940
Views
3
CrossRef citations to date
0
Altmetric
Reviews

Role of low molecular additives in the myofibrillar protein gelation: underlying mechanisms and recent applications

, , , , , & show all

References

  • Amiri, A., P. Sharifian, and N. Soltanizadeh. 2018. Application of ultrasound treatment for improving the physicochemical, functional and rheological properties of myofibrillar proteins. International Journal of Biological Macromolecules 111:139–47.
  • Arfat, Y. A., and S. Benjakul. 2012. Impact of zinc salts on heat-induced aggregation of natural actomyosin from yellow stripe trevally. Food Chemistry 135 (4):2721–7. doi: 10.1016/j.foodchem.2012.06.109.
  • Asano, K., K. Shinagawa, and N. Hashimoto. 1982. Characterization of haze forming proteins of beer and their roles in chill haze formation. Journal of the American Society of Brewing Chemists 40 (4):147–54. doi: 10.1094/ASBCJ-40-0147.
  • Asghar, A., K. Samejima, T. Yasui, and R. L. Henrickson. 1985. Functionality of muscle proteins in gelation mechanisms of structured meat products. Critical Reviews in Food Science and Nutrition 22 (1):27–106. doi: 10.1080/10408398509527408.
  • Balange, A., and S. Benjakul. 2009. Enhancement of gel strength of bigeye snapper (Priacanthus tayenus) surimi using oxidised phenolic compounds. Food Chemistry 113 (1):61–70. doi: 10.1016/j.foodchem.2008.07.039.
  • Barat, J. M., E. Pérez-Esteve, M. C. Aristoy, and F. Toldrá. 2013. Partial replacement of sodium in meat and fish products by using magnesium salts. A review. Plant and Soil 368 (1–2):179–88. doi: 10.1007/s11104-012-1461-7.
  • Benjakul, S., W. Visessanguan, and Y. Kwalumtharn. 2004. The effect of whitening agents on the gel-forming ability and whiteness of surimi. International Journal of Food Science and Technology 39 (7):773–81. doi: 10.1111/j.1365-2621.2004.00843.x.
  • Boyer, C., S. Joandel, A. Ouali, and J. Culioli. 1996. Determination of surface hydrophobicity of fast and slow myosins from rabbit skeletal muscles: Implication in heat-induced gelation. Journal of the Science of Food and Agriculture 12:367–75.
  • Buamard, N., and S. Benjakul. 2015. Improvement of gel properties of sardine (Sardinella albella) surimi using coconut husk extracts. Food Hydrocolloids 51:146–55. doi: 10.1016/j.foodhyd.2015.05.011.
  • Buamard, N., M. A. Javith, A. K. Balange, G. Krishna, and S. Benjakul. 2020. Effects of lysine and arginine on the properties of low-salt mince gel from striped catfish (Pangasianodon hypophthalmus). Journal of Food Science 85 (9):2681–7. doi: 10.1111/1750-3841.15368.
  • Cao, Y., and Y. L. Xiong. 2015. Chlorogenic acid-mediated gel formation of oxidatively stressed myofibrillar protein. Food Chemistry 180:235–43. doi: 10.1016/j.foodchem.2015.02.036.
  • Cao, Y., B. Li, X. Fan, J. Wang, Z. Zhu, J. Huang, and Y. L. Xiong. 2021. Synergistic recovery and enhancement of gelling properties of oxidatively damaged myofibrillar protein by L-lysine and transglutaminase. Food Chemistry 358:129860. doi: 10.1016/j.foodchem.2021.129860.
  • Cao, Y., N. Ai, A. D. True, and Y. L. Xiong. 2018. Effects of (-)-epigallocatechin-3-gallate incorporation on the physicochemical and oxidative stability of myofibrillar protein-soybean oil emulsions. Food Chemistry 245:439–45.
  • Cao, Y., W. Ma, J. Huang, and Y. L. Xiong. 2020. Effects of sodium pyrophosphate coupled with catechin on the oxidative stability and gelling properties of myofibrillar protein. Food Hydrocolloids 104:105722. doi: 10.1016/j.foodhyd.2020.105722.
  • Cao, Y., Z. Li, B. Li, X. Fan, M. Liu, and J. Zhao. 2022. Mitigation of oxidation-induced loss of myofibrillar protein gelling potential by the combination of pyrophosphate and L-lysine. LWT 157:113068. doi: 10.1016/j.lwt.2022.113068.
  • Cardamone, M., and N. K. Puri. 1992. Spectrofluorimetric assessment of the surface hydrophobicity of proteins. Biochemical Journal 282 (2):589–93. doi: 10.1042/bj2820589.
  • Çarkcioğlu, E., A. Rosenthal, and K. Candoğan. 2016. Rheological and Textural Properties of Sodium Reduced Salt Soluble Myofibrillar Protein Gels Containing Sodium Tri-Polyphosphate. Journal of Texture Studies 47 (3):181–7. doi: 10.1111/jtxs.12169.
  • Cen, K., X. Yu, C. Gao, Y. Yang, X. Tang, and X. Feng. 2022. Effects of quinoa protein Pickering emulsion on the properties, structure and intermolecular interactions of myofibrillar protein gel. Food Chemistry 394:133456.
  • Chan, J. K., and T. A. Gill. 1994. Thermal Aggregation of Mixed Fish Myosins. Journal of Agricultural and Food Chemistry 42 (12):2649–55. doi: 10.1021/jf00048a001.
  • Chen, B., K. Zhou, Y. Wang, Y. Xie, Z. Wang, P. Li, and B. Xu. 2020a. Insight into the mechanism of textural deterioration of myofibrillar protein gels at high temperature conditions. Food Chemistry 330:127186. doi: 10.1016/j.foodchem.2020.127186.
  • Chen, B., K. Zhou, Y. Xie, W. Nie, P. Li, H. Zhou, and B. Xu. 2021. Glutathione-mediated formation of disulfide bonds modulates the properties of myofibrillar protein gels at different temperatures. Food Chemistry 364:130356. doi: 10.1016/j.foodchem.2021.130356.
  • Chen, J., Y. Ren, K. Zhang, J. Qu, F. Hu, and Y. Yan. 2019. Phosphorylation modification of myofibrillar proteins by sodium pyrophosphate affects emulsion gel formation and oxidative stability under different pH conditions. Food & Function 10 (10):6568–81.
