486
Views
4
CrossRef citations to date
0
Altmetric
Reviews

Biological functions of active ingredients in quinoa bran: Advance and prospective

, , , , ORCID Icon & ORCID Icon

References

  • Abugoch, L. E., N. Romero, C. A. Tapia, J. Silva, and M. Rivera. 2008. Study of some physicochemical and functional properties of quinoa (Chenopodium quinoa willd) protein isolates. Journal of Agricultural and Food Chemistry 56 (12):4745–50. doi: 10.1021/jf703689u.
  • Aduviri Paredes, G. A. 2006. Aplicación de diferentes niveles de subproductos del beneficiado de quinua (Chenopodium Quinoa Willd) en la preparación de raciones para cuyes (Cavia porcellus) en crecimiento y engorde. PhD diss., Universidad Mayor de San Andrés, La Paz, Bolivia. online:https://scholarsarchive.byu.edu/cgi/viewcontent.cgi?article=6324&context=etd.
  • Ahamed, Thoufeek, N., R. S., Singhal, P., Kulkarni, and R. Mohinder. 1998. A lesser-known grain, Chenopodium quinoa: Review of the chemical composition of its edible parts. Food and Nutrition Bulletin 19 (1):61–70. doi: 10.1177/156482659801900110.
  • Almanza, G. R., M. Lozano, E. Gonzales, and Y. Flores. 2013. Effect in acute inflammation of sapogenin extract and isolated saponenins from quinoa waste. Bolivian Journal of Chemistry 30:115–21. http://www.bolivianchemistryjournal.org.
  • Aluko, R. E., and E. Monu. 2003. Functional and Bioactive Properties of Quinoa Seed Protein Hydrolysates. Journal of Food Science 68 (4):1254–8. doi: 10.1111/j.1365-2621.2003.tb09635.x.
  • Amagliani, L., J. O’Regan, A. L. Kelly, and J. A. O’Mahony. 2017. The composition, extraction, functionality and applications of rice proteins: A review. Trends in Food Science & Technology 64:1–12. doi: 10.1016/j.tifs.2017.01.008.
  • Angeli, V., P. Miguel Silva, D. Crispim Massuela, M. W. Khan, A. Hamar, F. Khajehei, S. Graeff-Hönninger, and C. Piatti. 2020. Quinoa (Chenopodium quinoa Willd.): An overview of the potentials of the “golden grain” and socio-economic and environmental aspects of its cultivation and marketization. Foods 9 (2):216. doi: 10.3390/foods9020216.
  • Bamuamba, K., D. W. Gammon, P. Meyers, M. G. Dijoux-Franca, and G. Scott. 2008. Anti-mycobacterial activity of five plant species used as traditional medicines in the Western Cape Province (South Africa). Journal of Ethnopharmacology 117 (2):385–90. doi: 10.1016/j.jep.2008.02.007.
  • Bazile, D., E. Martínez, F. Fuentes, E. Chia, M. Namdar-Irani, P. Olguín, C. Saa, M. Thomet, and A. Vidal. 2015. Quinoa in Chile. In State of the art report of quinoa in the world in 2013, eds. D. Bazile, D. Bertero, and C. Nieto, . Rome, Italy: FAO & CIRAD, 401–21. ISBN 978-92-5-108558-5. http://www.fao.org/3/a-i4042e.pdf.
  • Bhargava, A., S. Shukla, S. Rajan, and D. Ohri. 2007. Genetic diversity for morphological and quality traits in quinoa (Chenopodium quinoa Willd.) germplasm. Genetic Resources and Crop Evolution 54 (1):167–73. doi: 10.1007/s10722-005-3011-0.
  • Bhullar, K. S., and H. P. Rupasinghe. 2015. Antioxidant and cytoprotective properties of partridgeberry polyphenols. Food Chemistry 168:595–605. doi: 10.1016/j.foodchem.2014.07.103.
  • Bianchi, F., E. A. Rossi, R. G. Gomes, and K. Sivieri. 2015. Potentially symbiotic fermented beverage with aqueous extracts of quinoa (Chenopodium quinoa Willd) and soy. Food Science and Technology International = Ciencia y Tecnologia de Los Alimentos Internacional 21 (6):403–15. doi: 10.1177/1082013214540672.
  • Boreel, D. F., P. N. Span, and J. Bussink. 2021. Letter to the editor: Hypoxia kinetics and histology in combined radiotherapy and oxidative phosphorylation inhibition effects on antitumor immunity. Journal for ImmunoTherapy of Cancer 9 (3):e001793. doi: 10.1136/jitc-2020-001793.
  • Boruah, D. C., R. Devi, S. Tamuli, J. Kotoky, and D. K. Sharma. 2014. Hypolipidemic activity of crude polyphenols from the leaves of Clerodendron colebrookianum walp in cholesterol fed rats. Journal of Food Science and Technology 51 (11):3333–40. doi: 10.1007/s13197-012-0875-9.
  • Brady, K., C. T. Ho, R. T. Rosen, S. Sang, and M. V. Karwe. 2007. Effects of processing on the nutraceutical profile of quinoa. Food Chemistry 100 (3):1209–16. doi: 10.1016/j.foodchem.2005.12.001.
