848
Views
16
CrossRef citations to date
0
Altmetric
Review Articles

Phenolic composition of grape pomace and its metabolism

, , , , , & show all

References

  • Albuquerque, J. G. F., V. L. Assis, A. Almeida, I. Basílio, M. N. Luciano, B. R. L. A. Meireles, Â. Cordeiro, I. G. A. Araújo, R. C. Veras, T. P. Ribeiro, et al. 2017. Antioxidant and vasorelaxant activities induced by northeastern Brazilian fermented grape skins. BMC Complementary and Alternative Medicine 17 (1):1–8. doi: 10.1186/s12906-017-1881-2.
  • Alkhaldy, A., C. A. Edwards, and E. Combet. 2019. The urinary phenolic acid profile varies between younger and older adults after a polyphenol-rich meal despite limited differences in in vitro colonic catabolism. European Journal of Nutrition 58 (3):1095–111. doi: 10.1007/s00394-018-1625-1.
  • Amasheh, M., J. Luettig, S. Amasheh, M. Zeitz, M. Fromm, and J. D. Schulzke. 2012. Effects of quercetin studied in colonic HT-29/B6 cells and rat intestine in vitro. Annals of the New York Academy of Sciences 1258 (1):100–7. doi: 10.1111/j.1749-6632.2012.06609.x.
  • Andres-Lacueva, C., M. T. MacArulla, M. Rotches-Ribalta, M. Boto-Ordóñez, M. Urpi-Sarda, V. M. Rodríguez, and M. P. Portillo. 2012. Distribution of resveratrol metabolites in liver, adipose tissue, and skeletal muscle in rats fed different doses of this polyphenol. Journal of Agricultural and Food Chemistry 60 (19):4833–40. doi: 10.1021/jf3001108.
  • Ardévol, A., M. J. Motilva, A. Serra, M. Blay, and M. Pinent. 2013. Procyanidins target mesenteric adipose tissue in Wistar lean rats and subcutaneous adipose tissue in Zucker obese rat. Food Chemistry 141 (1):160–6. doi: 10.1016/j.foodchem.2013.02.104.
  • Aura, A.-M., P. Martin-Lopez, K. A. O’Leary, G. Williamson, K.-M. Oksman-Caldentey, K. Poutanen, and C. Santos-Buelga. 2005. In vitro metabolism of anthocyanins by human gut microflora. European Journal of Nutrition 44 (3):133–42. doi: 10.1007/s00394-004-0502-2.
  • Aura, A. M., I. Mattila, T. Hyötyläinen, P. Gopalacharyulu, V. Cheynier, J. M. Souquet, M. Bes, C. L. Bourvellec, S. Guyot, and M. Orešič. 2013. Characterization of microbial metabolism of Syrah grape products in an in vitro colon model using targeted and non-targeted analytical approaches. European Journal of Nutrition 52 (2):833–46. doi: 10.1007/s00394-012-0391-8.
  • Averilla, J. N., J. Oh, H. J. Kim, J. S. Kim, and J. S. Kim. 2019. Potential health benefits of phenolic compounds in grape processing by-products. Food Science and Biotechnology 28 (6):1607–15. doi: 10.1007/s10068-019-00628-2.
  • Bavaresco, L. 2003. Role of viticultural factors on stilbene concentrations of grapes and wine. Drugs under Experimental and Clinical Research 29 (5–6):181–7. doi: 10.1111/j.1440-1754.2010.01940.x.
  • Blaut, M., and T. Clavel. 2007. Metabolic diversity of the intestinal microbiota: Implications for health and disease. The Journal of Nutrition 137 (3 Suppl 2):751S–5S. doi: 10.1093/jn/137.3.751S.
  • Blaut, M., L. Schoefer, and A. Braune. 2003. Transformation of flavonoids by intestinal microorganisms. International Journal for Vitamin and Nutrition Research. Internationale Zeitschrift Fur Vitamin- Und Ernahrungsforschung. Journal International de Vitaminologie et de Nutrition 73 (2):79–87. doi: 10.1024/0300-9831.73.2.79.