  • Chen, J., Y. Ren, K. Zhang, Y. L. Xiong, Q. Wang, K. Shang, and D. Zhang. 2020b. Site-specific incorporation of sodium tripolyphosphate into myofibrillar protein from mantis shrimp (Oratosquilla oratoria) promotes protein crosslinking and gel network formation. Food Chemistry 312:126113. doi: 10.1016/j.foodchem.2019.126113.
  • Chen, X., J. Wu, X. Li, F. Yang, L. Yu, X. Li, J. Huang, and S. Wang. 2022b. Investigation of the cryoprotective mechanism and effect on quality characteristics of surimi during freezing storage by antifreeze peptides. Food Chemistry 371:131054. doi: 10.1016/j.foodchem.2021.131054.
  • Chen, X., K. Chen, L. Zhang, L. Liang, and X. Xu. 2022a. Impact of Phytophenols on Myofibrillar Proteins: Revisit the Interaction Scenarios Inspired for Meat Products Innovation. Food Reviews International. doi: 10.1080/87559129.2022.2089681.
  • Chen, X., R. K. Tume, X. Xu, and G. Zhou. 2017. Solubilization of myofibrillar proteins in water or low ionic strength media: Classical techniques, basic principles, and novel functionalities. Critical Reviews in Food Science and Nutrition 57 (15):3260–80. doi: 10.1080/10408398.2015.1110111.
  • Chen, X., R. K. Tume, Y. Xiong, X. Xu, G. Zhou, C. Chen, and T. Nishiumi. 2018. Structural modification of myofibrillar proteins by high-pressure processing for functionally improved, value-added, and healthy muscle gelled foods. Critical Reviews in Food Science and Nutrition 58 (17):2981–3003. doi: 10.1080/10408398.2017.1347557.
  • Chen, X., Y. Zou, M. Han, L. Pan, T. Xing, X. Xu, and G. Zhou. 2016. Solubilisation of myosin in a solution of low ionic strength L-histidine: Significance of the imidazole ring. Food Chemistry 196:42–9. doi: 10.1016/j.foodchem.2015.09.039.
  • Cheng, J., Y. Lin, D. Tang, H. Yang, and X. Liu. 2022. Structural and gelation properties of five polyphenols-modified pork myofibrillar protein exposed to hydroxyl radicals. LWT 156:113073. doi: 10.1016/j.lwt.2022.113073.
  • Cortez-Trejo, M. C., M. Gaytán-Martínez, M. L. Reyes-Vega, and S. Mendoza. 2021. Protein-gum-based gels: Effect of gum addition on microstructure, rheological properties, and water retention capacity. Trends in Food Science & Technology 116:303–17. doi: 10.1016/j.tifs.2021.07.030.
  • Damodaran, S. 1996. Amino acids, peptides, and proteins. In Food chemistry. 3rd ed., ed. O. R. Fennema, 321–429. New York: Marcel Dekker.
  • de Albuquerque Sousa, T. C., V. C. da Silva Ferreira, . B. da Silva Araújo, and F. A. P. da Silva. 2022. Natural Additives as Quality Promoters in Surimi: A Brief Review. Journal of Aquatic Food Product Technology 31 (7):735–44. doi: 10.1080/10498850.2022.2092434.
  • Debusca, A., R. Tahergorabi, S. K. Beamer, S. Partington, and J. Jaczynski. 2013. Interactions of dietary fibre and omega-3-rich oil with protein in surimi gels developed with salt substitute. Food Chemistry 141 (1):201–8. doi: 10.1016/j.foodchem.2013.02.111.
  • Ding, Y., Y. Liu, H. Yang, R. Liu, J. Rong, S. Zhao, and S. Xiong. 2011. Effects of CaCl2 on chemical interactions and gel properties of surimi gels from two species of carps. European Food Research and Technology 233 (4):569–76. doi: 10.1007/s00217-011-1546-1.
  • Dong, X., L. Ma, J. Zheng, J. Wang, Q. Wu, S. Song, and D. Zhou. 2014. Effect of pH on the physicochemical and heat-induced gel properties of scallop Patinopecten yessoensis actomyosin. Fisheries Science 80 (5):1073–82. doi: 10.1007/s12562-014-0778-y.
  • Du, L., and M. Betti. 2016. Chicken collagen hydrolysate cryoprotection of natural actomyosin: Mechanism studies during freeze-thaw cycles and simulated digestion. Food Chemistry 211:791–802. doi: 10.1016/j.foodchem.2016.05.092.
  • Du, X., M. Zhao, N. Pan, S. Wang, X. Xia, and D. Zhang. 2021. Tracking aggregation behaviour and gel properties induced by structural alterations in myofibrillar protein in mirror carp (Cyprinus carpio) under the synergistic effects of pH and heating. Food Chemistry 362:130222. doi: 10.1016/j.foodchem.2021.130222.
  • Fan, S., J. Guo, X. Wang, X. Liu, Z. Chen, and P. Zhou. 2022. Effects of lipoxygenase/linoleic acid on the structural characteristics and aggregation behavior of pork myofibrillar protein under low salt concentration. LWT 161:113359. doi: 10.1016/j.lwt.2022.113359.
  • Feng, J., A. Cao, L. Cai, L. Gong, J. Wang, Y. Liu, Y. Zhang, and J. Li. 2018. Effects of partial substitution of NaCl on gel properties of fish myofibrillar protein during heating treatment mediated by microbial transglutaminase. LWT 93:1–8. doi: 10.1016/j.lwt.2018.03.018.
  • Feng, M., L. Pan, X. Yang, J. Sun, X. Xu, and G. Zhou. 2018. Thermal gelling properties and mechanism of porcine myofibrillar protein containing flaxseed gum at different NaCl concentrations. LWT 87:361–7. doi: 10.1016/j.lwt.2017.09.009.
  • Feng, X., L. Chen, N. Lei, S. Wang, X. Xu, G. Zhou, and Z. Li. 2017. Emulsifying Properties of Oxidatively Stressed Myofibrillar Protein Emulsion Gels Prepared with (-)-Epigallocatechin-3-gallate and NaCl. Journal of Agricultural and Food Chemistry 65 (13):2816–26. doi: 10.1021/acs.jafc.6b05517.
  • Fu, Y., Y. Zheng, Z. Lei, P. Xu, and C. Zhou. 2017. Gelling properties of myosin as affected by L-lysine and L-arginine by changing the main molecular forces and microstructure. International Journal of Food Properties 20 (sup1):S884–S898. doi: 10.1080/10942912.2017.1315593.
