400
Views
8
CrossRef citations to date
0
Altmetric
Reviews

Bacterial nitric oxide synthase in colorizing meat products: Current development and future directions

, , , ORCID Icon & ORCID Icon

References

  • Adak, S., A. M. Bilwes, K. Panda, D. Hosfield, K. S. Aulak, J. F. Mcdonald, J. A. Tainer, E. D. Getzoff, B. R. Crane, and D. J. Stuehr. 2002. Cloning, expression, and characterization of a nitric oxide synthase protein from Deinococcus radiodurans. Proceedings of the National Academy of Sciences of the United States of America 99 (1):107–12. doi: 10.1073/pnas.012470099.
  • Alahakoon, A. U., D. D. Jayasena, S. Ramachandra, and C. Jo. 2015. Alternatives to nitrite in processed meat: Up to date. Trends in Food Science & Technology 45 (1):37–49. doi: 10.1016/j.tifs.2015.05.008.
  • Alarcon-Rojo, A. D., L. M. Carrillo-Lopez, R. Reyes-Villagrana, M. Huerta-Jimenez, and I. A. Garcia-Galicia. 2019. Ultrasound and meat quality: A review. Ultrasonics Sonochemistry 55:369–82. doi: 10.1016/j.ultsonch.2018.09.016.
  • Arihara, K., H. Kushida, Y. Kondo, M. Itoh, J. B. Luchansky, and R. G. Cassens. 1993. Conversion of metmyoglobin to bright red myoglobin derivatives by Chromobacterium violaceum, Kurthia sp., and Lactobacillus fermenturn JCM1173. Journal of Food Science 58 (1):38–42. doi: 10.1111/j.1365-2621.1993.tb03205.x.
  • Audrain, B., M. A. Farag, C. M. Ryu, and J. M. Ghigo. 2015. Role of bacterial volatile compounds in bacterial biology. FEMS Microbiology Reviews 39 (2):222–33. doi: 10.1093/femsre/fuu013.
  • Bedale, W., J. J. Sindelar, and A. L. Milkowski. 2016. Dietary nitrate and nitrite: Benefits, risks, and evolving perceptions. Meat Science 120:85–92. doi: 10.1016/j.meatsci.2016.03.009.
  • Bird, L. E., J. Ren, J. Zhang, N. Foxwell, A. R. Hawkins, I. G. Charles, and D. K. Stammers. 2002. Crystal structure of SANOS, a bacterial nitric oxide synthase oxygenase protein from Staphylococcus aureus. Structure (London, England : 1993) 10 (12):1687–96. doi: 10.1016/S0969-2126(02)00911-5.
  • Bonifacie, A., A. Promeyrat, G. Nassy, P. Gatellier, V. Sante-Lhoutellier, and L. Theron. 2021. Chemical reactivity of nitrite and ascorbate in a cured and cooked meat model implication in nitrosation, nitrosylation and oxidation. Food Chemistry 348:129073. doi: 10.1016/j.foodchem.2021.129073.
  • Bou, R., M. Llauger, R. Joosse, and J. A. Garcia-Regueiro. 2019. Effect of high hydrostatic pressure on the oxidation of washed muscle with added chicken hemoglobin. Food Chemistry 292:227–36. doi: 10.1016/j.foodchem.2019.04.067.
  • Brunel, A., J. Santolini, and P. Dorlet. 2012. Electron paramagnetic resonance characterization of tetrahydrobiopterin radical formation in bacterial nitric oxide synthase compared to mammalian nitric oxide synthase. Biophysical Journal 103 (1):109–17. doi: 10.1016/j.bpj.2012.05.032.
  • Carlson, H. K., R. E. Vance, and M. A. Marletta. 2010. H-NOX regulation of c-di-GMP metabolism and biofilm formation in Legionella pneumophila. Molecular Microbiology 77 (4):930–42. doi: 10.1111/j.1365-2958.2010.07259.x.