  • Bocsan, I. C., D. C. Măgureanu, R. M. Pop, A. M. Levai, Ș. O. Macovei, I. M. Pătrașca, V. S. Chedea, and A. D. Buzoianu. 2022. Antioxidant and anti-inflammatory actions of polyphenols from red and white grape pomace in ischemic heart diseases. Biomedicines 10 (10):2337. doi: 10.3390/biomedicines10102337.
  • Borges, G., S. Roowi, J. M. Rouanet, G. G. Duthie, M. E. J. Lean, and A. Crozier. 2007. The bioavailability of raspberry anthocyanins and ellagitannins in rats. Molecular Nutrition & Food Research 51 (6):714–25. doi: 10.1002/mnfr.200700024.
  • Borges, G., J. J. J. van der Hooft, and A. Crozier. 2016. A comprehensive evaluation of the [2-14C](–)-epicatechin metabolome in rats. Free Radical Biology & Medicine 99:128–38. doi: 10.1016/j.freeradbiomed.2016.08.001.
  • Bouayed, J., H. Deußer, L. Hoffmann, and T. Bohn. 2012. Bioaccessible and dialysable polyphenols in selected apple varieties following in vitro digestion vs. their native patterns. Food Chemistry 131 (4):1466–72. doi: 10.1016/j.foodchem.2011.10.030.
  • Boussetta, N., E. Vorobiev, V. Deloison, F. Pochez, A. Falcimaigne-Cordin, and J. L. Lanoisellé. 2011. Valorisation of grape pomace by the extraction of phenolic antioxidants: Application of high voltage electrical discharges. Food Chemistry 128 (2):364–70. doi: 10.1016/j.foodchem.2011.03.035.
  • Braune, A., and M. Blaut. 2011. Deglycosylation of puerarin and other aromatic C-glucosides by a newly isolated human intestinal bacterium. Environmental Microbiology 13 (2):482–94. doi: 10.1111/j.1462-2920.2010.02352.x.
  • Brindani, N., P. Mena, L. Calani, I. Benzie, S. W. Choi, F. Brighenti, F. Zanardi, C. Curti, and D. Del Rio. 2017. Synthetic and analytical strategies for the quantification of phenyl-γ-valerolactone conjugated metabolites in human urine. Molecular Nutrition & Food Research 61 (9):1700077–10. doi: 10.1002/mnfr.201700077.
  • Brown, M. E., S. Nitecki, G. Pereira-Caro, G. J. McDougall, D. Stewart, I. Rowland, A. Crozier, and C. I. R. Gill. 2014. Comparison of in vivo and in vitro digestion on polyphenol composition in lingonberries: Potential impact on colonic health. BioFactors (Oxford, England) 40 (6):611–23. doi: 10.1002/biof.1173.
  • Carecho, R., D. Carregosa, and C. N. dos Santos. 2020. Low molecular weight (poly)phenol metabolites across the blood-brain barrier: The underexplored journey. Brain Plasticity (Amsterdam, Netherlands) 6 (2):193–214. doi: 10.3233/BPL-200099.
  • Castello, F., G. Costabile, L. Bresciani, M. Tassotti, D. Naviglio, D. Luongo, P. Ciciola, M. Vitale, C. Vetrani, G. Galaverna, et al. 2018. Bioavailability and pharmacokinetic profile of grape pomace phenolic compounds in humans. Archives of Biochemistry and Biophysics 646:1–9. doi: 10.1016/j.abb.2018.03.021.
  • Chacar, S., T. Itani, J. Hajal, Y. Saliba, N. Louka, J. F. Faivre, R. Maroun, and N. Fares. 2018. The impact of long-term intake of phenolic compounds-rich grape pomace on rat gut microbiota. Journal of Food Science 83 (1):246–51. doi: 10.1111/1750-3841.14006.
  • Charradi, K., M. Mahmoudi, T. Bedhiafi, S. Kadri, S. Elkahoui, F. Limam, and E. Aouani. 2017. Dietary supplementation of grape seed and skin flour mitigates brain oxidative damage induced by a high-fat diet in rat: Gender dependency. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie 87:519–26. doi: 10.1016/j.biopha.2017.01.015.