  • Gani, A., S. Benjakul, and P. Nuthong. 2018. Effect of virgin coconut oil on properties of surimi gel. Journal of Food Science and Technology 55 (2):496–505.
  • Ge, G., Y. Han, J. Zheng, M. Zhao, and W. Sun. 2020. Physicochemical characteristics and gel-forming properties of myofibrillar protein in an oxidative system affected by partial substitution of NaCl with KCl, MgCl2 or CaCl2. Food Chemistry 309:125614. doi: 10.1016/j.foodchem.2019.125614.
  • Gómez-Guillén, M. C., A. J. Borderías, and P. Montero. 1997. Chemical interactions of nonmuscle proteins in the network of Sardine (Sardina pilchardus) muscle gels. LWT - Food Science and Technology 29:602–8.
  • Greene, L. E., and E. Eisenberg. 1980. Cooperative binding of myosin subfragment-1 to the actin-troponin-tropomyosin complex. Proceedings of the National Academy of Sciences of the United States of America 7 (5):2616–20.
  • Guo, A., and Y. L. Xiong. 2019. Glucose oxidase promotes gallic acid-myofibrillar protein interaction and thermal gelation. Food Chemistry 293:529–36.
  • Guo, A., and Y. L. Xiong. 2021. Myoprotein-phytophenol interaction: Implications for muscle food structure-forming properties. Comprehensive Reviews in Food Science and Food Safety 20 (3):2801–24. doi: 10.1111/1541-4337.12733.
  • Guo, A., J. Jiang, A. D. True, and Y. L. Xiong. 2021. Myofibrillar protein cross-linking and gelling behavior modified by structurally relevant phenolic compounds. Journal of Agricultural and Food Chemistry 69 (4):1308–17. doi: 10.1021/acs.jafc.0c04365.
  • Guo, X., J. Wu, X. Meng, Y. Zhang, and Z. Peng. 2022. Oxidative characteristics and gel properties of porcine myofibrillar proteins affected by L-lysine and L-histidine in a dose-dependent manner at a low and high salt concentration. International Journal of Food Science & Technology 57 (4):2556–67. doi: 10.1111/ijfs.15630.
  • Guo, Z., Z. Li, J. Wang, and B. Zheng. 2019. Gelation properties and thermal gelling mechanism of golden threadfin bream myosin containing CaCl2 induced by high pressure processing. Food Hydrocolloids 95:43–52. doi: 10.1016/j.foodhyd.2019.04.017.
  • Hamm, R. 1972. Kolloidchemie des Fleisches. Berlin: Paul Parey.
  • Han, K., X. Feng, Y. Yang, S. Wei, X. Tang, S. Li, and Y. Chen. 2021. Effects of camellia oil on the properties and molecular forces of myofibrillar protein gel induced by microwave heating. International Journal of Food Science & Technology 56 (11):5708–16. doi: 10.1111/ijfs.15089.
  • Hayakawa, T., T. Ito, J. Wakamatsu, T. Nishimura, and A. Hattori. 2009. Myosin is solubilized in a neutral and low ionic strength solution containing L-histidine. Meat Science 82 (2):151–4. doi: 10.1016/j.meatsci.2009.01.002.
  • Hermansson, A. M., O. Harbitz, and M. Langton. 1986. Formation of two types of gels from bovine myosin. Journal of the Science of Food and Agriculture 37 (1):69–84. doi: 10.1002/jsfa.2740370111.
  • Horita, C. N., V. C. Messias, M. A. Morgano, F. M. Hayakawa, and M. A. R. Pollonio. 2014. Textural, microstructural and sensory properties of reduced sodium frankfurter sausages containing mechanically deboned poultry meat and blends of chloride salts. Food Research International 66:29–35. doi: 10.1016/j.foodres.2014.09.002.
  • Hu, J., C. Feng, Z. Yu, and Y. Zhu. 2021a. Effect of partial substitution of NaCl by KCl, CaCl2, and MgCl2 on properties of mixed gelation from myofibrillar protein and Flammulina velutipes protein. Journal of Food Processing and Preservation 46 (5):e16525. doi: 10.1111/jfpp.16525.
  • Hu, Y., L. Zhang, Y. Yi, I. Solangi, L. Zan, and J. Zhu. 2021b. Effects of sodium hexametaphosphate, sodium tripolyphosphate and sodium pyrophosphate on the ultrastructure of beef myofibrillar proteins investigated with atomic force microscopy. Food Chemistry 338:128146. doi: 10.1016/j.foodchem.2020.128146.
  • Hu, Y., M. Zhang, Y. Zhao, X. Gao, J. You, T. Yin, S. Xiong, and R. Liu. 2022. Effects of different calcium salts on the physicochemical properties of sliver carp myosin. Food Bioscience 47:101518. doi: 10.1016/j.fbio.2021.101518.
  • Huang, J., A. M. Bakry, S. Zeng, S. Xiong, T. Yin, J. You, M. Fan, and Q. Huang. 2019. Effect of phosphates on gelling characteristics and water mobility of myofibrillar protein from grass carp (Ctenopharyngodon idellus). Food Chemistry 272:84–92. doi: 10.1016/j.foodchem.2018.08.028.
  • Huang, Q., X. Huang, L. Liu, H. Song, F. Geng, W. Wu, and P. Luo. 2021. Nano eggshell calcium enhanced gel properties of Nemipterus virgatus surimi sausage: Gel strength, water retention and microstructure. International Journal of Food Science & Technology 56 (11):5738–52. doi: 10.1111/ijfs.15142.
  • Huang, X., C. Li, F. Yang, L. Xie, X. Xu, Y. Zhou, and S. Pan. 2010. Interactions and gel strength of mixed myofibrillar with soy protein, 7S globulin and enzyme-hydrolyzed soy proteins. European Food Research and Technology 231 (5):751–62. doi: 10.1007/s00217-010-1329-0.
  • Ishioroshi, M., K. S. Jima, and T. Yasui. 1979. Heat-induced gelation of myosin: Factors of pH and salt concentrations. Journal of Food Science 44 (5):1280–4. doi: 10.1111/j.1365-2621.1979.tb06419.x.