  • Brinegar, C., B. Sine, and L. Nwokocha. 1996. Highcysteine 2S seed storage proteins from quinoa (Chenopodium quinoa). Journal of Agricultural and Food Chemistry 44 (7):1621–3. doi: 10.1021/jf950830+.
  • Cai, H. 2019. Advances in research on components of quinoa. International symposium on the frontiers of biotechnology and bioengineering (FBB 2019). https://doi.org/10.1111/(issn)1742-7843/.
  • Chen, S. J., J. Hu, and Z. W. Wang. 2016. Study on extraction process by ultrasonic-assisted response surface method and antioxidant activity of quinoa polyphenol. Journal of Shanxi Agricultural Sciences 44 (11):1708–14. doi: 10.3969/j.issn.1002-2481.2016.11.32.
  • Chen, D., F. Xu, P. Zhang, J. Deng, H. Sun, X. Wen, and J. Liu. 2017. Practical synthesis of α-amyrin, β-amyrin, and lupeol: The potential natural inhibitors of human oxidosqualene cyclase. Archiv Der Pharmazie 350 (12):1700178. doi: 10.1002/ardp.201700178.
  • Chibani-Chennoufi, S., J. Sidoti, A. Bruttin, E. Kutter, S. Sarker, and H. Brüssow. 2004. In vitro and in vivo bacteriolytic activities of Escherichia coli phages: Implications for phage therapy. Antimicrobial Agents and Chemotherapy 48 (7):2558–69. doi: 10.1128/AAC.48.7.2558-2569.2004.
  • Comai, S., A. Bertazzo, L. Bailoni, M. Zancato, C. V. L. Costa, and G. Allegri. 2007. The content of preteic and nonproteic (free and protein-bound) trytophan in quinoa and cereal flours. Food Chemistry 100 (4):1350–5. doi: 10.1016/j.foodchem.2005.10.072.
  • Craine, E. B, and K. M. Murphy. 2020. Corrigendum: Seed composition and amino acid profiles for quinoa grown in Washington state. Frontiers in Nutrition 7:605674. doi: 10.3389/fnut.2020.605674.
  • Daffé, M., and P. Draper. 1988. The envelope layers of mycobacteria with reference to their pathogenicity. Advances in Microbiology Physiology 39:131–203. doi: 10.1016/s0065-2911(08)60016-8.
  • Dembitsky, V., I. Shkrob, and L. O. Hanus. 2008. Ascaridole and related peroxides from the genus Chenopodium. Biomedical Papers of the Medical Faculty of the University Palacky, Olomouc, Czechoslovakia 152 (2):209–15. doi: 10.5507/bp.2008.032.
  • Dinan, L. 2001. Phytoecdysteroids: Biological aspects. Phytochemistry 57 (3):325–39. doi: 10.1016/s0031-9422(01)00078-4.
  • Dong, Q., N. Hu, H. Yue, H. Wang, and J. Ku. 2021. Identification of α-glucosidase inhibitors from the bran of Chenopodium quinoa willd by surface plasmon resonance coupled with ultra-performance liquid chromatography and quadrupole-time-of-flight-mass spectrometry. Journal of Chromatography. B, Analytical Technologies in the Biomedical and Life Sciences 1181:122919. doi: 10.1016/j.jchromb.2021.122919.
  • Dong, J., Y. Zhang, and R. Cao. 2015. Extraction of total flavonoids from quinoa by ultrasonic method and antioxidant activity. Jiangsu Agricultural Sciences 43 (4):67–269. doi: 10.15889/j.issn.1002-1302.2015.04.097.
  • Du, J. T., C. Chen, and S. H. Fan. 2016. Optimization of extraction and antioxidant activity of buckwheat saponins by response surface methodology. Shanxi Agricutural Science 44 (7):932–7. doi: 10.3969/j.issn.1002-2481.2016.07.10.
  • Facino, R. M., M. Carini, R. Stefani, G. Aldini, and L. Saibene. 1995. Anti-elastase and anti-hyaluronidase activities of saponins and sapogenins from Hedera helix, Aesculus hippocastanum, and Ruscus aculeatus: Factors contributing to their efficacy in the treatment of venous insufficiency. Archiv Der Pharmazie 328 (10):720–4. doi: 10.1002/ardp.19953281006.
  • Fanali, C., M. Beccaria, S. Salivo, P. Tranchida, G. Tripodo, S. Farnetti, L. Dugo, P. Dugo, and L. Mondello. 2015. Non-polar lipids characterization of quinoa (Chenopodium quinoa) seed by comprehensive two-dimensional gas chromatography with flame ionization/mass spectrometry detection and non-aqueous reversed-phase liquid chromatography with atmospheric pressure chemical ionization mass spectrometry detection. Journal of Separation Science 38 (18):3151–60. doi: 10.1002/jssc.201500466.
  • Ferlay, J., I. Soerjomataram, R. Dikshit, S. Eser, C. Mathers, M. Rebelo, D. M. Parkin, D. Forman, and F. Bray. 2015. Cancer incidence and mortality worldwide: Sources, methods and major patterns in GLOBOCAN 2012. International Journal of Cancer 136 (5):E359–386. doi: 10.1002/ijc.29210.