  • Chaudhari, S. S., M. Kim, S. Lei, F. Razvi, A. A. Alqarzaee, E. H. Hutfless, R. Powers, M. C. Zimmerman, P. D. Fey, and V. C. Thomas. 2017. Nitrite derived from endogenous bacterial nitric oxide ­synthase activity promotes aerobic respiration. mBio 8 (4):e00887–17. doi: 10.1128/mBio.00887-17.
  • Chen, Y, and J. Rosazza. 1995. Purification and characterization of nitric oxide synthase (NOSNoc) from a Nocardia species. Journal of Bacteriology 177 (17):5122–8. doi: 10.1128/jb.177.17.5122-5128.1995.
  • Choi, W. S., D. W. Seo, M. S. Chang, J. W. Han, S. Y. Hong, W. K. Paik, and H. W. Lee. 1998. Methylesters of l-Arginine and N-nitro-l-arginine induce nitric oxide synthase in Staphylococcus aureus. Biochemical and Biophysical Research Communications 246 (2):431–5. doi: 10.1006/bbrc.1998.8638.
  • Crane, B. R., J. Sudhamsu, and B. A. Patel. 2010. Bacterial nitric oxide synthases. Annual Review of Biochemistry 79:445–70. doi: 10.1146/annurev-biochem-062608-103436.
  • Davydov, R., K. J. Labby, S. E. Chobot, D. A. Lukoyanov, B. R. Crane, R. B. Silverman, and B. M. Hoffman. 2014. Enzymatic and cryoreduction EPR studies of the hydroxylation of methylated N(omega)-hydroxy-L-arginine analogues by nitric oxide synthase from Geobacillus stearothermophilus. Biochemistry 53 (41):6511–9. doi: 10.1021/bi500485z.
  • Degroote, M. A, and F. C. Fang. 2002. Antimicrobial properties of nitric oxide. Nitric Oxide and Infection 12:231–261. doi: 10.1007/0-306-46816-6_12.
  • Donald, B., J. I. Gray, and L. N. Gibbins. 1980. Role of nitrite in cured meat flavor: Antioxidant role of nitrite. Journal of Food Science 45 (4):893–7. doi: 10.1111/j.1365-2621.1980.tb07473.x.
  • Flores, M, and F. Toldrá. 2011. Microbial enzymatic activities for improved fermented meats. Trends in Food Science & Technology 22 (2–3):81–90. doi: 10.1016/j.tifs.2010.09.007.
  • Flores, M, and F. Toldra. 2021. Chemistry, safety, and regulatory considerations in the use of nitrite and nitrate from natural origin in meat products - Invited review. Meat Science 171:108272. doi: 10.1016/j.meatsci.2020.108272.
  • Gonzalez-Rivas, P. A., S. S. Chauhan, M. Ha, N. Fegan, F. R. Dunshea, and R. D. Warner. 2020. Effects of heat stress on animal physiology, metabolism, and meat quality: A review. Meat Science 162:108025. doi: 10.1016/j.meatsci.2019.108025.
  • Gotterup, J., K. Olsen, S. Knochel, K. Tjener, L. H. Stahnke, and J. K. Moller. 2007. Relationship between nitrate/nitrite reductase activities in meat associated staphylococci and nitrosylmyoglobin formation in a cured meat model system. International Journal of Food Microbiology 120 (3):303–10. doi: 10.1016/j.ijfoodmicro.2007.08.034.
  • Griffith, O. W, and D. J. Stuehr. 1995. Nitric oxide synthases: Properties and catalytic mechanism. Annual Review of Physiology 57:707–36. doi: 10.1146/annurev.ph.57.030195.003423.
  • Gündoğdu, A. K., A. G. Karahan, and M. L. Çakmakç. 2006. Production of nitric oxide (NO) by lactic acid bacteria isolated from fermented products. European Food Research and Technology 223 (1):35–8. doi: 10.1007/s00217-005-0097-8.
  • Gusarov, I, and E. Nudler. 2005. NO-mediated cytoprotection: Instant adaptation to oxidative stress in bacteria. Proceedings of the National Academy of Sciences 102 (39):13855–60. doi: 10.1073/pnas.0504307102.
