activity and MSP genes in parthenogenetic nematodes. BMC Developmental Biology 10:51. doi: 10.1186/1471-213X-10-51.
  • Hernández-Saavedra, D., L. Moody, G. B. Xu, H. Chen, and Y.-X. Pan. 2019. Epigenetic regulation of metabolism and inflammation by calorie restriction. Advances in Nutrition (Bethesda, Md.) 10 (3):520–36. doi: 10.1093/advances/nmy129.
  • Herzig, S, and R. J. Shaw. 2018. AMPK: guardian of metabolism and mitochondrial homeostasis. Nature Reviews. Molecular Cell Biology 19 (2):121–35. doi: 10.1038/nrm.2017.95.
  • Hibshman, J. D., A. E. Doan, B. T. Moore, R. E. Kaplan, A. Hung, A. K. Webster, D. P. Bhatt, R. Chitrakar, M. D. Hirschey, and L. R. Baugh. 2017. daf-16/FoxO promotes gluconeogenesis and trehalose synthesis during starvation to support survival. eLife 6:e30057. doi: 10.7554/eLife.30057.
  • Hibshman, J. D., A. K. Webster, and L. R. Baugh. 2021. Liquid-culture protocols for synchronous starvation, growth, dauer formation, and dietary restriction of Caenorhabditis elegans. STAR Protocols 2 (1):100276. doi: 10.1016/j.xpro.2020.100276.
  • Hirotsu, T, and Y. Iino. 2005. Neural circuit-dependent odor adaptation in C. elegans is regulated by the Ras-MAPK pathway. Genes to Cells: Devoted to Molecular & Cellular Mechanisms 10 (6):517–30. doi: 10.1111/j.1365-2443.2005.00856.x.
  • Honda, Y., M. Tanaka, and S. Honda. 2010. Trehalose extends longevity in the nematode Caenorhabditis elegans. Aging Cell 9 (4):558–69. doi: 10.1111/j.1474-9726.2010.00582.x.
  • Houthoofd, K., B. P. Braeckman, I. Lenaerts, K. Brys, A. De Vreese, S. Van Eygen, and J. R. Vanfleteren. 2002. Axenic growth up-regulates mass-specific metabolic rate, stress resistance, and extends life span in Caenorhabditis elegans. Experimental Gerontology 37 (12):1371–8. doi: 10.1016/S0531-5565(02)00173-0.
  • Huang, Z, and A. Tunnacliffe. 2004. Response of human cells to desiccation: comparison with hyperosmotic stress response. The Journal of Physiology 558 (Pt 1):181–91. doi: 10.1113/jphysiol.2004.065540.
  • Huang, Z., M. C. Banton, and A. Tunnacliffe. 2010. Modeling anhydrobiosis: activation of the mitogen-activated protein kinase ERK by dehydration in both human cells and nematodes. Journal of Experimental Zoology. Part A, Ecological Genetics and Physiology 313 (10):660–70. doi: 10.1002/jez.637.
  • Huang, Z., L. Ma, A. Mishra, J. E. Turnbull, and H. Tu. 2022. C. elegans as an emerging model of pharmacological innovation. Frontiers in Pharmacology 13:1029752. doi: 10.3389/fphar.2022.1029752.
  • Huang, Z., Y. Xiao, and Y. Wang. 2022. A C. elegans microparticle food and its preparation method. Chinese Patent Application No. 202210385449.9, filed April 13, 2022.
  • Hunt, P. R., N. Olejnik, K. D. Bailey, C. A. Vaught, and R. L. Sprando. 2018. C. elegans development and activity test detects mammalian developmental neurotoxins. Food and Chemical Toxicology: An International Journal Published for the British Industrial Biological Research Association 121:583–92. doi: 10.1016/j.fct.2018.09.061.
  • Ishita, Y., T. Chihara, and M. Okumura. 2020. Serotonergic modulation of feeding behavior in Caenorhabditis elegans and other related nematodes. Neuroscience Research 154:9–19. doi: 10.1016/j.neures.2019.04.006.
  • Jenkins, N. L., S. A. James, A. Salim, F. Sumardy, T. P. Speed, M. Conrad, D. R. Richardson, A. I. Bush, and G. McColl. 2020. Changes in ferrous iron and glutathione promote ferroptosis and frailty in aging Caenorhabditis elegans. eLife 9:e56580. doi: 10.7554/eLife.56580.
  • Jia, W., Q. Peng, L. Su, X. Yu, C. W. Ma, M. Liang, X. Yin, Y. Zou, and Z. Huang. 2018. Novel bioactive peptides from Meretrix meretrix protect Caenorhabditis elegans against free radical-induced oxidative stress through the stress response factor DAF-16/FOXO. Marine Drugs 16 (11):444. doi: 10.3390/md16110444.
  • Jiménez-Chillarón, J. C., R. Díaz, D. Martínez, T. Pentinat, M. Ramón-Krauel, S. Ribó, and T. Plösch. 2012. The role of nutrition on epigenetic modifications and their implications on health. Biochimie 94 (11):2242–63. doi: 10.1016/j.biochi.2012.06.012.
  • Jobson, M. A., J. M. Jordan, M. A. Sandrof, J. D. Hibshman, A. L. Lennox, and L. R. Baugh. 2015. Transgenerational effects of early life starvation on growth, reproduction, and stress resistance in Caenorhabditis elegans. Genetics 201 (1):201–12. doi: 10.1534/genetics.115.178699.
  • Jordan, J. M., J. D. Hibshman, A. K. Webster, R. E. W. Kaplan, A. Leinroth, R. Guzman, C. S. Maxwell, R. Chitrakar, E. A. Bowman, A. L. Fry, et al. 2019. Insulin/IGF signaling and vitellogenin provisioning mediate intergenerational adaptation to nutrient stress. Current Biology: CB 29 (14):2380–8.e5. doi: 10.1016/j.cub.2019.05.062.
  • Jung, Y., S. Kwon, S. Ham, D. Lee, H.-E H. Park, Y. Yamaoka, D.-E. Jeong, M. Artan, O. Altintas, S. Park, et al. 2020. Caenorhabditis elegans Lipin 1 moderates the lifespan-shortening effects of dietary glucose by maintaining ω-6 polyunsaturated fatty acids. Aging Cell 19 (6):e13150. doi: 10.1111/acel.13150.
  • Kahn, B. B., T. Alquier, D. Carling, and D. G. Hardie. 2005. AMP-activated protein kinase: ancient energy gauge provides clues to modern understanding of metabolism. Cell Metabolism 1 (1):15–25. doi: 10.1016/j.cmet.2004.12.003.
  • Kaletta, T, and M. O. Hengartner. 2006. Finding function in novel targets: C. elegans as a model organism. Nature Reviews. Drug Discovery 5 (5):387–98. doi: 10.1038/nrd2031.
  • Kapahi, P., M. Kaeberlein, and M. Hansen. 2017. Dietary restriction and lifespan: lessons from invertebrate models. Ageing Research Reviews 39:3–14. doi: 10.1016/j.arr.2016.12.005.