  • Fernández-López, J., R. Lucas-González, A. Roldán-Verdú, M. Viuda-Martos, E. Sayas-Barberá, J. Ballester-Sánchez, C. M. Haros, and J. A. Pérez-Álvarez. 2020. Effects of black quinoa wet-milling coproducts on the quality properties of bologna-type sausages during cold storage. Foods 9 (3):274–85. doi: 10.3390/foods9030274.
  • Fiallos-Jurado, J., J. Pollier, T. Moses, P. Arendt, N. Barriga-Medina, E. Morillo, V. Arahana, M. de Lourdes Torres, A. Goossens, and A. Leon-Reyes. 2016. Saponin determination, expression analysis and functional characterization of saponin biosynthetic genes in Chenopodium quinoa leaves. Plant Science 250:188–97. doi: 10.1016/j.plantsci.2016.05.015.
  • Föste, M., M. Jekle, and T. Becker. 2017. Structure stabilization in starch-quinoa bran doughs: The role of water availability and gelatinization. Carbohydrate Polymers 174:1018–25. doi: 10.1016/j.carbpol.2017.06.068.
  • Gawlik-Dziki, U., M. Świeca, M. Sułkowski, D. Dziki, B. Baraniak, and J. Czyż. 2013. Antioxidant and anticancer activities of Chenopodium quinoa leaves extracts: in vitro study. Food and Chemical Toxicology: An International Journal Published for the British Industrial Biological Research Association 57:154–60. doi: 10.1016/j.fct.2013.03.023.
  • Ghoneum, M., N. K. Badr El-Din, D. A. Ali, and M. A. El-Dein. 2014. Modified arabinoxylan from rice bran, MGN-3/biobran, sensitizes metastatic breast cancer cells to paclitaxel in vitro. Anticancer Research 34 (1):81–7. doi: 10.1016/j.lungcan.2013.10.009.
  • Gianna, V., J. M. Montes, E. L. Calandri, and C. A. Guzmán. 2012. Impact of several variables on the microwave extraction of Chenopodium quinoa willd saponins. International Journal of Food Science & Technology 47 (8):1593–7. doi: 10.1111/j.1365-2621.2012.03008x.
  • Giuliani, A., G. Pirri, and S. F. Nicoletto. 2007. Antimicrobial peptides: An overview of a promising class of therapeutics. Central European Journal of Biology 2 (1):1–33. doi: 10.2478/s11535-007-0010-5.
  • Gómez-Caravaca, A. M., A. Segura-Carretero, A. Fernández-Gutiérrez, and M. F. Caboni. 2011. Simultaneous determination of phenolic compounds and saponins in quinoa (Chenopodium quinoa Willd) by a liquid chromatography-diode array detection-electrospray ionization-time-of-flight mass spectrometry methodology. Journal of Agricultural and Food Chemistry 59 (20):10815–25. doi: 10.1021/jf202224j.
  • Gonzalez, J. A., Y. Konishi, M. Bruno, M. Valoy, and F. E. Prado. 2012. Interrelationships among seed yield, total protein and amino acid composition of ten quinoa (Chenopodium quinoa) cultivars from two different agroecological regions. Journal of the Science of Food and Agriculture 92 (6):1222–9. doi: 10.1002/jsfa.4686.
  • Görgüç, A., E. Gençdağ, and F. M. Yılmaz. 2020. Bioactive peptides derived from plant origin by-products: Biological activities and techno-functional utilizations in food developments-A review. Food Research International (Ottawa, Ont.) 136:109504. doi: 10.1016/j.foodres.2020.109504.
  • Guo, T., O. D. Akan, F. Luo, and Q. Lin. 2021. Dietary polysaccharides exert biological functions via epigenetic regulations: Advance and prospectives. Critical Reviews in Food Science and Nutrition :1–11. Advance online publication. doi: 10.1080/10408398.2021.1944974.
  • Guo, H., Y. Hao, X. Yang, G. Ren, and A. Richel. 2021. Exploration on bioactive properties of quinoa protein hydrolysate and peptides: A review. Critical Reviews in Food Science and Nutrition 28:1–14. doi: 10.1080/10408398.2021.1982860.
  • Han, S., Y. Luo, B. Liu, T. Guo, D. Qin, and F. Luo. 2022. Dietary flavonoids prevent diabetes through epigenetic regulation: Advance and challenge. Advance online publication. Critical Reviews in Food Science and Nutrition :1–17. Advance online publication. doi: 10.1080/10408398.2022.2097637.
  • Harding, J. L., M. E. Pavkov, D. J. Magliano, J. E. Shaw, and E. W. Gregg. 2019. Global trends in diabetes complications: A review of current evidence. Diabetologia 62 (1):3–16. doi: 10.1007/s00125-018-4711-2.
  • Hemalatha, P., D. P. Bomzan, B. V. Sathyendra Rao, and Y. N. Sreerama. 2016. Distribution of phenolic antioxidants in whole and milled fractions of quinoa and their inhibitory effects on α-amylase and α-glucosidase activities. Food Chemistry 199:330–8. doi: 10.1016/j.foodchem.2015.12.025.