  • Gusarov, I., M. Starodubtseva, Z. Q. Wang, L. Mcquade, S. J. Lippard, D. J. Stuehr, and E. Nudler. 2008. Bacterial nitric-oxide synthases operate without a dedicated redox partner. The Journal of Biological Chemistry 283 (19):13140–7. doi: 10.1074/jbc.M710178200.
  • Halsey, C. R., S. Lei, J. K. Wax, M. K. Lehman, A. S. Nuxoll, L. Steinke, M. Sadykov, R. Powers, and P. D. Fey. 2017. Amino acid catabolism in Staphylococcus aureus and the function of carbon catabolite repression. mBio 8 (1):e01434–16. doi: 10.1128/mBio.01434-16.
  • Henares, B. M., Y. Xu, and E. M. Boon. 2013. A nitric oxide-responsive quorum sensing circuit in Vibrio harveyi regulates flagella production and biofilm formation. International Journal of Molecular Sciences 14 (8):16473–84. doi: 10.3390/ijms140816473.
  • Hernandez, J. D., A. Castell, N. Arroyo-Manzanares, I. Guillen, P. Vizcaino, I. Lopez-Garcia, Hernandez-. M. Cordoba, and P. Vinas. 2021. Toward Nitrite-Free Curing: Evaluation of a New Approach to Distinguish Real Uncured Meat from Cured Meat Made with Nitrite. Foods 10 (2):313. doi: 10.3390/foods10020313.
  • Hong, I., Y. K. Kim, W. S. Choi, D. W. Seo, J. W. Yoon, J. W. Han, H. Y. Lee, and H. W. Lee. 2003. Purification and characterization of nitric oxide synthase from Staphylococcus aureus. FEMS Microbiology Letters 222 (2):177–82. doi: 10.1016/S0378-1097(03)00254-4.
  • Honikel, K. O. 2008. The use and control of nitrate and nitrite for the processing of meat products. Meat Science 78 (1–2):68–76. doi: 10.1016/j.meatsci.2007.05.030.
  • Hoshino, M., M. Maeda, R. Konishi, H. Seki, and P. C. Ford. 1996. Studies on the reaction mechanism for reductive nitrosylation of ferrihemoproteins in buffer solutions. Journal of the American Chemical Society 118 (24):5702–7. doi: 10.1021/ja953311w.
  • Hou, Q., R. Liu, W. Zhang, and G. Zhou. 2019. Nitric oxide synthase in beef semimembranosus muscle during postmortem aging. Food Chemistry 288:187–92. doi: 10.1016/j.foodchem.2019.02.128.
  • Huang, P., X. Shao, M. Zhu, B. Xu, C. Chen, and P. Li. 2020a. Sucrose enhances colour formation in dry sausages by up-regulating gene expression of nitric oxide synthase in Staphylococcus vitulinus. International Journal of Food Microbiology 315:108419. doi: 10.1016/j.ijfoodmicro.2019.108419.
  • Huang, P., B. Xu, X. Shao, C. Chen, W. Wang, and P. Li. 2020b. Theoretical basis of nitrosomyoglobin formation in a dry sausage model by coagulase-negative staphylococci: Behavior and expression of nitric oxide synthase. Meat Science 161:108022. doi: 10.1016/j.meatsci.2019.108022.
  • Husson, A., C. Brasse-Lagnel, A. Fairand, S. Renouf, and A. Lavoinne. 2003. Argininosuccinate synthetase from the urea cycle to the citrulline-NO cycle. European Journal of Biochemistry 270 (9):1887–99. doi: 10.1046/j.1432-1033.2003.03559.x.
  • Imlay, J. A., S. M. Chin, and S. Linn. 1988. Toxic DNA damage by hydrogen peroxide through the Fenton reaction in vivo and in vitro. Science (New York, N.Y.) 240 (4852):640–2. doi: 10.1126/science.2834821.
  • Kinkel, T. L., S. Ramos-Montanez, J. M. Pando, D. V. Tadeo, E. N. Strom, S. J. Libby, and F. C. Fang. 2016. An essential role for bacterial nitric oxide synthase in Staphylococcus aureus electron transfer and colonization. Nature Microbiology 2:16224. doi: 10.1038/nmicrobiol.2016.224.