  • Ke, W., J. N. Reed, C. Yang, N. Higgason, L. Rayyan, C. Wählby, A. E. Carpenter, M. Civelek, and E. J. O’Rourke. 2021. Genes in human obesity loci are causal obesity genes in C. elegans. PLoS Genetics 17 (9):e1009736. doi: 10.1371/journal.pgen.1009736.
  • Keith, S. A., F. R. G. Amrit, R. Ratnappanand, and A. Ghazi. 2014. The C. elegans healthspan and stress-resistance assay toolkit. Methods (San Diego, Calif.) 68 (3):476–86. doi: 10.1016/j.ymeth.2014.04.003.
  • Kim, J, and K.-L. Guan. 2019. mTOR as a central hub of nutrient signalling and cell growth. Nature Cell Biology 21 (1):63–71. doi: 10.1038/s41556-018-0205-1.
  • Köhnlein, K., N. Urban, D. Guerrero-Gómez, H. Steinbrenner, P. Urbánek, J. Priebs, P. Koch, C. Kaether, A. Miranda-Vizuete, and L. O. Klotz. 2020. A Caenorhabditis elegans ortholog of human selenium-binding protein 1 is a pro-aging factor protecting against selenite toxicity. Redox Biology 28:101323. doi: 10.1016/j.redox.2019.101323.
  • Koopman, M., Q. Peter, R. I. Seinstra, M. Perni, M. Vendruscolo, C. M. Dobson, T. P. J. Knowles, and E. A. A. Nollen. 2020. Assessing motor-related phenotypes of Caenorhabditis elegans with the wide field-of-view nematode tracking platform. Nature Protocols 15 (6):2071–106. doi: 10.1038/s41596-020-0321-9.
  • Korta, J., D. A. Clark, C. V. Gabel, L. Mahadevan, and A. D. T. Samuel. 2007. Mechanosensation and mechanical load modulate the locomotory gait of swimming C. elegans. The Journal of Experimental Biology 210 (Pt 13):2383–9. doi: 10.1242/jeb.004572.
  • Koseki, K., Y. Maekawa, T. Bito, Y. Yabuta, and F. Watanabe. 2020. High-dose folic acid supplementation results in significant accumulation of unmetabolized homocysteine, leading to severe oxidative stress in Caenorhabditis elegans. Redox Biology 37:101724. doi: 10.1016/j.redox.2020.101724.
  • Kumar, J., T. Barhydt, A. Awasthi, G. J. Lithgow, D. W. Killilea, and P. Kapahi. 2016. Zinc levels modulate lifespan through multiple longevity pathways in Caenorhabditis elegans. PLoS One 11 (4):e0153513. doi: 10.1371/journal.pone.0153513.
  • Lackner, M. R., K. Kornfeld, L. M. Miller, H. R. Horvitz, and S. K. Kim. 1994. A MAP kinase homolog, mpk-1, is involved in ras-mediated induction of vulval cell fates in Caenorhabditis elegans. Genes & Development 8 (2):160–73. doi: 10.1101/gad.8.2.160.
  • Lakowski, B, and S. Hekimi. 1998. The genetics of caloric restriction in Caenorhabditis elegans. Proceedings of the National Academy of Sciences of the United States of America 95 (22):13091–6. doi: 10.1073/pnas.95.22.13091.
  • Lee, S.-J., C. T. Murphy, and C. Kenyon. 2009. Glucose shortens the life span of C. elegans by downregulating DAF-16/FOXO activity and aquaporin gene expression. Cell Metabolism 10 (5):379–91. doi: 10.1016/j.cmet.2009.10.003.
  • Lee, K. S., S. Iwanir, R. B. Kopito, M. Scholz, J. A. Calarco, D. Biron, and E. Levine. 2017. Serotonin-dependent kinetics of feeding bursts underlie a graded response to food availability in C. elegans. Nature Communications 8:14221. doi: 10.1038/ncomms14221.
  • Lee, M. B., C. M. Hill, A. Bitto, and M. Kaeberlein. 2021. Antiaging diets: separating fact from fiction. Science 374 (6570):593 (eabe7365). doi: 10.1126/science.abe7365.
  • Leiteritz, A., T. Schmiedl, S. Baumanns, and U. Wenzel. 2021. Amyloid-beta induced paralysis is reduced by cholecalciferol through inhibition of the steroid-signaling pathway in an Alzheimer model of Caenorhabditis elegans. Nutritional Neuroscience 24 (2):82–9. doi: 10.1080/1028415X.2019.1596371.
  • Lemieux, G. A., K. A. Cunningham, L. Lin, F. Mayer, Z. Werb, and K. Ashrafi. 2015. Kynurenic acid is a nutritional cue that enables behavioral plasticity. Cell 160 (1–2):119–31. doi: 10.1016/j.cell.2014.12.028.
  • Lenaerts, I., G. A. Walker, L. Van Hoorebeke, D. Gems, and J. R. Vanfleteren. 2008. Dietary restriction of Caenorhabditis elegans by axenic culture reflects nutritional requirement for constituents provided by metabolically active microbes. The Journals of Gerontology. Series A, Biological Sciences and Medical Sciences 63 (3):242–52. doi: 10.1093/gerona/63.3.242.
  • Lepre, B., K. J. Mansfield, S. Ray, and E. J. Beck. 2021. Nutrition competencies for medicine: an integrative review and critical synthesis. BMJ Open 11 (3):e043066. doi: 10.1136/bmjopen-2020-043066.
  • Leulier, F., L. T. MacNeil, W.-J. Lee, J. F. Rawls, P. D. Cani, M. Schwarzer, L. Zhao, and S. J. Simpson. 2017. Integrative physiology: at the crossroads of nutrition, microbiota, animal physiology, and human health. Cell Metabolism 25 (3):522–34. doi: 10.1016/j.cmet.2017.02.001.
  • Lev, I., R. Bril, Y. Liu, L. I. Ceré, and O. Rechavi. 2019. Inter-generational consequences for growing Caenorhabditis elegans in liquid. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 374 (1770):20180125. doi: 10.1098/rstb.2018.0125.
  • Li, H., J. Xu, Y. Liu, S. Ai, F. Qin, Z. Li, H. Zhang, and Z. Huang. 2011. Antioxidant and moisture-retention activities of the polysaccharide from Nostoc commune. Carbohydrate Polymers 83 (4):1821–7. doi: 10.1016/j.carbpol.2010.10.046.
  • Li, H., R. Shi, F. Ding, H. Wang, W. Han, F. Ma, M. Hu, C. W. Ma, and Z. Huang. 2016. Astragalus polysaccharide suppresses 6-hydroxydopamine-induced neurotoxicity in Caenorhabditis elegans. Oxidative Medicine and Cellular Longevity 2016:4856761. doi: 10.1155/2016/4856761.
  • Li, H., F. Ding, L. Xiao, R. Shi, H. Wang, W. Han, and Z. Huang. 2017. Food-derived antioxidant polysaccharides and their pharmacological potential in neurodegenerative diseases. Nutrients 9 (7):778. doi: 10.3390/nu9070778.