  • Ishioroshi, M., K. Samejima, and T. Yasui. 1983. Heat-induced gelation of myosin filaments at a low salt concentration. Agricultural and Biological Chemistry 47 (12):2809–16.
  • Javith S, M. A., J. Gunasekaran, K. M. Xavier, B. B. Nayak, G. Krishna, and A. K. Balange. 2022. Influence of histidine on gelation properties of low sodium surimi from tilapia (Oreochromis niloticus). International Journal of Food Science and Technology doi: 10.1111/ijfs.15802.
  • Jia, N., F. Zhang, Q. Liu, L. Wang, S. Lin, and D. Liu. 2019. The beneficial effects of rutin on myofibrillar protein gel properties and related changes in protein conformation. Food Chemistry 301:125206.
  • Jiang, D., P. Shen, Y. Pu, M. Jin, C. Yu, and H. Qi. 2020. Enhancement of gel properties of Scomberomorus niphonius myofibrillar protein using phlorotannin extracts under UVA irradiation. Journal of Food Science 85 (7):2050–9.
  • Jiang, Q., W. Wu, J. Han, H. Y. Chung, P. Gao, D. Yu, P. Yu, Y. Xu, and W. Xia. 2022. Characteristics of silver carp surimi gel under high temperature (≥ 100 °C): Quality changes, water distribution and protein pattern. International Journal of Food Science & Technology 57 (7):4613–27. doi: 10.1111/ijfs.15799.
  • Jiang, S., S. Zhao, X. Jia, H. Wang, H. Zhang, Q. Liu, and B. Kong. 2020. Thermal gelling properties and structural properties of myofibrillar protein including thermo-reversible and thermo-irreversible curdlan gels. Food Chemistry 311:126018. doi: 10.1016/j.foodchem.2019.126018.
  • Kim, S.-K., and E. Mendis. 2006. Bioactive compounds from marine processing byproducts-A review. Food Research International 39 (4):383–93. doi: 10.1016/j.foodres.2005.10.010.
  • Kittiphattanabawon, P., S. Benjakul, W. Visessanguan, and F. Shahidi. 2012. Cryoprotective effect of gelatin hydrolysate from blacktip shark skin on surimi subjected to different freeze-thaw cycles. LWT 47 (2):437–42. doi: 10.1016/j.lwt.2012.02.003.
  • Knight, P., and N. Parsons. 1988. Action of NaCl and polyphosphates in meat processing: Responses of myofibrils to concentrated salt solutions. Meat Science 24 (4):275–300.
  • Korzeniowska, M., I. W. Cheung, and E. C. Li-Chan. 2013. Effects of fish protein hydrolysate and freeze–thaw treatment on physicochemical and gel properties of natural actomyosin from Pacific cod. Food Chemistry 138 (2-3):1967–75. doi:10.1016/j.foodchem.2012.09.150.
  • Kristinsson, H. G., and H. O. Hultin. 2003. Changes in conformation and subunit assembly of cod myosin at low and high pH and after subsequent refolding. Journal of Agricultural and Food Chemistry 51 (24):7187–96. doi: 10.1021/jf026193m.
  • Lawrie, R. A. 1998. Meat science. 6th ed. Cambridge: Woodhead Publishing Limited.
  • Le Bourvellec, C., and C. Renard. 2012. Interactions between Polyphenols and Macromolecules: Quantification Methods and Mechanisms. Critical Reviews in Food Science and Nutrition 52 (3):213–48. doi:10.1080/10408398.2010.499808.
  • Lee, C. H., and K. B. Chin. 2020. Physical properties and structural changes of myofibrillar protein gels with basil seed gum as affected by different salt levels and application to sausages. Foods 9 (6):702. doi: 10.3390/foods9060702.
  • Lei, Z., Y. Fu, P. Xu, Y. Zheng, and C. Zhou. 2016. Effects of L-arginine on the physicochemical and gel properties of chicken actomyosin. International Journal of Biological Macromolecules 92:1258–65. doi: 10.1016/j.ijbiomac.2016.08.040.
  • Li, J., S. Munir, X. Yu, T. Yin, J. You, R. Liu, S. Xiong, and Y. Hu. 2021. Double-crosslinked effect of TGase and EGCG on myofibrillar proteins gel based on physicochemical properties and molecular docking. Food Chemistry 345:128655. doi: 10.1016/j.foodchem.2020.128655.
  • Li, L., Y. Bai, R. Cai, C. Wu, P. Wang, X. Xu, and J. Sun. 2018. Alkaline pH-dependent thermal aggregation of chicken breast myosin: Formation of soluble aggregates. CyTA - Journal of Food 16 (1):765–75. doi: 10.1080/19476337.2018.1470576.
  • Li, Q., P. Wang, S. Miao, L. Zhang, and B. Zheng. 2019. Curdlan enhances the structure of myosin gel model. Food Science & Nutrition 7 (6):2123–30.
  • Li, T., S. W. Chang, N. Rodriguez-Florez, M. J. Buehler, S. Shefelbine, M. Dao, and K. Zeng. 2016. Studies of chain substitution caused sub-fibril level differences in stiffness and ultrastructure of wildtype and oim/oim collagen fibers using multifrequency-AFM and molecular modeling. Biomaterials 107:15–22. doi: 10.1016/j.biomaterials.2016.08.038.
  • Limpisophon, K., H. Iguchi, M. Tanaka, T. Suzuki, E. Okazaki, T. Saito, K. Takahashi, and K. Osako. 2015. Cryoprotective effect of gelatin hydrolysate from shark skin on denaturation of frozen surimi compared with that from bovine skin. Fisheries Science 81 (2):383–92. doi: 10.1007/s12562-014-0844-5.
  • Lin, J., H. Hong, L. Zhang, C. Zhang, and Y. Luo. 2019. Antioxidant and cryoprotective effects of hydrolysate from gill protein of bighead carp (Hypophthalmichthys nobilis) in preventing denaturation of frozen surimi. Food Chemistry 298:124868. doi: 10.1016/j.foodchem.2019.05.142.
  • Lin, T. M., and L. W. Park. 2008. Solubility of Salmon Myosin as Affected by Conformational Changes at Various Ionic Strengths and pH. Journal of Food Science 63 (2):215–8. doi: 10.1111/j.1365-2621.1998.tb15712.x.
  • Liu, F., H. Huang, W. Lin, L. Li, Y. Wu, S. Yang, et al. 2021. Effects of temperature on the denaturation and aggregation of (Lateolabrax japonicus) myosin from sea bass surimi. Journal of Food and Processing and Preservation 45:e15417.