  • Kong, K. F., C. Vuong, and M. Otto. 2006. Staphylococcus quorum sensing in biofilm formation and infection. International Journal of Medical Microbiology: IJMM 296 (2–3):133–9. doi: 10.1016/j.ijmm.2006.01.042.
  • Leroy, S., A. Vermassen, and R. Talon. 2016. Staphylococcus: Occurrence and properties. In Encyclopedia of Food and Health, 140–145. doi: 10.1016/B978-0-12-384947-2.00656-5
  • Li, P., B. Kong, Q. Chen, D. Zheng, and N. Liu. 2013. Formation and identification of nitrosylmyoglobin by Staphylococcus xylosus in raw meat batters: A potential solution for nitrite substitution in meat products. Meat Science 93 (1):67–72. doi: 10.1016/j.meatsci.2012.08.003.
  • Li, P., H. Luo, B. Kong, Q. Liu, and C. Chen. 2016. Formation of red myoglobin derivatives and inhibition of spoilage bacteria in raw meat batters by lactic acid bacteria and Staphylococcus xylosus. LWT - Food Science and Technology 68:251–7. doi: 10.1016/j.lwt.2015.12.035.
  • Liu, R., S. Lonergan, E. Steadham, G. Zhou, W. Zhang, and E. Huff-Lonergan. 2019. Effect of nitric oxide and calpastatin on the inhibition of micro-calpain activity, autolysis and proteolysis of myofibrillar proteins. Food Chemistry 275:77–84. doi: 10.1016/j.foodchem.2018.09.104.
  • Liu, R., R. D. Warner, G. Zhou, and W. Zhang. 2018. Contribution of nitric oxide and protein S-nitrosylation to variation in fresh meat quality. Meat Science 144:135–48. doi: 10.1016/j.meatsci.2018.04.027.
  • Luo, H., P. Li, H. Zhang, X. Diao, and B. Kong. 2020. Nitrosylmyoglobin formation in meat by Lactobacillus fermentum AS1.1880 is due to its nitric oxide synthase activity. Meat Science 166:108122. doi: 10.1016/j.meatsci.2020.108122.
  • Møller, J. K. S., J. S. Jensen, L. H. Skibsted, and S. Knöchel. 2003. Microbial formation of nitrite-cured pigment, nitrosylmyoglobin, from metmyoglobin in model systems and smoked fermented sausages by Lactobacillus fermentum strains and a commercial starter culture. European Food Research and Technology 216 (6):463–9. doi: 10.1007/s00217-003-0681-8.
  • Møller, J. K, and L. H. Skibsted. 2002. Nitric oxide and myoglobins. Chemical Reviews 102 (4):1167–78. doi: 10.1021/cr000078y.
  • Morita, H., J. Niu, R. Sakata, and Y. Nagata. 1996. Red pigment of Parma ham and bacterial influence on its formation. Journal of Food Science 61 (5):1021–3. doi: 10.1111/j.1365-2621.1996.tb10924.x.
  • Morita, H., R. Sakata, and Y. Nagata. 1998. Nitric oxide complex of iron(II) myoglobin converted from metmyoglobin by Staphylococcus xylosus. Journal of Food Science 63 (2):352–5. doi: 10.1111/j.1365-2621.1998.tb15740.x.
  • Morita, H., H. Yoshikawa, R. Sakata, Y. Nagata, and H. Tanaka. 1997. Synthesis of nitric oxide from the two equivalent guanidino nitrogens of l-arginine by Lactobacillus fermentum. Journal of Bacteriology 179 (24):7812–5. doi: 10.1128/jb.179.24.7812-7815.1997.
  • Nichols, S. P, and M. H. Schoenfisch. 2013. Nitric oxide-flux dependent bacterial adhesion and viability at fibrinogen-coated surfaces. Biomaterials Science 1 (11):1151. doi: 10.1039/c3bm60130g.
  • Ning, C., L. Li, H. Fang, F. Ma, Y. Tang, and C. Zhou. 2019. l-Lysine/l-arginine/l-cysteine synergistically improves the color of cured sausage with NaNO2 by hindering myoglobin oxidation and promoting nitrosylmyoglobin formation. Food Chemistry 284:219–26. doi: 10.1016/j.foodchem.2019.01.116.