  • Horiuchi, K., S. Shiota, T. Hatano, T. Yoshida, T. Kuroda, and T. Tsuchiya. 2007. Antimicrobial activity of oleanolic acid from Salvia officinalis and related compounds on vancomycin-resistant enterococci (VRE). Biological & Pharmaceutical Bulletin 30 (6):1147–9. doi: 10.1248/bpb.30.1147.
  • Hu, Y., J. Zhang, L. Zou, C. Fu, P. Li, and G. Zhao. 2017. Chemical characterization, antioxidant, immune-regulating and anticancer activities of a novel bioactive polysaccharide from Chenopodium quinoa seeds. International Journal of Biological Macromolecules 99:622–9. doi: 10.1016/j.ijbiomac.2017.03.019.
  • Jiang, X., H. C. B. Hansen, B. W. Strobel, and N. Cedergreen. 2018. What is the aquatic toxicity of saponin-rich plant extracts used as biopesticides? Environmental Pollution (Barking, Essex : 1987) 236:416–24. doi: 10.1016/j.envpol.2018.01.058.
  • Joshi, R. C., R. San Martín, C. Saez-Navarrete, J. Alarcon, J. Sainz, M. M. Antolin, A. R. Martin, and L. S. Sebastian. 2008. Efficacy of quinoa (Chenopodium quinoa) saponins against golden apple snail (Pomacea canaliculata) in the Philippines under laboratory conditions. Crop Protection 27 (3-5):553–7. doi: 10.1016/j.cropro.2007.08.010.
  • Juillerat-Jeanneret, L. 2014. Dipeptidyl peptidase IV and its inhibitors: Therapeutics for type 2 diabetes and what else? Journal of Medicinal Chemistry 57 (6):2197–212. doi: 10.1021/jm400658e.
  • Juneja, V. K., H. P. Dwivedi, and X. Yan. 2012. Novel natural food antimicrobials. Annual Review of Food Science and Technology 3:381–403. doi: 10.1146/annurev-food-022811-101241.
  • Jung, H. J., C. O. Lee, K. T. Lee, J. Choi, and H. J. Park. 2004. Structure-activity relationship of oleanane disaccharides isolated from Akebia quinoa versus cytotoxicity against cancer cells and NO inhibition. Biological & Pharmaceutical Bulletin 27 (5):744–7. doi: 10.1248/bpb.27.744.
  • Kashiwada, Y., H. K. Wang, T. Nagao, S. Kitanaka, I. Yasuda, T. Fujioka, T. Yamagishi, L. M. Cosentino, M. Kozuka, H. Okabe, et al. 1998. Anti-HIV activity of oleanolic acid, pomolic acid, and structurally related triterpenoids. Journal of Natural Products 61 (9):1090–5. doi: 10.1021/np9800710.
  • Kehinde, B. A., and P. Sharma. 2020. Recently isolated antidiabetic hydrolysates and peptides from multiple food sources: A review. Critical Reviews in Food Science and Nutrition 60 (2):322–40. doi: 10.1080/10408398.2018.1528206.
  • Kumar, S., S. Narwal, V. Kumar, and O. Prakash. 2011. α-glucosidase inhibitors from plants: A natural approach to treat diabetes. Pharmacognosy Reviews 5 (9):19–29. doi: 10.4103/0973-7847.79096.
  • Lamacchia, S., S. Chillo, N. Lamparelli, N. Suriano, E. La Notte, and M. A. Del Nobile. 2010. Amaranth, quinoa and oat doughs: Mechanical and rheological behaviour, polymeric protein size distribution and extractability. Journal of Food Engineering 96 (1):97–106. doi: 10.1016/j.jfoodeng.2009.07.001.
  • Leake, I. 2019. ANT2 mediates hypoxia and inflammation in obesity. Nature Reviews. Endocrinology 15 (2):64. doi: 10.1038/s41574-018-0140-z.
  • Liang, B., J. Su, and K. G. Tang. 2017. Optimization of microwave-assisted extraction of total flavonoids from quinoa seeds. Journal of Hainan Normal University (Natural Science) 30 (2):171–6. doi: 10.12051/j.issn.1674-4942.2017.02.011.
  • Li, D., B. Q. Bai, and J. H. Zhang. 2018. Optimization of extraction and antioxidant activity of quinoa bran flavonoids by response surface methodology. Science and Technology of Food Industry 39 (23):199–204. doi: 10.13386/j.issn1002-0306.2018.23.034.
  • Li, X., R. Hou, X. Qin, Y. Wu, X. Wu, J. Tian, X. Gao, G. Du, and Y. Zhou. 2022. Synergistic neuroprotective effect of saikosaponin A and albiflorin on corticosterone-induced apoptosis in PC12 cells via regulation of metabolic disorders and neuroinflammation. Molecular Biology Reports 49 (9):8801–13. doi: 10.1007/s11033-022-07730-5.
  • Li, R.-J., X.-P. Kuang, W.-J. Wang, C.-P. Wan, and W.-X. Li. 2020. Comparison of chemical constitution and bioactivity among different parts of Lonicera japonica Thunb. Journal of the Science of Food and Agriculture 100 (2):614–22. doi: 10.1002/jsfa.10056.
  • Lim, J. G., H. M. Park, and K. S. Yoon. 2020. Analysis of saponin composition and comparison of the antioxidant activity of various parts of the quinoa plant (Chenopodium quinoa Willd.). Food Science & Nutrition 8 (1):694–702. doi: 10.1002/fsn3.1358.