  • Liu, H., L. Gao, Y. Ren, and Q. Zhao. 2014. Chemical interactions and protein conformation changes during silver carp (Hypophthalmichthys Molitrix) surimi gel formation. International Journal of Food Properties 17 (8):1702–13. doi: 10.1080/10942912.2012.700538.
  • Liu, R., S. Zhao, B. Xie, and S. Xiong. 2011. Contribution of protein conformation and intermolecular bonds to fish and pork gelation properties. Food Hydrocolloids 25 (5):898–906. doi: 10.1016/j.foodhyd.2010.08.016.
  • Liu, R., S. Zhao, S. Xiong, B. Xie, and L. Qin. 2008. Role of secondary structures in the gelation of porcine myosin at different pH values. Meat Science 80 (3):632–9.
  • Liu, R., S. Zhao, Y. Liu, H. Yang, S. Xiong, B. Xie, and L. Qin. 2010. Effect of pH on the gel properties and secondary structure of fish myosin. Food Chemistry 121 (1):196–202. doi: 10.1016/j.foodchem.2009.12.030.
  • Liu, W., C. D. Stevenson, and T. C. Lanier. 2013. Rapid heating of Alaska pollock and chicken breast myofibrillar proteins as affecting gel rheological properties. Journal of Food Science 78 (7):C971–7. doi: 10.1111/1750-3841.12147.
  • Lowey, S., H. S. Slayter, A. G. Weeds, and H. Baker. 1969. Substructure of the myosin molecule. I. Subfragments of myosin by enzymic degradation. Journal of Molecular Biology 42 (1):1–29.
  • Lu, Y., Y. Zhu, T. Ye, Y. Nie, S. Jiang, L. Lin, and J. Lu. 2022. Physicochemical properties and microstructure of composite surimi gels: The effects of ultrasonic treatment and olive oil concentration. Ultrasonics Sonochemistry 88:106065. doi: 10.1016/j.ultsonch.2022.106065.
  • Ma, J., D. Pan, Y. Dong, J. Diao, and H. Chen. 2022. The effectiveness of clove extract on oxidization-induced changes of structure and gelation in porcine myofibrillar protein. Foods 11 (13):1970. doi: 10.3390/foods11131970.
  • Maqsood, S., S. Benjakul, and F. Shahidi. 2013. Emerging role of phenolic compounds asnatural food additives in fish and fish products. Critical Reviews in Food Science and Nutrition 53 (2):162–79. doi: 10.1080/10408398.2010.518775.
  • Matheis, G., and J. R. Whitaker. 1984. Modification of proteins by polyphenol oxidase and peroxidase and their products. Journal of Food Biochemistry 8 (3):137–62. doi: 10.1111/j.1745-4514.1984.tb00322.x.
  • Mathew, S., B. A. Shamasundar, P. R. Kumar, and V. Prakash. 2009. Effect of zinc salts on the structure-function of actomyosin from pelagic fish. Process Biochemistry 44 (7):704–9. doi: 10.1016/j.procbio.2009.02.018.
  • Monto, A. R., M. Li, X. Wang, G. Y. A. Wijaya, T. Shi, Z. Xiong, L. Yuan, W. Jin, J. Li, R. Gao, et al. 2021. Recent developments in maintaining gel properties of surimi products under reduced salt conditions and use of additives. Critical Reviews in Food Science and Nutrition :1–16. doi: 10.1080/10408398.2021.1931024.
  • Morita, J. I., and T. Ogata. 1991. Role of light chains in heat-induced gelation of skeletal muscle myosin. Journal of Food Science 56 (3):855–6. doi: 10.1111/j.1365-2621.1991.tb05398.x.
  • Ni, N., Z. Wang, F. He, L. Wang, H. Pan, X. Li, Q. Wang, and D. Zhang. 2014. Gel properties and molecular forces of lamb myofibrillar protein during heat induction at different pH values. Process Biochemistry 49 (4):631–6. doi: 10.1016/j.procbio.2014.01.017.
  • Niu, H., X. Xia, W. Chao, B. Kong, and Q. Liu. 2018b. Thermal stability and gel quality of myofibrillar protein as affected by soy protein isolates subjected to an acidic pH and mild heating. Food Chemistry 242:188–95. doi: 10.1016/j.foodchem.2017.09.055.
  • Niu, H., Y. Chen, H. Zhang, B. Kong, and Q. Liu. 2018a. Protective effect of porcine plasma protein hydrolysates on the gelation of porcine myofibrillar protein exposed to a hydroxyl radical-generating system. International Journal of Biological Macromolecules 107:654–61. doi: 10.1016/j.ijbiomac.2017.09.036.
  • Núñez-Flores, R., D. Cando, A. J. Borderías, and H. M. Moreno. 2018. Importance of salt and temperature in myosin polymerization during surimi gelation. Food Chemistry 239:1226–34.
  • Offer, G., and J. Trinick. 1983. On the mechanism of water holding in meat: The swelling and shrinking of myofibrils. Meat Science 8 (4):245–81.
  • Offer, G., and P. Knight. 1988. The structural basis of water-holding in meat. Part 1: General principles and water uptake in meat processing. In Developments in meat science, ed. R. Lawrie, 63–171. London: Elsevier Applied Science.
  • Pan, T., H. Guo, Y. Li, J. Song, and F. Ren. 2017. The effects of calcium chloride on the gel properties of porcine myosin - κ-carrageenan mixtures. Food Hydrocolloids 63:467–77. doi: 10.1016/j.foodhyd.2016.09.026.
  • Park, J. D., J. Yongsawatdigul, Y. J. Choi, and J. W. Park. 2008. Biochemical and conformational changes of myosin purified from Pacific sardine at various pHs. Journal of Food Science 73 (3):C191–197.
  • Peng, X., S. Ruan, Y. Liu, L. Huang, and C. Zhang. 2018. The addition of hydrolyzed whey protein fractions to raw pork patties with subsequent chilled storage and its effect on oxidation and gel properties. CyTA - Journal of Food 16 (1):553–60. doi: 10.1080/19476337.2017.1423111.
  • Priyadarshini, M. B., Balange, A. K. Xavier, K. A. M. Reddy, R. Nayak, B. B, and Kumar, H. S. 2021. The effect of lyophilized coconut mesocarp - aqueous and ethanol phenolic extracts on the gel quality of tilapia surimi. Journal of Aquatic Food Product Technology 30 (10):1330–43. doi: 10.1080/10498850.2021.1989100.