  • Nisbett, L. M, and E. M. Boon. 2016. Nitric oxide regulation of h-nox signaling pathways in bacteria. Biochemistry 55 (35):4873–84. doi: 10.1021/acs.biochem.6b00754.
  • Oliveira, M., V. Ferreira, R. Magalhaes, and P. Teixeira. 2018. Biocontrol strategies for Mediterranean-style fermented sausages. Food Research International (Ottawa, Ont.) 103:438–49. 10.1016/j.foodres.2017.10.048.
  • Otto, M. 2008. Staphylococcal biofilms. Current Topics in Microbiology and Immunology 322:207–28. doi: 10.1007/978-3-540-75418-3_10.
  • Pant, K., A. M. Bilwes, S. Adak, D. J. Stuehr, and B. R. Crane. 2002. Structure of a nitric oxide synthase heme protein from Bacillus subtilis. Biochemistry 41 (37):11071–9.
  • Parthasarathy, D. K, and N. S. Bryan. 2012. Sodium nitrite: The “cure” for nitric oxide insufficiency. Meat Science 92 (3):274–9. doi: 10.1016/j.meatsci.2012.03.001.
  • Pasqualin Cavalheiro, C., C. Ruiz-Capillas, A. M. Herrero, F. Jiménez-Colmenero, C. Ragagnin De Menezes, and L. L. Martins Fries. 2015. Application of probiotic delivery systems in meat products. Trends in Food Science & Technology 46 (1):120–31. doi: 10.1016/j.tifs.2015.09.004.
  • Pegg, R. B, and S. Fereidoon. 2000. Nitrite curing of meat, the N-nitrosamine problem and nitrite alternatives. Food and Nutrition Press, Trumbull, CT.
  • Plate, L, and M. A. Marletta. 2013. Nitric oxide-sensing H-NOX proteins govern bacterial communal behavior. Trends in Biochemical Sciences 38 (11):566–75. 10.1016/j.tibs.2013.08.008.
  • Rafferty, S. 2011. Nitric oxide synthases of bacteria-and other unicellular organisms. The Open Nitric Oxide Journal 3 (1):25–32. doi: 10.2174/1875042701103010025.
  • Ras, G., X. Bailly, J. P. Chacornac, V. Zuliani, P. Derkx, T. M. Seibert, R. Talon, and S. Leroy. 2018a. Contribution of nitric oxide synthase from coagulase-negative staphylococci to the development of red myoglobin derivatives. International Journal of Food Microbiology 266:310–6. doi: 10.1016/j.ijfoodmicro.2017.11.005.
  • Ras, G., S. Leroy, and R. Talon. 2018b. Nitric oxide synthase: What is its potential role in the physiology of staphylococci in meat products? International Journal of Food Microbiology 282:28–34. doi: 10.1016/j.ijfoodmicro.2018.06.002.
  • Ras, G., V. Zuliani, P. Derkx, T. M. Seibert, S. Leroy, and R. Talon. 2017. Evidence for nitric oxide synthase activity in Staphylococcus xylosus mediating nitrosoheme formation. Frontiers in Microbiology 8:598. doi: 10.3389/fmicb.2017.00598.
  • Reece, S. Y., J. J. Woodward, and M. A. Marletta. 2009. Synthesis of nitric oxide by the NOS-like protein from Deinococcus radiodurans: A direct role for tetrahydrofolate. Biochemistry 48 (23):5483–91. doi: 10.1021/bi900385g.
  • Richardson, A. R., P. M. Dunman, and F. C. Fang. 2006. The nitrosative stress response of Staphylococcus aureus is required for resistance to innate immunity. Molecular Microbiology 61 (4):927–39. doi: 10.1111/j.1365-2958.2006.05290.x.
  • Saccani, G., E. Tanzi, S. Cavalli, and J. Rohrer. 2006. Determination of nitrite, nitrate, and glucose-6-phosphate in muscle tissues and cured meat by IC/MS. Journal of AOAC International 89 (3):712–9. doi: 10.1093/jaoac/89.3.712.