  • Li, L., Y. Chen, C. Chenzhao, S. Fu, Q. Xu, and J. Zhao. 2018. Glucose negatively affects Nrf2/SKN-1-mediated innate immunity in C. elegans. Aging 10 (11):3089–103. doi: 10.18632/aging.101610.
  • Li, T., X.-W. Shi, Y.-M. Du, and Y.-F. Tang. 2007. Quaternized chitosan/alginate nanoparticles for protein delivery. Journal of Biomedical Materials Research. Part A 83 (2):383–90. doi: 10.1002/jbm.a.31322.
  • Li, W.-H., C.-H. Chang, C.-W. Huang, C.-C. Wei, and V. H.-C. Liao. 2014. Selenite enhances immune response against Pseudomonas aeruginosa PA14 via SKN-1 in Caenorhabditis elegans. PLoS One 9 (8):e105810. doi: 10.1371/journal.pone.0105810.
  • Liggett, M. R., M. J. Hoy, M. Mastroianni, and M. A. Mondoux. 2015. High-glucose diets have sex-specific effects on aging in C. elegans: toxic to hermaphrodites but beneficial to males. Aging 7 (6):383–8. doi: 10.18632/aging.100759.
  • Lin, C., Y. Lin, T. Meng, J. Lian, Y. Liang, Y. Kuang, Y. Cao, and Y. Chen. 2020. Anti-fat effect and mechanism of polysaccharide-enriched extract from Cyclocarya paliurus (Batal.) Iljinskaja in Caenorhabditis elegans. Food & Function 11 (6):5320–32. doi: 10.1039/c9fo03058a.
  • Liu, Q., P. B. Kidd, M. Dobosiewicz, and C. I. Bargmann. 2018. C. elegans AWA olfactory neurons fire calcium-mediated all-or-none action potentials. Cell 175 (1):57–70.e17. doi: 10.1016/j.cell.2018.08.018.
  • Liu, Y. J., G. E. Janssens, R. L. McIntyre, M. Molenaars, R. Kamble, A. W. Gao, A. Jongejan, M. v Weeghel, A. W. MacInnes, and R. H. Houtkooper. 2019. Glycine promotes longevity in Caenorhabditis elegans in a methionine cycle-dependent fashion. PLoS Genetics 15 (3):e1007633. doi: 10.1371/journal.pgen.1007633.
  • Lodha, D., S. Rajasekaran, T. Jayavelu, and J. R. Subramaniam. 2022. Detrimental effects of fructose on mitochondria in mouse motor neurons and on C. elegans healthspan. Nutritional Neuroscience 25 (6):1277–86. doi: 10.1080/1028415X.2020.1853413.
  • López, M., R. Nogueiras, M. Tena-Sempere, and C. Diéguez. 2016. Hypothalamic AMPK: a canonical regulator of whole-body energy balance. Nature Reviews. Endocrinology 12 (7):421–32. doi: 10.1038/nrendo.2016.67.
  • López-Otín, C., M. A. Blasco, L. Partridge, M. Serrano, and G. Kroemer. 2013. The hallmarks of aging. Cell 153 (6):1194–217. doi: 10.1016/j.cell.2013.05.039.
  • Lu, N. C, and K. M. Goetsch. 1993. Carbohydrate requirement of Caenorhabditis elegans and the final development of a chemically-defined medium. Nematologica 39 (1-4):303–11. doi: 10.1163/187529293X00259.
  • Lu, M., A. Mishra, C. Boschetti, J. Lin, Y. Liu, H. Huang, C. F. Kaminski, Z. Huang, A. Tunnacliffe, and G. S. Kaminski Schierle. 2021. Sea cucumber-derived peptides alleviate oxidative stress in neuroblastoma cells and improve survival in C. elegans exposed to neurotoxic paraquat. Oxidative Medicine and Cellular Longevity 2021:8842926. doi: 10.1155/2021/8842926.
  • Lublin, A. L, and C. D. Link. 2013. Alzheimer’s disease drug discovery: in vivo screening using Caenorhabditis elegans as a model for β-amyloid peptide-induced toxicity. Drug Discovery Today. Technologies 10 (1):e115–e119. doi: 10.1016/j.ddtec.2012.02.002.
  • Lucio, D., M. C. Martínez-Ohárriz, G. Jaras, P. Aranaz, C. J. González-Navarro, A. Radulescu, and J. M. Irache. 2017. Optimization and evaluation of zein nanoparticles to improve the oral delivery of glibenclamide. In vivo study using C. elegans. European Journal of Pharmaceutics and Biopharmaceutics: Official Journal of Arbeitsgemeinschaft Fur Pharmazeutische Verfahrenstechnik e.V 121:104–12. doi: 10.1016/j.ejpb.2017.09.018.
  • Lucio, D., M. C. Martínez-Ohárriz, C. J. González-Navarro, D. Navarro-Herrera, G. González-Gaitano, A. Radulescu, and J. M. Irache. 2018. Coencapsulation of cyclodextrins into poly(anhydride) nanoparticles to improve the oral administration of glibenclamide. A screening on C. elegans. Colloids and Surfaces. B, Biointerfaces 163:64–72. doi: 10.1016/j.colsurfb.2017.12.038.
  • Lynn, D. A., H. M. Dalton, J. N. Sowa, M. C. Wang, A. A. Soukas, and S. P. Curran. 2015. Omega-3 and -6 fatty acids allocate somatic and germline lipids to ensure fitness during nutrient and oxidative stress in Caenorhabditis elegans. Proceedings of the National Academy of Sciences of the United States of America 112 (50):15378–83. doi: 10.1073/pnas.1514012112.
  • Ma, H., K. A. Lenz, X. Gao, S. Li, and L. K. Wallis. 2019. Comparative toxicity of a food additive TiO2, a bulk TiO2, and a nano-sized P25 to a model organism the nematode C. elegans. Environmental Science and Pollution Research International 26 (4):3556–68. doi: 10.1007/s11356-018-3810-4.
  • MacNeil, L. T., E. Watson, H. E. Arda, L. J. Zhu, and A. J. M. Walhout. 2013. Diet-induced developmental acceleration independent of TOR and insulin in C. elegans. Cell 153 (1):240–52. doi: 10.1016/j.cell.2013.02.049.
  • Mark, K. A., K. J. Dumas, D. Bhaumik, B. Schilling, S. Davis, T. R. Oron, D. J. Sorensen, M. Lucanic, R. B. Brem, S. Melov, et al. 2016. Vitamin D promotes protein homeostasis and longevity via the stress response pathway genes SKN-1, IRE-1, and XBP-1. Cell Reports 17 (5):1227–37. doi: 10.1016/j.celrep.2016.09.086.
  • Martin, F.-P J., B. Spanier, S. Collino, I. Montoliu, C. Kolmeder, P. Giesbertz, M. Affolter, M. Kussmann, H. Daniel, S. Kochhar, et al. 2011. Metabotyping of Caenorhabditis elegans and their culture media revealed unique metabolic phenotypes associated to amino acid deficiency and insulin-like signaling. Journal of Proteome Research 10 (3):990–1003. doi: 10.1021/pr100703a.