  • Puolanne, E., and J. Peltonen. 2013. The effects of high salt and low pH on the WHC of meat. Meat Science 93 (2):167–70. doi: 10.1016/j.meatsci.2012.08.015.
  • Puolanne, E., and M. Halonen. 2010. Theoretical aspects of WHC in meat. Meat Science 86 (1):151–65. doi: 10.1016/j.meatsci.2010.04.038.
  • Samejima, K., M. Ishioroshi, and T. Yasui. 1981. Relative roles of the head and tail portions of the molecule in heat-induced gelation of myosin. Journal of Food Science 46 (5):1412–8. doi: 10.1111/j.1365-2621.1981.tb04187.x.
  • Sano, T., T. Ohno, H. Otsuka-Fuchino, J. J. Matsumoto, and T. Tsuchiya. 1994. Carp natural actomyosin: Thermal denaturation mechanism. Journal of Food Science 59 (5):1002–8. doi: 10.1111/j.1365-2621.1994.tb08177.x.
  • Schaub, M. C., J. G. Watterson, K. Loth, and D. Foletta. 1983. The role of magnesium in binding of the nucleotide polyphosphate chain to the active site of myosin subfragment-1. European Journal of Biochemistry 134 (2):197–204. doi: 10.1111/j.1432-1033.1983.tb07551.x.
  • Shan, L., Y. Li, Q. Wang, B. Wang, L. Guo, J. Sun, J. Xiao, Y. Zhu, X. Zhang, M. Huang, et al. 2020. Profiles of gelling characteristics of myofibrillar proteins extracted from chicken breast: Effects of temperatures and phosphates. LWT 129:109525. doi: 10.1016/j.lwt.2020.109525.
  • Sharp, A., and G. Offer. 1992. The mechanism of formation of gels from myosin molecules. Journal of the Science of Food and Agriculture 58 (1):63–73. doi: 10.1002/jsfa.2740580112.
  • Shi, H., I. A. Khan, R. Zhang, Y. Zou, W. Xu, and D. Wang. 2022a. Evaluation of ultrasound-assisted L-histidine marination on beef M. semitendinosus: Insight into meat quality and actomyosin properties. Ultrasonics Sonochemistry 85:105987. doi: 10.1016/j.ultsonch.2022.105987.
  • Shi, H., T. Zhou, X. Wang, Y. Zou, D. Wang, and W. Xu. 2021. Effects of the structure and gel properties of myofibrillar protein on chicken breast quality treated with ultrasound-assisted potassium alginate. Food Chemistry 358:129873. doi: 10.1016/j.foodchem.2021.129873.
  • Shi, L., X. Wang, T. Chang, C. Wang, H. Yang, and M. Cui. 2014. Effects of vegetable oils on gel properties of surimi gels. LWT - Food Science and Technology 57 (2):586–93. doi: 10.1016/j.lwt.2014.02.003.
  • Shi, T., X. Wang, M. Li, Z. Xiong, D. J. McClements, Y. Bao, T. Song, J. Li, L. Yuan, W. Jin, et al. 2022b. Mechanism of low-salt surimi gelation induced by microwave heating combined with L-arginine and transglutaminase: On the basis of molecular docking between L-arginine and myosin heavy chain. Food Chemistry 391:133184. doi: 10.1016/j.foodchem.2022.133184.
  • Shimada, M., E. Takai, D. Ejima, T. Arakawa, and K. Shiraki. 2015. Heat-induced formation of myosin oligomer-soluble filament complex in high-salt solution. International Journal of Biological Macromolecules 73:17–22.
  • Song, C., Y. Lin, P. Hong, H. Liu, and C. Zhou. 2022. Compare with different vegetable oils on the quality of the Nemipterus virgatus surimi gel. Food Science and Nutrition 10 (9):2935–2946.
  • Sun, C., Y. Lin, W. Liu, X. Qiu, K. Cao, M. Liu, and M. Cao. 2019. Effect of pH shifting on conformation and gelation properties of myosin from skeletal muscle of blue round scads (Decapterus maruadsi). Food Hydrocolloids 93:137–45. doi: 10.1016/j.foodhyd.2019.02.026.
  • Sun, X., and R. A. Holley. 2011. Factors influencing gel formation by myofibrillar proteins in muscle foods. Comprehensive Reviews in Food Science and Food Safety 10 (1):33–51. doi: 10.1111/j.1541-4337.2010.00137.x.
  • Supawong, S., J. W. Park, S. Thawornchinsombut, and J. Park. 2021. Rice bran hydrolysates minimize freeze-denaturation of washed fish mince during extended freeze-thaw cycles. Journal of Aquatic Food Product Technology 30 (8):944–53. doi: 10.1080/10498850.2021.1958968.
  • Takai, E., S. Yoshizawa, D. Ejima, T. Arakawa, and K. Shiraki. 2013. Synergistic solubilization of porcine myosin in physiological salt solution by arginine. International Journal of Biological Macromolecules 62:647–51.
  • Tang, C-b., W-g Zhang, Y-f Zou, L-j Xing, H-b Zheng, X-l Xu, and G-h Zhou. 2017. Influence of RosA-protein adducts formation on myofibrillar protein gelation properties under oxidative stress. Food Hydrocolloids 67:197–205. doi: 10.1016/j.foodhyd.2017.01.006.
  • Tolano-Villaverde, I. J., W. Torres-Arreola, V. M. Ocaño-Higuera, and E. Marquez-Rios. 2016. Thermal gelation of myofibrillar proteins from aquatic organisms. CyTA- Journal of Food 14:502–8.
  • Toldrá, M., P. Taberner, D. Parés, and C. Carretero. 2021. Surimi-like protein ingredient from porcine spleen as lean meat replacer in emulsion-type sausages. Meat Science 182:108640.
  • Totosaus, A., J. G. Montejano, J. A. Salazar, and I. Guerrero. 2002. A review of physical and chemical protein-gel induction. International Journal of Food Science and Technology 37 (6):589–601. doi: 10.1046/j.1365-2621.2002.00623.x.
  • Tunhun, D., Y. Itoh, K. Morioka, and S. Kubota. 2004. Oxidation during washing of fish meat induces a decrease in gel forming ability. Developments in Food Science 42:357–73.