  • Lina, P. M., S. Omar, H. Kamal, B. P. Kilari, and S. Maqsood. 2019. Multifunctional bioactive properties of intact and enzymatically hydrolysed quinoa and amaranth proteins. LWT 110:207–13. doi: 10.1016/j.lwt.2019.04.084.
  • Lin, M., P. Han, Y. Li, W. Wang, D. Lai, and L. Zhou. 2019. Quinoa secondary metabolites and their biological activities or functions. Molecules 24 (13):2512. 9 doi: 10.3390/molecules24132512.
  • Lin, T. A., B. J. Ke, C. S. Cheng, J. J. Wang, B. L. Wei, and C. L. Lee. 2019. Red quinoa bran extracts protect against carbon tetrachloride-induced liver injury and fibrosis in mice via activation of antioxidative enzyme systems and blocking TGF-β1 pathway. Nutrients 11 (2):395. doi: 10.3390/nu11020395.
  • Liu, B. X., J. Y. Zhou, Y. Li, X. Zou, J. Wu, J. F. Gu, J. R. Yuan, B. J. Zhao, L. Feng, X. B. Jia, et al. 2014. Hederagenin from the leaves of ivy (Hedera helix L.) induces apoptosis in human LoVo colon cells through the mitochondrial pathway. BMC Complementary and Alternative Medicine 14:412–22. doi: 10.1186/1472-6882-14-412.
  • Liu, M., K. Zhu, Y. Yao, Y. Chen, H. Guo, G. Ren, X. Yang, and J. Li. 2020. Antioxidant, anti-inflammatory and antitumor activities of phenolic compounds from white, red and black Chenopodium quinoa seed. Cereal Chemistry 97 (3):703–13. doi: 10.1002/cche.10286.
  • López-Marqués, R. L., A. F. Nørrevang, P. Ache, M. Moog, D. Visintainer, T. Wendt, J. T. Østerberg, C. Dockter, M. E. Jørgensen, A. T. Salvador, et al. 2020. Prospects for the accelerated improvement of the resilient crop quinoa. Journal of Experimental Botany 71 (18):5333–47. doi: 10.1093/jxb/eraa285.
  • Lu, J. M., Y. R. Jiang, and G. L. Chen. 2014. Extraction of flavonoids from quinoa leaves and differences in gene type. Journal of Zhejiang A & F University 31 (4):534–40. doi: 10.11833/j.issn.2095-0756.2014.04.007.
  • Lu, M. J., Y. R. Jiang, and J. J. Yuan. 2016. Optimum extraction of quinoa leaf polyphenols and its antioxidant activity. Journal of the Chinese Cereals and Oils Association 31 (1):101–6. doi: 10.16429/j.1009-7848.2017.02.015.
  • Lu, Y., A. Rong, Y. Y. Zhang, and M. L. Zhang. 2016. Optimization of extraction technology of quinoa polyphenols by response surface methodology. Science and Technology of Food Industry 37 (12):311–5. doi: 10.13386/j.issn1002-0306.2016.12.050.
  • Majumder, K., Y. Mine, and J. Wu. 2016. The potential of food protein-derived anti-inflammatory peptides against various chronic inflammatory diseases. Journal of the Science of Food and Agriculture 96 (7):2303–11. doi: 10.1002/jsfa.7600.
  • Meng, F.-B., L. Zhou, J.-J. Li, Y.-C. Li, M. Wang, L.-H. Zou, D.-Y. Liu, and W.-J. Chen. 2022. The combined effect of protein hydrolysis and lactobacillus plantarum fermentation on antioxidant activity and metabolomic profiles of quinoa beverage. Food Research International (Ottawa, Ont.) 157 (111416):111416. doi: 10.1016/j.foodres.2022.111416.
  • Mizui, F., R. Kasai, K. Ohtani, and O. Tanaka. 1990. Saponins from brans of quinoa Chenopodium quinoa Willd. II.Chem. Chemical & Pharmaceutical Bulletin 38:375–7. doi: 10.1248/cpb.36.1415.
  • Navruz-Varli, S., and N. Sanlier. 2016. Nutritional and health benefits of quinoa (Chenopodium quinoa Willd.). Journal of Cereal Science 69:371–6. doi: 10.1016/j.jcs.2016.05.004.
  • Neha, K., M. R. Haider, A. Pathak, and M. S. Yar. 2019. Medicinal prospects of antioxidants: A review. European Journal of Medicinal Chemistry 178:687–704. doi: 10.1016/j.ejmech.2019.06.010.
  • Ngezahayo, J., L. Pottier, S. O. Ribeiro, C. Delporte, V. F. Ontaine, L. Hari, C. Stévigny, and P. Duez. 2016. Plastotoma rotundifolium aerial tissue extract has antibacterial activities. Industrial Crops and Products 86:301–10. doi: 10.1016/j.indcrop.2016.04.004.
  • Nowak, V., J. Du, and U. R. Charrondière. 2016. Assessment of the nutritional composition of quinoa (Chenopodium quinoa Willd.). Food Chemistry 193:47–54. doi: 10.1016/j.foodchem.2015.02.111.