  • Mautz, B. S., M. I. Lind, and A. A. Maklakov. 2020. Dietary restriction improves fitness of aging parents but reduces fitness of their offspring in nematodes. The Journals of Gerontology. Series A, Biological Sciences and Medical Sciences 75 (5):843–8. doi: 10.1093/gerona/glz276.
  • Mendoza, A. D., T. K. Woodruff, S. M. Wignall, and T. V. O’Halloran. 2017. Zinc availability during germline development impacts embryo viability in Caenorhabditis elegans. Comparative Biochemistry and Physiology. Toxicology & Pharmacology: CBP 191:194–202. doi: 10.1016/j.cbpc.2016.09.007.
  • Metzler, R., E. A. Meleshkevitch, J. Fox, H. Kim, and D. Y. Boudko. 2013. An SLC6 transporter of the novel B0,- system aids in absorption and detection of nutrient amino acids in Caenorhabditis elegans. The Journal of Experimental Biology 216 (Pt 15):2843–57. doi: 10.1242/jeb.081497.
  • Miedel, M. T., X. Zeng, N. A. Yates, G. A. Silverman, and C. J. Luke. 2014. Isolation of serpin-interacting proteins in C. elegans using protein affinity purification. Methods (San Diego, Calif.) 68 (3):536–41. doi: 10.1016/j.ymeth.2014.04.019.
  • Möller, S., N. Saul, A. A. Cohen, R. Köhling, S. Sender, H. M. Escobar, C. Junghanss, F. Cirulli, A. Berry, P. Antal, et al. 2020. Healthspan pathway maps in C. elegans and humans highlight transcription, proliferation/biosynthesis and lipids. Aging 12 (13):12534–81. doi: 10.18632/aging.103514.
  • Momma, K., T. Homma, R. Isaka, S. Sudevan, and A. Higashitani. 2017. Heat-induced calcium leakage causes mitochondrial damage in Caenorhabditis elegans body-wall muscles. Genetics 206 (4):1985–94. doi: 10.1534/genetics.117.202747.
  • Mukhopadhyay, S., Y. Lu, S. Shaham, and P. Sengupta. 2008. Sensory signaling-dependent remodeling of olfactory cilia architecture in C. elegans. Developmental Cell 14 (5):762–74. doi: 10.1016/j.devcel.2008.03.002.
  • Na, H., O. Ponomarova, G. E. Giese, and A. J. M. Walhout. 2018. C. elegans MRP-5 exports Vitamin B12 from mother to offspring to support embryonic development. Cell Reports 22 (12):3126–33. doi: 10.1016/j.celrep.2018.02.100.
  • Nikolic, I., M. Leiva, and G. Sabio. 2020. The role of stress kinases in metabolic disease. Nature Reviews. Endocrinology 16 (12):697–716. doi: 10.1038/s41574-020-00418-5.
  • O’Donnell, M. P., B. W. Fox, P.-H. Chao, F. C. Schroeder, and P. Sengupta. 2020. A neurotransmitter produced by gut bacteria modulates host sensory behaviour. Nature 583 (7816):415–20. doi: 10.1038/s41586-020-2395-5.
  • Offenburger, S.-L., E. Jongsma, and A. Gartner. 2018. Mutations in Caenorhabditis elegans neuroligin-like glit-1, the apoptosis pathway and the calcium chaperone crt-1 increase dopaminergic neurodegeneration after 6-OHDA treatment. PLoS Genetics 14 (1):e1007106. doi: 10.1371/journal.pgen.1007106.
  • Olshansky, S. J. 2018. From lifespan to healthspan. Journal of the American Medical Association 320 (13):E1–E2. doi: 10.1001/jama.2018.12621.
  • O’Rourke, E. J., P. Kuballa, R. Xavier, and G. Ruvkun. 2013. ω-6 polyunsaturated fatty acids extend life span through the activation of autophagy. Genes & Development 27 (4):429–40. doi: 10.1101/gad.205294.112.
  • Ortiz de Ora, L, and E. N. Bess. 2021. Emergence of Caenorhabditis elegans as a model organism for dissecting the gut–brain axis. mSystems 6 (4):e00755–21. doi: 10.1128/mSystems.00755-21.
  • Pallauf, K., J. K. Bendall, C. Scheiermann, K. Watschinger, J. Hoffmann, T. Roeder, and G. Rimbach. 2013. Vitamin C and lifespan in model organisms. Food and Chemical Toxicology: An International Journal Published for the British Industrial Biological Research Association 58:255–63. doi: 10.1016/j.fct.2013.04.046.
  • Pang, S, and S. P. Curran. 2014. Adaptive capacity to bacterial diet modulates aging in C. elegans. Cell Metabolism 19 (2):221–31. doi: 10.1016/j.cmet.2013.12.005.
  • Penkov, S., B. K. Raghuraman, C. Erkut, J. Oertel, R. Galli, E. J. M. Ackerman, D. Vorkel, J.-M. Verbavatz, E. Koch, K. Fahmy, et al. 2020. A metabolic switch regulates the transition between growth and diapause in C. elegans. BMC Biology 18 (1):31. doi: 10.1186/s12915-020-0760-3.
  • Perez, M. F, and B. Lehner. 2019. Intergenerational and transgenerational epigenetic inheritance in animals. Nature Cell Biology 21 (2):143–51. doi: 10.1038/s41556-018-0242-9.
  • Pho, K. B, and L. T. MacNeil. 2019. Biology is the root of variability: cautionary tales in Caenorhabditis elegans biology. Biochemical Society Transactions 47 (3):887–96. doi: 10.1042/BST20190001.
  • Pierce-Shimomura, J. T., B. L. Chen, J. J. Mun, R. Ho, R. Sarkis, and S. L. McIntire. 2008. Genetic analysis of crawling and swimming locomotory patterns in C. elegans. Proceedings of the National Academy of Sciences of the United States of America 105 (52):20982–7. doi: 10.1073/pnas.0810359105.
  • Polyak, E., J. Ostrovsky, M. Peng, S. D. Dingley, M. Tsukikawa, Y. J. Kwon, S. E. McCormack, M. Bennett, R. Xiao, C. Seiler, et al. 2018. N-acetylcysteine and vitamin E rescue animal longevity and cellular oxidative stress in pre-clinical models of mitochondrial complex I disease. Molecular Genetics and Metabolism 123 (4):449–62. doi: 10.1016/j.ymgme.2018.02.013.
  • Qiao, L., S. Luo, Y. Liu, X. Li, G. Wang, and Z. Huang. 2013. Reproductive and locomotory capacities of Caenorhabditis elegans were not affected by simulated variable gravities and spaceflight during the Shenzhou-8 mission. Astrobiology 13 (7):617–25. doi: 10.1089/ast.2012.0962.
  • Raabe, R. C., L. D. Mathies, A. G. Davies, and J. C. Bettinger. 2014. The omega-3 fatty acid eicosapentaenoic acid is required for normal alcohol response behaviors in C. elegans. PLoS One 9 (8):e105999. doi: 10.1371/journal.pone.0105999.