  • Visessanguan, W., M. Ogawa, S. Nakai, and H. An. 2000. Physicochemical changes and mechanism of heat-induced gelation of arrowtooth flounder myosin. Journal of Agricultural and Food Chemistry 48 (4):1016–23.
  • Walayat, N., H. Xiong, Z. Xiong, H. M. Moreno, A. Nawaz, N. Niaz, and M. A. Randhawa. 2022. Role of cryoprotectants in surimi and factors affecting surimi gel properties: A review. Food Reviews International 38 (6): 1103–1122. doi: 10.1080/87559129.2020.1768403.
  • Walayat, N., J. Liu, A. Nawaz, R. M. Aadil, M. López-Pedrouso, and J. M. Lorenzo. 2022. Role of food hydrocolloids as antioxidants along with modern processing techniques on the surimi protein gel textural properties, developments, limitation and future perspectives. Antioxidants 11 (3):486. doi: 10.3390/antiox11030486.
  • Wang, G., M. Liu, L. Cao, J. Yongsawatdigul, S. Xiong, and R. Liu. 2018. Effects of different NaCl concentrations on self-assembly of silver carp myosin. Food Bioscience 24:1–8. doi: 10.1016/j.fbio.2018.05.002.
  • Wang, L., G. Xiong, Y-b Peng, W. Wu, X. Li, J. Wang, Y. Qiao, L. Liao, and A. Ding. 2014. The cryoprotective effect of different konjac glucomannan (KGM) hydrolysates on the glass carp (Ctenopharyngodon idella) myofibrillar during frozen storage. Food and Bioprocess Technology 7 (12):3398–406. doi: 10.1007/s11947-014-1345-3.
  • Wang, X., M. Xia, Y. Zhou, L. Wang, X. Feng, K. Yang, J. Ma, Z. Li, L. Wang, and W. Sun. 2020a. Gel properties of myofibrillar proteins heated at different heating rates under a low-frequency magnetic field. Food Chemistry 321:126728. doi: 10.1016/j.foodchem.2020.126728.
  • Wang, Y., Y. Zhou, X. Wang, P. Li, B. Xu, and C. Chen. 2020b. Water holding capacity of sodium-reduced chicken breast myofibrillar protein gel as affected by combined CaCl2 and high pressure processing. International Journal of Food Science & Technology 55 (2):601–9. doi: 10.1111/ijfs.14313.
  • Wei, L., L. Cao, S. Xiong, J. You, Y. Hu, and R. Liu. 2019. Effects of pH on self-assembly of silver carp myosin at low temperature. Food Bioscience 30:100420. doi: 10.1016/j.fbio.2019.100420.
  • Westphalen, A. D., J. L. Briggs, and S. M. Lonergan. 2005. Influence of pH on rheological properties of porcine myofibrillar protein during heat induced gelation. Meat Science 70 (2):293–9. doi: 10.1016/j.meatsci.2005.01.015.
  • Whiting, R. C. 1987. Influence of various salts and water-soluble compounds on the water and fat exudation and gel strength of meat batters. Journal of Food Science 52 (5):1130–2. doi: 10.1111/j.1365-2621.1987.tb14025.x.
  • Wiriyaphan, C., B. Chitsomboon, and J. Yongsawadigul. 2012. Antioxidant activity of protein hydrolysates derived from threadfin bream surimi byproducts. Food Chemistry 132 (1):104–11.
  • Woods, E. F., S. Himmelfarb, and W. F. Harrington. 1963. Studies on the structure of myosin in solution. The Journal of Biological Chemistry 238:2374–85.
  • Wu, L., T. Wu, J. Wu, R. Chang, X. Lan, K. Wei, and X. Jia. 2016. Effects of cations on the “salt in” of myofibrillar proteins. Food Hydrocolloids 58:179–83. doi: 10.1016/j.foodhyd.2016.02.028.
  • Wu, M., Y. Cao, S. Lei, Y. Liu, J. Wang, J. Hu, Z. Li, R. Liu, Q. Ge, and H. Yu. 2019. Protein structure and sulfhydryl group changes affected by protein gel properties: Process of thermal-induced gel formation of myofibrillar protein. International Journal of Food Properties 22 (1):1834–47. doi: 10.1080/10942912.2019.1656231.
  • Wu, M., Y. L. Xiong, and J. Chen. 2011. Role of disulphide linkages between protein-coated lipid droplets and the protein matrix in the rheological properties of porcine myofibrillar protein-peanut oil emulsion composite gels. Meat Science 88 (3):384–90. doi: 10.1016/j.meatsci.2011.01.014.
  • Wu, W., F. Que, X. Li, L. Shi, W. Deng, X. Fu, G. Xiong, J. Sun, L. Wang, and S. Xiong. 2022. Effects of enzymatic konjac glucomannan hydrolysates on textural properties, microstructure, and water distribution of grass carp surimi gels. Foods 11 (5):750. doi: 10.3390/foods11050750.
  • Xia, T., Y. Xu, Y. Zhang, L. Xu, Y. Kong, S. Song, M. Huang, Y. Bai, Y. Luan, M. Han, et al. 2022. Effect of oxidation on the process of thermal gelation of chicken breast myofibrillar protein. Food Chemistry 384:132368. doi: 10.1016/j.foodchem.2022.132368.
  • Xiong, Y. L., K. K. Agyare, and K. Addo. 2008. Hydrolyzed wheat gluten suppresses transglutaminase-mediated gelation but improves emulsification of pork myofibrillar protein. Meat Science 80 (2):535–44. doi: 10.1016/j.meatsci.2008.02.005.
  • Xiong, Y. L., X. Lou, C. Wang, W. G. Moody, and R. J. Harmon. 2000. Protein extraction from chicken myofibrils irrigated with various polyphosphate and NaCl solutions. Journal of Food Science 65 (1):96–100. doi: 10.1111/j.1365-2621.2000.tb15962.x.
  • Xiong, Z., T. Shi, W. Zhang, Y. Kong, Y. Li, and R. Gao. 2021. Improvement of gel properties of low salt surimi using low-dose L-arginine combined with oxidized caffeic acid. LWT 145:111303. doi: 10.1016/j.lwt.2021.111303.
  • Xu, Q., Z. Yu, and W. Zeng. 2021. Structural and functional modifications of myofibrillar protein by natural phenolic compounds and their application in pork meatball. Food Research International (Ottawa, Ont.) 148:110593.