  • Nsimba, R. Y., H. Kikuzaki, and Y. Konishi. 2008. Ecdysteroids act as inhibitors of calf skin collagenase and oxidative stress. Journal of Biochemical and Molecular Toxicology 22 (4):240–50. doi: 10.1002/jbt.20234.
  • Obaroakpo, J. U., L. Liu, S. Zhang, J. Lu, X. Pang, and J. Lv. 2019. α-Glucosidase and ACE dual inhibitory protein hydrolysates and peptide fractions of sprouted quinoa yoghurt beverages inoculated with Lactobacillus casei. Food Chemistry 299:124985. doi: 10.1016/j.foodchem.2019.124985.
  • Oh, S. R., K. Y. Jung, K. H. Son, S. H. Park, I. S. Lee, K. S. Ahn, and H. K. Lee. 1999. In vitro anticomplementary activity of hederagenin saponins isolated from roots of Dipsacus asper. Archives of Pharmacal Research 22 (3):317–9. doi: 10.1007/BF02976371.
  • Pagno, C. H., T. M. Costa, E. W. de Menezes, E. V. Benvenutti, P. F. Hertz, C. R. Matte, J. V. Tosati, A. R. Monteiro, A. O. Rios, and S. H. Flôres. 2015. Development of active biofilms of quinoa (Chenopodium quinoa W.) starch containing gold nanoparticles and evaluation of antimicrobial activity. Food Chemistry 173:755–62. doi: 10.1016/j.foodchem.2014.10.068.
  • Peiretti, P. G., F. Gai, and S. Tassone. 2013. Fatty acid profile and nutritive value of quinoa (Chenopodium quinoa Willd.) seeds and plants at different growth stages. Animal Feed Science and Technology 183 (1-2):56–61. doi: 10.1016/j.anifeedsci.2013.04.012.
  • Pereira, E., V. Cadavez, L. Barros, C. Encina-Zelada, D. Stojković, M. Sokovic, R. C. Calhelha, U. Gonzales-Barron, and I. C. F. R. Ferreira. 2020. Chenopodium quinoa Willd. (quinoa) grains: A good source of phenolic compounds. Food Research International (Ottawa, Ont.) 137:109574. doi: 10.1016/j.foodres.2020.109574.
  • Petronelli, A., G. Pannitteri, and U. Testa. 2009. Triterpenoids as new promising anticancer drugs. Anti-Cancer Drugs 20 (10):880–92. doi: 10.1097/CAD.0b013e328330fd90.
  • Proença, C., M. Freitas, D. Ribeiro, E. F. T. Oliveira, J. L. C. Sousa, S. M. Tomé, M. J. Ramos, A. M. S. Silva, P. A. Fernandes, and E. Fernandes. 2017. α-Glucosidase inhibition by flavonoids: An in vitro and in silico structure-activity relationship study. Journal of Enzyme Inhibition and Medicinal Chemistry 32 (1):1216–28. doi: 10.1080/14756366.2017.1368503.
  • Que, M., Y. Jiang, M. Cao, Q. Chen, S. Wei, and G. Q. Lu. 2016. Optimization of polyphenols extraction from quinoa grains by response surface methodology and differences in polyphenol content among different varieties. Food Science 37 (4):7–12. doi: 10.7506/spkx1002-6630-201604002.
  • Rajasekaran, M., Bapna, J. S. Lakshmanan, S. Ramachandran, Nair, A. G. Veliath, A. J, and Panchanadam, M. 1988. Antifertility effect in male rats of oleanolic acid, a triterpene from Eugenia jambolana flowers. Journal of Ethnopharmacology 24 (1):115–21. doi: 10.1016/0378-8741(88)90142-0.
  • Ravisankar, S., D. C. Gutierrez, R. Chirinos, and G. Noratto. 2015. Quinoa (Chenopodium Quinoa) peptides protect human umbilical vein endothelial cells (HUVEC) against risk markers for cardiovascular disease (CVD). The FASEB Journal 29 (S1):923–33. doi: 10.1096/fasebj.29.1_supplement.923.10.
  • Ren, G., Y. Zhu, Z. Shi, and J. Li. 2017. Detection of lunasin in quinoa (Chenopodium quinoa Willd.) and the in vitro evaluation of its antioxidant and anti-inflammatory activities. Journal of the Science of Food and Agriculture 97 (12):4110–6. doi: 10.1002/jsfa.8278.
  • Repo-Carrasco, R., C. Espinoza, and S. E. Jacobsen. 2003. Nutritional value and use of the Andean crops quinoa (Chenopodium quinoa) and Kaiwa (Chenopodium pallidicaule). Food Reviews International 19 (1-2):179–89. doi: 10.1081/FRI-120018884.
  • Rodriguez-Hernández, D., A. J. Demuner, L. C. Barbosa, R. Csuk, and L. Heller. 2015. Hederagenin as a triterpene template for the development of new antitumor compounds. European Journal of Medicinal Chemistry 105:57–62. doi: 10.1016/j.ejmech.2015.10.006.
  • Ruiz, K. B., S. Biondi, R. Oses, I. S. Acuña-Rodríguez, F. Antognoni, E. A. Martinez-Mosqueira, A. Coulibaly, A. Canahua-Murillo, M. Pinto, A. Zurita-Silva. 2014. Quinoa biodiversity and sustainability for food security under climate change: A review. Agronomy for Sustainable Development 34 (2):349–59. doi: 10.1007/s13593-013-0195-0.