  • Rajan, M., C. P. Anderson, P. M. Rindler, S. J. Romney, M. C. Ferreira Dos Santos, J. Gertz, and E. A. Leibold. 2019. NHR-14 loss of function couples intestinal iron uptake with innate immunity in C. elegans through PQM-1 signaling. eLife 8:e44674. doi: 10.7554/eLife.44674.
  • Rangaraju, S., D. F. Levey, K. Nho, N. Jain, K. D. Andrews, H. Le-Niculescu, D. R. Salomon, A. J. Saykin, M. Petrascheck, and A. B. Niculescu. 2016. Mood, stress and longevity: convergence on ANK3. Molecular Psychiatry 21 (8):1037–49. doi: 10.1038/mp.2016.65.
  • Rao, A. U., L. K. Carta, E. Lesuisse, and I. Hamza. 2005. Lack of heme synthesis in a free-living eukaryote. Proceedings of the National Academy of Sciences of the United States of America 102 (12):4270–5. doi: 10.1073/pnas.0500877102.
  • Rashid, S., K. B. Pho, H. Mesbahi, and L. T. MacNeil. 2020. Nutrient sensing and response drive developmental progression in Caenorhabditis elegans. BioEssays: News and Reviews in Molecular, Cellular and Developmental Biology 42 (3):e1900194. doi: 10.1002/bies.201900194.
  • Rathor, L., B. A. Akhoon, S. Pandey, S. Srivastava, and R. Pandey. 2015. Folic acid supplementation at lower doses increases oxidative stress resistance and longevity in Caenorhabditis elegans. Age (Dordrecht, Netherlands) 37 (6):113. doi: 10.1007/s11357-015-9850-5.
  • Rechavi, O., L. Houri-Ze’evi, S. Anava, W. S. S. Goh, S. Y. Kerk, G. J. Hannon, and O. Hobert. 2014. Starvation-induced transgenerational inheritance of small RNAs in C. elegans. Cell 158 (2):277–87. doi: 10.1016/j.cell.2014.06.020.
  • Revtovich, A. V., R. Lee, and N. V. Kirienko. 2019. Interplay between mitochondria and diet mediates pathogen and stress resistance in Caenorhabditis elegans. PLoS Genetics 15 (3):e1008011. doi: 10.1371/journal.pgen.1008011.
  • Riedinger, C., M. Mendler, A. Schlotterer, T. Fleming, J. Okun, H.-P. Hammes, S. Herzig, and P. P. Nawroth. 2018. High-glucose toxicity is mediated by AICAR-transformylase/IMP cyclohydrolase and mitigated by AMP-activated protein kinase in Caenorhabditis elegans. The Journal of Biological Chemistry 293 (13):4845–59. doi: 10.1074/jbc.M117.805879.
  • Robinson, S. M. 2018. Improving nutrition to support healthy ageing: what are the opportunities for intervention? The Proceedings of the Nutrition Society 77 (3):257–64. doi: 10.1017/S0029665117004037.
  • Rodríguez-Palero, M. J., A. López-Díaz, R. Marsac, J.-E. Gomes, M. Olmedo, and M. Artal-Sanz. 2018. An automated method for the analysis of food intake behaviour in Caenorhabditis elegans. Scientific Reports 8 (1):3633. doi: 10.1038/s41598-018-21964-z.
  • Rohn, I., S. Raschke, M. Aschner, S. Tuck, D. Kuehnelt, A. Kipp, T. Schwerdtle, and J. Bornhorst. 2019. Treatment of Caenorhabditis elegans with small selenium species enhances antioxidant defense systems. Molecular Nutrition & Food Research 63 (9):e1801304. doi: 10.1002/mnfr.201801304.
  • Romney, S. J., B. S. Newman, C. Thacker, and E. A. Leibold. 2011. HIF-1 regulates iron homeostasis in Caenorhabditis elegans by activation and inhibition of genes involved in iron uptake and storage. PLoS Genetics 7 (12):e1002394. doi: 10.1371/journal.pgen.1002394.
  • Rubio-Aliaga, I. 2012. Model organisms in molecular nutrition research. Molecular Nutrition & Food Research 56 (6):844–53. doi: 10.1002/mnfr.201100784.
  • Sakamoto, T., K. Maebayashi, Y. Tsunoda, and H. Imai. 2020. Inhibition of lipid peroxidation during the reproductive period extends the lifespan of Caenorhabditis elegans. Journal of Clinical Biochemistry and Nutrition 66 (2):116–23. doi: 10.3164/jcbn.19-51.
  • Sakoguchi, H., A. Yoshihara, K. Izumori, and M. Sato. 2016a. Screening of biologically active monosaccharides: growth inhibitory effects of D-allose, D-talose, and L-idose against the nematode Caenorhabditis elegans. Bioscience, Biotechnology, and Biochemistry 80 (6):1058–61. doi: 10.1080/09168451.2016.1146069.
  • Sakoguchi, H., A. Yoshihara, T. Shintani, K. Okuma, K. Izumori, and M. Sato. 2016b. Growth inhibitory effect of D-arabinose against the nematode Caenorhabditis elegans: discovery of a novel bioactive monosaccharide. Bioorganic & Medicinal Chemistry Letters 26 (3):726–9. doi: 10.1016/j.bmcl.2016.01.007.
  • Salim, C, and P. S. Rajini. 2017. Glucose-rich diet aggravates monocrotophos-induced dopaminergic neuronal dysfunction in Caenorhabditis elegans. Journal of Applied Toxicology: JAT 37 (6):772–80. doi: 10.1002/jat.3426.
  • Samuel, B. S., H. Rowedder, C. Braendle, M.-A. Félix, and G. Ruvkun. 2016. Caenorhabditis elegans responses to bacteria from its natural habitats. Proceedings of the National Academy of Sciences of the United States of America 113 (27):E3941–9. doi: 10.1073/pnas.1607183113.
  • Sánchez-Blanco, A., A. Rodríguez-Matellán, A. González-Paramás, S. González-Manzano, S. K. Kim, and F. Mollinedo. 2016. Dietary and microbiome factors determine longevity in Caenorhabditis elegans. Aging 8 (7):1513–39. doi: 10.18632/aging.101008.
  • Sarasija, S, and K. R. Norman. 2015. A γ-secretase independent role for presenilin in calcium homeostasis impacts mitochondrial function and morphology in Caenorhabditis elegans. Genetics 201 (4):1453–66. doi: 10.1534/genetics.115.182808.
  • Saxton, R. A, and D. M. Sabatini. 2017. mTOR signaling in growth, metabolism, and disease. Cell 168 (6):960–76. doi: 10.1016/j.cell.2017.02.004.
  • Sayre, F. W., E. L. Hansen, and E. A. Yarwood. 1963. Biochemical aspects of the nutrition of Caenorhabditis briggsae. Experimental Parasitology 13:98–107. doi: 10.1016/0014-4894(63)90058-4.