  • Xu, Y., and X. Xu. 2020. Modification of myofibrillar protein functional properties prepared by various strategies: A comprehensive review. Comprehensive of Review in Food Science and Food Safety 2020:1–43.
  • Yokoyama, K., N. Nio, and Y. Kikuchi. 2004. Properties and applications of microbial transglutaminase. Applied Microbiology and Biotechnology 64 (4):447–54. doi: 10.1007/s00253-003-1539-5.
  • Yongsawatdigul, J, and J. W. Park. 2003. Thermal denaturation and aggregation of threadfin bream actomyosin. Food Chemistry 83 (3):409–16. doi: 10.1016/S0308-8146(03)00105-5.
  • Yongsawatdigul, J., and S. Sinsuwan. 2018. Ca2+- and Mg2+-induced conformational and rheological changes of actomyosin extracted from fresh and freeze-thaw tilapia. Journal of Aquatic Food Product Technology 27 (10):1063–77. doi: 10.1080/10498850.2018.1534301.
  • Yu, N., H. Gong, H. Yuan, Y. Bao, and W. Wang. 2022. Effects of calcium chloride as a salt substitute on physicochemical and 3D printing properties of silver carp surimi gels. CyTA - Journal of Food 20 (1):1–12. doi: 10.1080/19476337.2021.2008510.
  • Yuan, C., X. Li, Y. Huang, D. Yang, Y. Zhang, Y. Shi, J. Wu, S. Wang, and L. Zhang. 2022. Cryoprotective effect of low molecular weight collagen peptides on myofibrillar protein stability and gel properties of frozen silver carp surimi. Journal of Food Measurement and Characterization 16 (4):2527–35. doi: 10.1007/s11694-022-01362-w.
  • Yuan, L., Y. Liu, J. Ge, X. Feng, and R. Gao. 2017. Effects of heat treatment at two temperatures on the myosin cluster of bighead carp for gel formation. CyTA - Journal of Food 15 (4):574–81. doi: 10.1080/19476337.2017.1321045.
  • Zhang, D., X. Yang, Y. Wang, B. Wang, S. Wang, J. Chang, S. Liu, and H. Wang. 2022a. Proanthocyanidin B2 and transglutaminase synergistically improves gel properties of oxidized myofibrillar proteins. Food Chemistry 391:133262. doi: 10.1016/j.foodchem.2022.133262.
  • Zhang, L., Q. Li, H. Hong, and Y. Luo. 2020. Prevention of protein oxidation and enhancement of gel properties of silver carp (Hypophthalmichthys molitrix) surimi by addition of protein hydrolysates derived from surimi processing by-products. Food Chemistry 316:126343. doi: 10.1016/j.foodchem.2020.126343.
  • Zhang, L., Q. Li, J. Shi, B. Zhu, and Y. Luo. 2018. Changes in chemical interactions and gel properties of heat-induced surimi gels from silver carp (Hypophthalmichthys molitrix) fillets during setting and heating: Effects of different washing solution. Food Hydrocolloids 75:116–24. doi: 10.1016/j.foodhyd.2017.09.007.
  • Zhang, Y., J. Wu, M. A. Jamali, X. Guo, and Z. Peng. 2017. Heat-induced gel properties of porcine myosin in a sodium chloride solution containing L-lysine and L-histidine. LWT - Food Science and Technology 85:16–21. doi: 10.1016/j.lwt.2017.06.059.
  • Zhang, Y., X. Guo, Z. Peng, and M. A. Jamali. 2022b. A review of recent progress in reducing NaCl content in meat and fish products using basic amino acids. Trends in Food Science & Technology 119:215–26. doi: 10.1016/j.tifs.2021.12.009.
  • Zhang, Y., Y. H. B. Kim, E. Puolanne, and P. Ertbjerg. 2022. Role of freezing-induced myofibrillar protein denaturation in the generation of thaw loss: A review. Meat Science 190:108841.
  • Zhang, Z., Y. Yang, X. Tang, Y. Chen, and Y. You. 2016. Chemical forces study of heat-induced myofibrillar protein gel as affected by partial substitution of NaCl with KCl, MgCl2 and CaCl2. CyTA - Journal of Food 14 (2):239–47. doi: 10.1080/19476337.2015.1091038.
  • Zhao, X., X. Xu, and G. Zhou. 2021. Covalent chemical modification of myofibrillar proteins to improve their gelation properties: A systematic review. Comprehensive Reviews in Food Science and Food Safety 20 (1):924–59. doi: 10.1111/1541-4337.12684.
  • Zheng, J., Y. Han, G. Ge, M. Zhao, and W. Sun. 2019. Partial substitution of NaCl with chloride salt mixtures: Impact on oxidative characteristics of meat myofibrillar protein and their rheological properties. Food Hydrocolloids 96:36–42. doi: 10.1016/j.foodhyd.2019.05.003.
  • Zhou, X., H. Chen, F. Lyu, H. Lin, Q. Zhang, and Y. Ding. 2019. Physicochemical properties and microstructure of fish myofibrillar protein-lipid composite gels: Effects of fat type and concentration. Food Hydrocolloids 90:433–42. doi: 10.1016/j.foodhyd.2018.12.032
  • Zhou, X., S. Jiang, D. Zhao, J. Zhang, S. Gu, Z. Pan, and Y. Ding. 2017. Changes in physicochemical properties and protein structure of surimi enhanced with camellia tea oil. LWT 84:562–71. doi: 10.1016/j.lwt.2017.03.026.
  • Zhu, H., M. Zhang, P. Wang, C. Sun, W. Xu, J. Ma, Y. Zhu, and D. Wang. 2022. Exploring the regulating mechanism of heat induced gelation of myosin by binding with Mb hemin prosthetic group. Food Chemistry 382:132354. doi: 10.1016/j.foodchem.2022.132354.
  • Zhu, Y., Y. Lu, T. Ye, S. Jiang, L. Lin, and J. Lu. 2021. The effect of salt on the gelling properties and protein phosphorylation of surimi-crabmeat mixed gels. Gels 8 (1):10. doi: 10.3390/gels8010010.
  • Zhu, Z., A. P. Bassey, Y. Cao, Y. Ma, M. Huang, and H. Yang. 2022. Food protein aggregation and its application. Food Research International (Ottawa, Ont.) 160:111725.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.