  • Saier, M. H., S. Chauvaux, G. M. Cook, J. Deutscher, I. T. Paulsen, J. Reizer, and J. J. Ye. 1996. Catabolite repression and inducer control in Gram-positive bacteria. Microbiology 142 (2):217–30. doi: 10.1099/13500872-142-2-217.
  • Saleh, M., J. P. Vaillancourt, R. K. Graham, M. Huyck, S. M. Srinivasula, E. S. Alnemri, M. H. Steinberg, V. Nolan, C. T. Baldwin, R. S. Hotchkiss, et al. 2004. Differential modulation of endotoxin responsiveness by human caspase-12 polymorphisms. Nature 429 (6987):75–9. doi: 10.1038/nature02451.
  • Sánchez Mainar, M., F. Matheuse, L. D. Vuyst, and F. Leroy. 2017. Effects of glucose and oxygen on arginine metabolism by coagulase-negative staphylococci. Food Microbiology 65:170–8. doi: 10.1016/j.fm.2017.02.007.
  • Sanchez Mainar, M., S. Weckx, and F. Leroy. 2014. Coagulase-negative staphylococci favor conversion of arginine into ornithine despite a widespread genetic potential for nitric oxide synthase activity. Applied and Environmental Microbiology 80 (24):7741–51. doi: 10.1128/AEM.02298-14.
  • Sanderson, J. E., J. R. Consaul, and K. Lee. 1991. Nitrate analysis in meats; comparison of two methods. Journal of Food Science 56 (4):1123–4. doi: 10.1111/j.1365-2621.1991.tb14662.x.
  • Schreiber, F., M. Beutler, D. Enning, M. Lamprecht-Grandio, O. Zafra, J. E. Gonzalez-Pastor, and D. D. Beer. 2011. The role of nitric-oxide-synthase-derived nitric oxide in multicellular traits of Bacillus subtilis 3610: Biofilm formation, swarming, and dispersal. BMC Microbiology 11:111. doi: 10.1186/1471-2180-11-111.
  • Sebranek, J. G, and J. N. Bacus. 2007. Cured meat products without direct addition of nitrate or nitrite: What are the issues? Meat Science 77 (1):136–47. doi: 10.1016/j.meatsci.2007.03.025.
  • Shatalin, K., I. Gusarov, E. Avetissova, Y. Shatalina, L. E. Mcquade, S. J. Lippard, and E. Nudler. 2008. Bacillus anthracis-derived nitric oxide is essential for pathogen virulence and survival in macrophages. Proceedings of the National Academy of Sciences of the United States of America 105 (3):1009–13. doi: 10.1073/pnas.0710950105.
  • Sidney, M, and J. Morris. 2007. Arginine metabolism: Boundaries of our knowledge. The Journal of Nutrition 137 (6 Suppl 2):1602S–9S. doi: 10.1093/jn/137.6.1602S.
  • Skibsted, L. H. 2011. Nitric oxide and quality and safety of muscle based foods. Nitric Oxide: biology and Chemistry 24 (4):176–83. doi: 10.1016/j.niox.2011.03.307.
  • Stoica, M., V. M. Antohi, P. Alexe, A. S. Ivan, S. Stanciu, D. Stoica, M. L. Zlati, M., and Stuparu, Cretu. 2022. New strategies for the total/partial replacement of conventional sodium nitrite in meat products: A review. Food and Bioprocess Technology 15 (3):514–38. doi: 10.1007/s11947-021-02744-6.
  • Stuehr, D. J., J. Santolini, Z. Q. Wang, C. C. Wei, and S. Adak. 2004. Update on mechanism and catalytic regulation in the NO synthases. The Journal of Biological Chemistry 279 (35):36167–70. doi: 10.1074/jbc.R400017200.
  • Stuehr, D. J., C. C. Wei, Z. Wang, and R. Hille. 2005. Exploring the redox reactions between heme and tetrahydrobiopterin in the nitric oxide synthases. Dalton Transactions 7 (21):3427–35. doi: 10.1039/b506355h.