  • San Martín, R., K. Ndjoko, and K. Hostettmann. 2008. Novel molluscicide against Pomacea canaliculata based on quinoa (Chenopodium quinoa) saponins. Crop Protection 27 (3-5):310–9. doi: 10.1016/j.cropro.2007.03.015.
  • Shang, Y., Q. Du, S. LiU, M. Staadler, S. Wang, and D. Wang. 2017. Antitumor activity of isosteroidal alkaloids from the plants in the Genus Veratrum and Fritillaria. Current Protein & Peptide Science 19 (3):302–10. doi: 10.2174/1389203718666170106103747.
  • Shi, D., M. Fidelis, Y. Ren, A. K. Stone, Y. Ai, and M. T. Nickerson. 2020. The functional attributes of Peruvian (Kankolla and Blanca juli blend) and Northern quinoa (NQ94PT) flours and protein isolates, and their protein quality. Food Research International (Ottawa, Ont.) 128:108799. doi: 10.1016/j.foodres.2019.108799.
  • Shi, Z., Y. Hao, C. Teng, Y. Yao, and G. Ren. 2019. Functional properties and adipogenesis inhibitory activity of protein hydrolysates from quinoa (Chenopodium quinoa Willd.). Food Science & Nutrition 7 (6):2103–12. doi: 10.1002/fsn3.1052.
  • Sorriento, D., and G. Iaccarino. 2019. Inflammation and cardiovascular diseases: The most recent findings. International Journal of Molecular Sciences 20 (16):3879– doi: 10.3390/ijms20163879.
  • Stuardo, M, and R. San Martín. 2008. Antifungal properties of quinoa (Chenopodium quinoa Willd) alkali treated saponins against Botrytis cinerea. Industrial Crops and Products 27 (3):296–302. doi: 10.1016/j.indcrop.2007.11.003.
  • Sun, H. X., Y. Xie, and Y. P. Ye. 2009. Advances in saponin-based adjuvants. Vaccine 27 (12):1787–96. doi: 10.1016/j.vaccine.2009.01.091.
  • Sun, X., X. Yang, P. Xue, Z. Zhang, and G. Ren. 2019. Improved antibacterial effects of alkali-transformed saponin from quinoa husks against halitosis-related bacteria. BMC Complementary and Alternative Medicine 19 (1):46–56. doi: 10.1186/s12906-019-2455-2.
  • Sun, X. T., J. J. Yuan, and Y. R. Jiang. 2015. Extraction of total flavonoids from quinoa seed and its antioxidant activity. Jiangsu Agricultural Sciences 43 (10):355–8. doi: 10.15889/j.issn.1002-1302.2015.10.115.
  • Suthiphasilp, V., W. Maneerat, N. Rujanapun, T. Duangyod, R. Charoensup, S. Deachathai, R. J. Andersen, B. O. Patrick, S. G. Pyne, and S. Laphookhieo. 2020. α-Glucosidase inhibitory and nitric oxide production inhibitory activities of alkaloids isolated from a twig extract of Polyalthia cinnamomea. Bioorganic & Medicinal Chemistry 28 (10):115462. doi: 10.1016/j.bmc.2020.115462.
  • Tang, Y., and R. Tsao. 2017. Phytochemicals in quinoa and amaranth grains and their antioxidant, anti-inflammatory, and potential health beneficial effects: A review. Molecular Nutrition & Food Research 61 (7):1600767. doi: 10.1002/mnfr.201600767.
  • Tian, X. J., P. H. Duan, W. C. Chen, J. T. Zhang, and S. H. Fan. 2017. Extract of albumin from quinoa chaff by Osborne classification method and functional properties. Science and Technology of Food Industry 38 (12):264–9 + 276. doi: 10.13386/j.issn1002-0306.2017.12.048.
  • Valenzuela, V. C., L. Abugoch, C. Tapia, and A. Gamboa. 2013. Effect of alkaline extraction on the structure of the protein of quinoa (Chenopodium quinoa Willd.) and its influence on film formation. International Journal of Food Science & Technology 48 (4):843–9. doi: 10.1111/ijfs.12035.
  • Vega-Gálvez, A., M. Miranda, J. Vergara, E. Uribe, L. Puente, and E. A. Martínez. 2010. Nutrition facts and functional potential of quinoa (Chenopodium quinoa willd.), an ancient Andean grain: A review. Journal of the Science of Food and Agriculture 90 (15):2541–7. doi: 10.1002/jsfa.4158.
  • Vilcacundo, R., C. Martínez-Villaluenga, and B. Hernández-Ledesma. 2017. Release of dipeptidyl peptidase IV, α-amylase and α-glucosidase inhibitory peptides from quinoa (Chenopodium quinoa Willd.) during in vitro simulated gastrointestinal digestion. Journal of Functional Foods 35:531–9. doi: 10.1016/j.jff.2017.06.024.