  • Schiavi, A., S. Maglioni, K. Palikaras, A. Shaik, F. Strappazzon, V. Brinkmann, A. Torgovnick, N. Castelein, S. De Henau, B. P. Braeckman, et al. 2015. Iron-starvation-induced mitophagy mediates lifespan extension upon mitochondrial stress in C. elegans. Current Biology: CB 25 (14):1810–22. doi: 10.1016/j.cub.2015.05.059.
  • Schlotterer, A., B. Masri, M. Humpert, B. K. Krämer, H.-P. Hammes, and M. Morcos. 2021. Sulforaphane and vitamin E protect from glucotoxic neurodegeneration and lifespan reduction in C. elegans. Experimental and Clinical Endocrinology & Diabetes 129 (12):887–94. doi: 10.1055/a-1158-9248.
  • Schlotterer, A., G. Kukudov, F. Bozorgmehr, H. Hutter, X. Du, D. Oikonomou, Y. Ibrahim, F. Pfisterer, N. Rabbani, P. Thornalley, et al. 2009. C. elegans as model for the study of high glucose-mediated life span reduction. Diabetes 58 (11):2450–6. doi: 10.2337/db09-0567.
  • Schulenburg, H, and M.-A. Félix. 2017. The natural biotic environment of Caenorhabditis elegans. Genetics 206 (1):55–86. doi: 10.1534/genetics.116.195511.
  • Schulz, T. J., K. Zarse, A. Voigt, N. Urban, M. Birringer, and M. Ristow. 2007. Glucose restriction extends Caenorhabditis elegans life span by inducing mitochondrial respiration and increasing oxidative stress. Cell Metabolism 6 (4):280–93. doi: 10.1016/j.cmet.2007.08.011.
  • Scott, A. J., M. Ellisonand, and D. A. Sinclair. 2021. The economic value of targeting aging. Nature Aging 1 (7):616–23. doi: 10.1038/s43587-021-00080-0.
  • Seals, D. R., J. N. Justice, and T. J. LaRocca. 2016. Physiological geroscience: targeting function to increase healthspan and achieve optimal longevity. The Journal of Physiology 594 (8):2001–24. doi: 10.1113/jphysiol.2014.282665.
  • Seo, Y., S. Kingsley, G. Walker, M. A. Mondoux, and H. A. Tissenbaum. 2018. Metabolic shift from glycogen to trehalose promotes lifespan and healthspan in Caenorhabditis elegans. Proceedings of the National Academy of Sciences of the United States of America 115 (12):E2791–E2800. doi: 10.1073/pnas.1714178115.
  • Shapira, M. 2017. Host-microbiota interactions in Caenorhabditis elegans and their significance. Current Opinion in Microbiology 38:142–7. doi: 10.1016/j.mib.2017.05.012.
  • Shashikumar, S., H. Pradeep, S. Chinnu, P. S. Rajini, and G. K. Rajanikant. 2015. Alpha-linolenic acid suppresses dopaminergic neurodegeneration induced by 6-OHDA in C. elegans. Physiology & Behavior 151:563–9. doi: 10.1016/j.physbeh.2015.08.025.
  • Shemesh, N., L. Meshnik, N. Shpigel, and A. Ben-Zvi. 2017. Dietary-induced signals that activate the gonadal longevity pathway during development regulate a proteostasis switch in Caenorhabditis elegans adulthood. Frontiers in Molecular Neuroscience 10:254. doi: 10.3389/fnmol.2017.00254.
  • Shen, P., R. Zhang, D. J. McClements, and Y. Park. 2019. Nanoemulsion-based delivery systems for testing nutraceutical efficacy using Caenorhabditis elegans: demonstration of curcumin bioaccumulation and body-fat reduction. Food Research International (Ottawa, Ont.) 120:157–66. doi: 10.1016/j.foodres.2019.02.036.
  • Shen, P., Y. Yue, J. Zheng, and Y. Park. 2018. Caenorhabditis elegans: a convenient in vivo model for assessing the impact of food bioactive compounds on obesity, aging, and Alzheimer’s disease. Annual Review of Food Science and Technology 9:1–22. doi: 10.1146/annurev-food-030117-012709.
  • Shtonda, B. B, and L. Avery. 2006. Dietary choice behavior in Caenorhabditis elegans. The Journal of Experimental Biology 209 (Pt 1):89–102. doi: 10.1242/jeb.01955.
  • Simonetta, S. H, and D. A. Golombek. 2007. An automated tracking system for Caenorhabditis elegans locomotor behavior and circadian studies application. Journal of Neuroscience Methods 161 (2):273–80. doi: 10.1016/j.jneumeth.2006.11.015.
  • So, S., K. Miyahara, and Y. Ohshima. 2011. Control of body size in C. elegans dependent on food and insulin/IGF-1 signal. Genes to Cells: Devoted to Molecular & Cellular Mechanisms 16 (6):639–51. doi: 10.1111/j.1365-2443.2011.01514.x.
  • Soukas, A. A., E. A. Kane, C. E. Carr, J. A. Melo, and G. Ruvkun. 2009. Rictor/TORC2 regulates fat metabolism, feeding, growth, and life span in Caenorhabditis elegans. Genes & Development 23 (4):496–511. doi: 10.1101/gad.1775409.
  • Sowa, J. N., A. S. Mutlu, F. Xia, and M. C. Wang. 2015. Olfaction modulates reproductive plasticity through neuroendocrine signaling in Caenorhabditis elegans. Current Biology: CB 25 (17):2284–9. doi: 10.1016/j.cub.2015.07.023.
  • Strange, K., M. Christensen, and R. Morrison. 2007. Primary culture of Caenorhabditis elegans developing embryo cells for electrophysiological, cell biological and molecular studies. Nature Protocols 2 (4):1003–12. doi: 10.1038/nprot.2007.143.
  • Surafel, M. T., J. Markandeya, R. F. Matthew, L. C. Damien, and B. Devin. 2018. Rapid induction of vitamin B12 deficiency in Caenorhabditis elegans cultured in axenic medium. Journal of Nutrition & Intermediary Metabolism 13:20–5. doi: 10.1016/j.jnim.2018.08.001.
  • Suzuki, T. A, and R. E. Ley. 2020. The role of the microbiota in human genetic adaptation. Science 370 (6521):eaaz6827. doi: 10.1126/science.aaz6827.
  • Szewczyk, N. J., E. Kozak, and C. A. Conley. 2003. Chemically defined medium and Caenorhabditis elegans. BMC Biotechnology 3:19. doi: 10.1186/1472-6750-3-19.
  • Szewczyk, N. J., I. A. Udranszky, E. Kozak, J. Sunga, S. K. Kim, L. A. Jacobson, and C. A. Conley. 2006. Delayed development and lifespan extension as features of metabolic lifestyle alteration in C. elegans under dietary restriction. The Journal of Experimental Biology 209 (Pt 20):4129–39. doi: 10.1242/jeb.02492.
  • Tauffenberger, A, and J. A. Parker. 2014. Heritable transmission of stress resistance by high dietary glucose in Caenorhabditis elegans. PLoS Genetics 10 (5):e1004346. doi: 10.1371/journal.pgen.1004346.