  • Sudhamsu, J, and B. R. Crane. 2009. Bacterial nitric oxide synthases: What are they good for? Trends in Microbiology 17 (5):212–8. doi: 10.1016/j.tim.2009.02.003.
  • Toldrá, F, and M. Reig. 2011. Innovations for healthier processed meats. Trends in Food Science & Technology 22 (9):517–22. doi: 10.1016/j.tifs.2011.08.007.
  • Touati, D. 2000. Iron and oxidative stress in bacteria. Archives of Biochemistry and Biophysics 373 (1):1–6. 10.1006/abbi.1999.1518.
  • Toyofuku, M., N. Nomura, T. Fujii, N. Takaya, H. Maseda, I. Sawada, T. Nakajima, and H. Uchiyama. 2007. Quorum sensing regulates denitrification in Pseudomonas aeruginosa PAO1. Journal of Bacteriology 189 (13):4969–72. doi: 10.1128/JB.00289-07.
  • Vermassen, A., A. De La Foye, V. Loux, R. Talon, and S. Leroy. 2014. Transcriptomic analysis of Staphylococcus xylosus in the presence of nitrate and nitrite in meat reveals its response to nitrosative stress. Frontiers in Microbiology 5:691. doi: 10.3389/fmicb.2014.00691.
  • Wei, C. C., Z. Q. Wang, C. Hemann, R. Hille, and D. J. Stuehr. 2003. A tetrahydrobiopterin radical forms and then becomes reduced during Nomega-hydroxyarginine oxidation by nitric-oxide synthase. The Journal of Biological Chemistry 278 (47):46668–73. doi: 10.1074/jbc.M307682200.
  • Xu, J, and W. Verstraete. 2001. Evaluation of nitric oxide production by Lactobacilli. Applied Microbiology and Biotechnology 56 (3–4):504–7. doi: 10.1007/s002530100616.
  • Yarullina, D. R., O. N. Il’inskaya, A. V. Aganov, N. I. Silkin, and D. G. Zverev. 2006. Alternative pathways of nitric oxide formation in Lactobacilli: Evidence for nitric oxide synthase activity by EPR. Microbiology 75 (6):634–8. doi: 10.1134/S0026261706060026.
  • Yarullina, D. R., L. V. Vakatova, A. V. Krivoruchko, E. V. Rubtsova, and O. N. Ilinskaya. 2013. Effect of exogenous and endogenous nitric oxide on biofilm formation by Lactobacillus plantarum. Microbiology 82 (4):423–7. doi: 10.1134/S0026261713040140.
  • Ye, R. W., B. A. Averill, and J. M. Tiedje. 1994. Denitrification: Production and consumption of nitric oxide. Applied and Environmental Microbiology 60 (4):1053–8. doi: 10.1128/aem.60.4.1053-1058.1994.
  • Yoon, S. S. Y., R. F. H. Hennigan, G. M. H. Hilliard, K. P. Parvatiyar, H. L. A. Allen, U. a Ochsner, M. C. Kamani, T. R. Dekievit, P. R. Gardner, U. S. Schwab, et al. 2002. Pseudomonas aeruginosa anaerobic respiration in biofilms: Relationships to cystic fibrosis pathogenesis. Developmental Cell 3 (4):593–603. doi: 10.1016/S1534-5807(02)00295-2.
  • Zaitseva, J., V. Granik, A. Belik, O. Koksharova, and I. Khmel. 2009. Effect of nitrofurans and NO generators on biofilm formation by Pseudomonas aeruginosa PAO1 and Burkholderia cenocepacia 370. Research in Microbiology 160 (5):353–7. doi: 10.1016/j.resmic.2009.04.007.
  • Zajac, M., K. Zajac, and J. Dybas. 2022. The effect of nitric oxide synthase and arginine on the color of cooked meat. Food Chemistry 373:131503. doi: 10.1016/j.foodchem.2021.131503.
  • Zhang, X., B. Kong, and Y. L. Xiong. 2007. Production of cured meat color in nitrite-free Harbin red sausage by Lactobacillus fermentum fermentation. Meat Science 77 (4):593–8. doi: 10.1016/j.meatsci.2007.05.010.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.