  • Vilcacundo, R., B. Miralles, W. Carrillo, and B. Hernández-Ledesma. 2018. In vitro chemopreventive properties of peptides released from quinoa (Chenopodium quinoa Willd.) protein under simulated gastrointestinal digestion. Food Research International (Ottawa, Ont.) 105:403–11. doi: 10.1016/j.foodres.2017.11.036.
  • Wang, X., X. L. Ye, R. Liu, H. L. Chen, H. Bai, X. Liang, X. D. Zhang, Z. Wang, W. L. Li, and C. X. Hai. 2010. Antioxidant activities of oleanolic acid in vitro: Possible role of Nrf2 and MAP kinases. Chemico-Biological Interactions 184 (3):328–37. doi: 10.1016/j.cbi.2010.01.034.
  • Wen, C., J. Zhang, H. Zhang, Y. Duan, and H. Ma. 2020. Plant protein-derived antioxidant peptides: Isolation, identification, mechanism of action and application in food systems: A review. Trends in Food Science & Technology 105:308–22. doi: 10.1016/j.tifs.2020.09.019.
  • Woldemichael, G. M, and M. Wink. 2001. Identification and biological activities of triterpenoid saponins from Chenopodium quinoa. Journal of Agricultural and Food Chemistry 49 (5):2327–32. doi: 10.1021/jf0013499.
  • Wolska, K. I., A. M. Grudniak, B. Fiecek, A. Kraczkiewicz-Dowjat, and A. Kurek. 2010. Antibacterial activity of oleanolic and ursolic acids and their derivatives. Open Life Sciences 5 (5):543–53. doi: 10.2478/s11535-010-0045-x.
  • Xin, C., M. Zhao, J. Wang, and Z. Wang. 2021. Hawthorn polyphenols, D-chiro-inositol, and epigallocatechin gallate exert a synergistic hypoglycemic effect. Journal of Food Biochemistry 45 (7):e13771. doi: 10.1111/jfbc.13771.
  • Xu, X. Q., W. T. Zhao, and L. X. Miao. 2017. Extraction and purification of total saponins from quinoa bran. Science and Technology of Food Industry 38 (18):215–20. doi: 10.13386/j.issn1002-0306.2017.18.041.
  • Xue, Y., D. Li, Y. Zhang, H. Gao, and H. Li. 2019. Angelica polysaccharide moderates hypoxia-evoked apoptosis and autophagy in rat neural stem cells by downregulation of BNIP3. Artificial Cells, Nanomedicine, and Biotechnology 47 (1):2492–9. doi: 10.1080/21691401.2019.1623228.
  • Yang, J., F. X. Gao, and M. Yang. 2017. Microwave-assisted extraction of buckwheat saponins and its antioxidant activity. Food Machine 33 (12):148–53. doi: 10.13652/j.issn.1003-5788.2017.12.030.
  • Yoshikawa, M, and H. Matsuda. 2000. Antidiabetogenic activity of oleanolic acid glycosides from medicinal foodstuffs. BioFactors 13 (1-4):231–7. doi: 10.1002/biof.5520130136.
  • Zaky, A. A., A. M. Abd El-Aty, A. Ma, and Y. Jia. 2022. An overview on antioxidant peptides from rice bran proteins: Extraction, identification, and applications. Critical Reviews in Food Science and Nutrition 62 (5):1350–62. doi: 10.1080/10408398.2020.1842324.
  • Zhao, L., X. N. Li, L. L. Shi, X. Y. Liu, J. Zhang, Y. Hao, H. Y. Wang, and P. Xue. 2019. Etermination of the nutritional components in quinoa bran and the antioxidant activity of its derived oils. 35(11): 199–205 + 151. doi: 10.13982/j.mfst.1673-9078.2019.11.028.
  • Zhao, B. T., F. M. Yang, X. P. Zhu, F. Yang, and Y. M. Wei. 2016. Optimization of ultrasonic assisted extraction of chenopodium quinoa polyphenol and antioxidant activity. Food and Fermentation Sciences & Technology 37 (4):7–12. doi: 10.1016/0.2018-04-003.
  • Zheng, Y., J. Tian, W. Yang, S. Chen, D. Liu, H. Fang, H. Zhang, and X. Ye. 2020. Inhibition mechanism of ferulic acid against α-amylase and α-glucosidase. Food Chemistry 317:126346. doi: 10.1016/j.foodchem.2020.126346.
  • Zheng, Y., X. Wang, Y. Zhuang, Y. Li, H. Tian, P. Shi, and G. Li. 2019. Isolation of novel ACE-inhibitory and antioxidant peptides from quinoa bran albumin assisted with an insilico approach: Characterization, in vivo antihypertension, and molecular docking. Molecules 24 (24):4562. doi: 10.3390/molecules24244562.
  • Zhong, W. 2015. Optimization of extraction process of total flavonoids from by response surface methodology. Journal of Nuclear Agricultural Sciences 29 (6):1135–41. doi: 10.11869/j.issn.100-8551.2015.06.1135.
  • Zhu, Y. Y., H. Y. Huang, and Y. L. Wu. 2015. Anticancer and apoptotic activities of oleanolic acid are mediated through cell cycle arrest and disruption of mitochondrial membrane potential in HepG2 human hepatocellular carcinoma cells. Molecular Medicine Reports 12 (4):5012–8. doi: 10.3892/mmr.2015.4033.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.