  • Tee, L. F., H.-M. Neoh, S. M. Then, N. A. Murad, M. F. Asillam, M. H. Hashim, S. Nathan, and R. Jamal. 2017. Effects of simulated microgravity on gene expression and biological phenotypes of a single generation Caenorhabditis elegans cultured on 2 different media. Life Sciences in Space Research 15:11–7. doi: 10.1016/j.lssr.2017.06.002.
  • Templeman, N. M, and C. T. Murphy. 2018. Regulation of reproduction and longevity by nutrient-sensing pathways. The Journal of Cell Biology 217 (1):93–106. doi: 10.1083/jcb.201707168.
  • Teshiba, E., K. Miyahara, and H. Takeya. 2016. Glucose-induced abnormal egg-laying rate in Caenorhabditis elegans. Bioscience, Biotechnology, and Biochemistry 80 (7):1436–9. doi: 10.1080/09168451.2016.1158634.
  • The Integrative HMP (iHMP) Research Network Consortium. 2019. The integrative human microbiome project. Nature 569 (7758):641–8. doi: 10.1038/s41586-019-1238-8.
  • Valentini, S., F. Cabreiro, D. Ackerman, M. M. Alam, M. B. A. Kunze, C. W. M. Kay, and D. Gems. 2012. Manipulation of in vivo iron levels can alter resistance to oxidative stress without affecting ageing in the nematode C. elegans. Mechanisms of Ageing and Development 133 (5):282–90. doi: 10.1016/j.mad.2012.03.003.
  • Vanfleteren, J. R. 1976. Large scale cultivation of a free-living nematode (Caenorhabditis elegans). Experientia 32 (8):1087–8. doi: 10.1007/BF01933985.
  • Virk, B., J. Jia, C. A. Maynard, A. Raimundo, J. Lefebvre, S. A. Richards, N. Chetina, Y. Liang, N. Helliwell, M. Cipinska, et al. 2016. Folate acts in E. coli to accelerate C. elegans aging independently of bacterial biosynthesis. Cell Reports 14 (7):1611–20. doi: 10.1016/j.celrep.2016.01.051.
  • Voisine, C., H. Varma, N. Walker, E. A. Bates, B. R. Stockwell, and A. C. Hart. 2007. Identification of potential therapeutic drugs for Huntington’s disease using Caenorhabditis elegans. PLoS One 2 (6):e504. doi: 10.1371/journal.pone.0000504.
  • Wang, N., J. Liu, F. Xie, X. Gao, J.-H. Ye, L.-Y. Sun, R. Wei, and J. Ai. 2015. miR-124/ATF-6, a novel lifespan extension pathway of Astragalus polysaccharide in Caenorhabditis elegans. Journal of Cellular Biochemistry 116 (2):242–51. doi: 10.1002/jcb.24961.
  • Wang, Q., Y. Huang, C. Qin, M. Liang, X. Mao, S. Li, Y. Zou, W. Jia, H. Li, C. W. Ma, et al. 2016. Bioactive peptides from Angelica sinensis protein hydrolyzate delay senescence in Caenorhabditis elegans through antioxidant activities. Oxidative Medicine and Cellular Longevity 2016:1–10. doi: 10.1155/2016/8956981.
  • Wang, Q., J. Zhang, Y. Jiang, Y. Xiao, X. Li, X. Mao, and Z. Huang. 2021. Caenorhabditis elegans as a model system for discovering bioactive compounds against polyglutamine-mediated neurotoxicity. Journal of Visualized Experiments 175 (175):e63081. doi: 10.3791/63081.
  • Wang, S., J. Xue, S. Zhang, S. Zheng, Y. Xue, D. Xu, and X. Zhang. 2020. Composition of peony petal fatty acids and flavonoids and their effect on Caenorhabditis elegans lifespan. Plant Physiology and Biochemistry: PPB 155:1–12. doi: 10.1016/j.plaphy.2020.06.029.
  • Wang, X., K. Yi, and Y. Zhao. 2018. Fucoidan inhibits amyloid-β-induced toxicity in transgenic Caenorhabditis elegans by reducing the accumulation of amyloid-β and decreasing the production of reactive oxygen species. Food & Function 9 (1):552–60. doi: 10.1039/c7fo00662d.
  • Wang, X., L. Zhang, L. Zhang, W. Wang, S. Wei, J. Wang, H. Che, and Y. Zhang. 2020. Effects of excess sugars and lipids on the growth and development of Caenorhabditis elegans. Genes & Nutrition 15:1. doi: 10.1186/s12263-020-0659-1.
  • Watson, E., L. T. MacNeil, A. D. Ritter, L. S. Yilmaz, A. P. Rosebrock, A. A. Caudy, and A. J. M. Walhout. 2014. Interspecies systems biology uncovers metabolites affecting C. elegans gene expression and life history traits. Cell 156 (4):759–70. doi: 10.1016/j.cell.2014.01.047.
  • Watson, E., L. T. MacNeil, H. E. Arda, L. J. Zhu, and A. J. M. Walhout. 2013. Integration of metabolic and gene regulatory networks modulates the C. elegans dietary response. Cell 153 (1):253–66. doi: 10.1016/j.cell.2013.02.050.
  • Watson, E., V. Olin-Sandoval, M. J. Hoy, C.-H. Li, T. Louisse, V. Yao, A. Mori, A. D. Holdorf, O. G. Troyanskaya, M. Ralser, et al. 2016. Metabolic network rewiring of propionate flux compensates vitamin B12 deficiency in C. elegans. eLife 5:e17670. doi: 10.7554/eLife.17670.
  • Webster, A. K., J. M. Jordan, J. D. Hibshman, R. Chitrakar, and L. R. Baugh. 2018. Transgenerational effects of extended dauer diapause on starvation survival and gene expression plasticity in Caenorhabditis elegans. Genetics 210 (1):263–74. doi: 10.1534/genetics.118.301250.
  • Wei, W, and G. Ruvkun. 2020. Lysosomal activity regulates Caenorhabditis elegans mitochondrial dynamics through vitamin B12 metabolism. Proceedings of the National Academy of Sciences of the United States of America 117 (33):19970–81. doi: 10.1073/pnas.2008021117.
  • Wellen, K. E., G. Hatzivassiliou, U. M. Sachdeva, T. V. Bui, J. R. Cross, and C. B. Thompson. 2009. ATP-citrate lyase links cellular metabolism to histone acetylation. Science 324 (5930):1076–80. doi: 10.1126/science.1164097.
  • Wickramasinghe, K., J. C. Mathers, S. Wopereis, D. S. Marsman, and J. C. Griffiths. 2020. From lifespan to healthspan: the role of nutrition in healthy ageing. Journal of Nutritional Science 9:e33. doi: 10.1017/jns.2020.26.
  • Williams, A. B., F. Heider, J. E. Messling, M. Rieckher, W. Bloch, and B. Schumacher. 2019. Restoration of proteostasis in the endoplasmic reticulum reverses an inflammation-like response to cytoplasmic DNA in Caenorhabditis elegans. Genetics 212 (4):1259–78. doi: 10.1534/genetics.119.302422.
  • Wood, J. G., B. Rogina, S. Lavu, K. Howitz, S. L. Helfand, M. Tatar, and D. Sinclair. 2004. Sirtuin activators mimic caloric restriction and delay ageing in metazoans. Nature 430 (7000):686–9. doi: 10.1038/nature02789.
  • Wu, D., Y. Chen, X. Wan, D. Liu, Y. Wen, X. Chen, and C. Zhao. 2020. Structural characterization and hypoglycemic effect of green alga Ulva lactuca oligosaccharide by regulating microRNAs in Caenorhabditis elegans. Algal Research 51:102083. doi: 10.1016/j.algal.2020.102083.
  • Xiang, Y., J. Zhang, H. Li, Q. Wang, L. Xiao, H. Weng, X. Zhou, C. W. Ma, F. Ma, M. Hu, et al. 2017. Epimedium polysaccharide alleviates polyglutamine-induced neurotoxicity in Caenorhabditis elegans by reducing oxidative stress. Rejuvenation Research 20 (1):32–41. doi: 10.1089/rej.2016.1830.
  • Xiao, Y., Q. Wang, X. Mao, X. Li, and Z. Huang. 2022. Modulation of redox and aging related signaling pathways and biomarkers by naturally derived peptides. In Redox signaling and biomarkers in aging, ed. U. Çakatay, 229–54. Cham: Springer Nature. doi: 10.1007/978-3-030-84965-8_11.
  • Yoon, D. S., D. S. Cha, Y. Choi, J. W. Lee, and M.-H. Lee. 2019. MPK-1/ERK is required for the full activity of resveratrol in extended lifespan and reproduction. Aging Cell 18 (1):e12867. doi: 10.1111/acel.12867.
  • Young, L. E. A., C. Shoben, K. Ricci, and D. C. Williams. 2019. Genetic analysis of KillerRed in C. elegans identifies a shared role of calcium genes in ROS-mediated neurodegeneration. Journal of Neurogenetics 33 (1):1–9. doi: 10.1080/01677063.2018.1531857.
  • Zanni, E., C. Laudenzi, E. Schifano, C. Palleschi, G. Perozzi, D. Uccelletti, and C. Devirgiliis. 2015. Impact of a complex food microbiota on energy metabolism in the model organism Caenorhabditis elegans. BioMed Research International 2015:621709. doi: 10.1155/2015/621709.
  • Zečić, A., I. Dhondt, and B. P. Braeckman. 2019. The nutritional requirements of Caenorhabditis elegans. Genes & Nutrition 14:15. doi: 10.1186/s12263-019-0637-7.
  • Zhang, Y., H. Lu, and C. I. Bargmann. 2005. Pathogenic bacteria induce aversive olfactory learning in Caenorhabditis elegans. Nature 438 (7065):179–84. doi: 10.1038/nature04216.
  • Zhang, H., N. Pan, S. Xiong, S. Zou, H. Li, L. Xiao, Z. Cao, A. Tunnacliffe, and Z. Huang. 2012. Inhibition of polyglutamine-mediated proteotoxicity by Astragalus membranaceus polysaccharide through the DAF-16/FOXO transcription factor in Caenorhabditis elegans. The Biochemical Journal 441 (1):417–24. doi: 10.1042/BJ20110621.
  • Zhang, L., D. G. Gualberto, X. Guo, P. Correa, C. Jee, and L. R. Garcia. 2015. TMC-1 attenuates C. elegans development and sexual behaviour in a chemically defined food environment. Nature Communications 6:6345. doi: 10.1038/ncomms7345.
  • Zhang, J., R. Shi, H. Li, Y. Xiang, L. Xiao, M. Hu, F. Ma, C. W. Ma, and Z. Huang. 2016. Antioxidant and neuroprotective effects of Dictyophora indusiata polysaccharide in Caenorhabditis elegans. Journal of Ethnopharmacology 192:413–22. doi: 10.1016/j.jep.2016.09.031.
  • Zhang, J., A. D. Holdorf, and A. J. Walhout. 2017. C. elegans and its bacterial diet as a model for systems-level understanding of host-microbiota interactions. Current Opinion in Biotechnology 46:74–80. doi: 10.1016/j.copbio.2017.01.008.
  • Zhang, J.-J., J.-J. Hao, Y.-R. Zhang, Y.-L. Wang, M.-Y. Li, H.-L. Miao, X.-J. Zou, and B. Liang. 2017. Zinc mediates the SREBP-SCD axis to regulate lipid metabolism in Caenorhabditis elegans. Journal of Lipid Research 58 (9):1845–54. doi: 10.1194/jlr.M077198.
  • Zhang, J., X. Li, M. Olmedo, A. D. Holdorf, Y. Shang, M. Artal-Sanz, L. S. Yilmaz, and A. J. M. Walhout. 2019. A delicate balance between bacterial iron and reactive oxygen species supports optimal C. elegans development. Cell Host & Microbe 26 (3):400–11.e3. doi: 10.1016/j.chom.2019.07.010.
  • Zhang, M., X. Yang, W. Xu, X. Cai, M. Wang, Y. Xu, P. Yu, J. Zhang, Y. Zheng, J. Chen, et al. 2019. Evaluation of the effects of three sulfa sweeteners on the lifespan and intestinal fat deposition in C. elegans. Food Research International (Ottawa, Ont.) 122:66–76. doi: 10.1016/j.foodres.2019.03.028.
  • Zhang, M., S. Chen, Y. Dai, T. Duan, Y. Xu, X. Li, J. Yang, and X. Zhu. 2021. Aspartame and sucralose extend the lifespan and improve the health status of C. elegans. Food & Function 12 (20):9912–21. doi: 10.1039/d1fo01579f.
  • Zheng, S.-Q., A.-J. Ding, G.-P. Li, G.-S. Wu, and H.-R. Luo. 2013. Drug absorption efficiency in Caenorhbditis elegans delivered by different methods. PLoS One 8 (2):e56877. doi: 10.1371/journal.pone.0056877.
  • Zheng, J., F. L. Greenway, S. B. Heymsfield, W. D. Johnson, J. F. King, M. J. King, C. Gao, Y.-F. Chu, and J. W. Finley. 2014. Effects of three intense sweeteners on fat storage in the C. elegans model. Chemico-Biological Interactions 215:1–6. doi: 10.1016/j.cbi.2014.02.016.
  • Zheng, J., C. Gao, M. Wang, P. Tran, N. Mai, J. W. Finley, S. B. Heymsfield, F. L. Greenway, Z. Li, D. Heber, et al. 2017. Lower doses of fructose extend lifespan in Caenorhabditis elegans. Journal of Dietary Supplements 14 (3):264–77. doi: 10.1080/19390211.2016.1212959.
  • Zhong, G., W. Pan, Z. Huang, K. Guo, J. Hu, P. Liu, S. Chen, Y. Wang, L. Ai, and Z. Huang. 2021. Physicochemical and geroprotective comparison of Nostoc sphaeroides polysaccharides across colony growth stages and with derived oligosaccharides. Journal of Applied Phycology 33 (2):939–52. doi: 10.1007/s10811-021-02383-6.