  • Chen, T.-Y., M. G. Ferruzzi, Q.-L. Wu, J. E. Simon, S. T. Talcott, J. Wang, L. Ho, G. Todd, B. Cooper, G. M. Pasinetti, et al. 2017. Influence of diabetes on plasma pharmacokinetics and brain bioavailability of grape polyphenols and their phase II metabolites in the Zucker diabetic fatty rat. Molecular Nutrition & Food Research 61 (10):1700111–23. doi: 10.1002/mnfr.201700111.
  • Chou, L. M., C. I. Lin, Y. H. Chen, H. Liao, and S. H. Lin. 2016. A diet containing grape powder ameliorates the cognitive decline in aged rats with a long-term high-fructose-high-fat dietary pattern. The Journal of Nutritional Biochemistry 34:52–60. doi: 10.1016/j.jnutbio.2016.04.006.
  • Clifford, M. N. 2004. Diet-derived phenols in plasma and tissues and their implications for health. Planta Medica 70 (12):1103–14. doi: 10.1055/s-2004-835835.
  • Crozier, A. 2013. Absorption, metabolism, and excretion of (2)-epicatechin in humans: An evaluation of recent findings. The American Journal of Clinical Nutrition 98 (4):861–2. doi: 10.3945/ajcn.113.072009.
  • Czank, C., A. Cassidy, Q. Zhang, D. J. Morrison, T. Preston, P. A. Kroon, N. P. Botting, and C. D. Kay. 2013. Human metabolism and elimination of the anthocyanin, cyanidin-3-glucoside: A 13C-tracer study. The American Journal of Clinical Nutrition 97 (5):995–1003. doi: 10.3945/ajcn.112.049247.
  • De Ferrars, R. M., C. Czank, Q. Zhang, N. P. Botting, P. A. Kroon, A. Cassidy, and C. D. Kay. 2014. The pharmacokinetics of anthocyanins and their metabolites in humans. British Journal of Pharmacology 171 (13):3268–82. doi: 10.1111/bph.12676.
  • Déprez, S., C. Brezillon, S. Rabot, C. Philippe, I. Mila, C. Lapierre, and A. Scalbert. 2000. Polymeric proanthocyanidins are catabolized by human colonic microflora into low-molecular-weight phenolic acids. The Journal of Nutrition 130 (11):2733–8. doi: 10.1093/jn/130.11.2733.
  • Deprez, S., I. Mila, J. F. Huneau, D. Tome, and A. Scalbert. 2001. Transport of proanthocyanidin dimer, trimer, and polymer across monolayers of human intestinal epithelial Caco-2 cells. Antioxidants & Redox Signaling 3 (6):957–67. doi: 10.1089/152308601317203503.
  • Downing, L. E., D. Edgar, P. A. Ellison, and M. L. Ricketts. 2017. Mechanistic insight into nuclear receptor-mediated regulation of bile acid metabolism and lipid homeostasis by grape seed procyanidin extract (GSPE). Cell Biochemistry and Function 35 (1):12–32. doi: 10.1002/cbf.3247.
  • Duda-Chodak, A., T. Tarko, P. Satora, and P. Sroka. 2015. Interaction of dietary compounds, especially polyphenols, with the intestinal microbiota: A review. European Journal of Nutrition 54 (3):325–41. doi: 10.1007/s00394-015-0852-y.
  • Edwards, C. A., J. Havlik, W. Cong, W. Mullen, T. Preston, D. J. Morrison, and E. Combet. 2017. Polyphenols and health: Interactions between fibre, plant polyphenols and the gut microbiota. Nutrition Bulletin 42 (4):356–60. doi: 10.1111/nbu.12296.
  • Fantozzi, P., and A. A. Betschart. 1979. Development of grapeseed protein. Journal of the American Oil Chemists’ Society 56 (3Part3):457–9. doi: 10.1007/BF02671539.
  • Figueira, I., G. Garcia, R. C. Pimpão, A. P. Terrasso, I. Costa, A. F. Almeida, L. Tavares, T. F. Pais, P. Pinto, M. R. Ventura, et al. 2017. Polyphenols journey through blood-brain barrier towards neuronal protection. Scientific Reports 7 (1):1–16. doi: 10.1038/s41598-017-11512-6.
  • Flamini, R., F. Mattivi, M. De Rosso, P. Arapitsas, and L. Bavaresco. 2013. Advanced knowledge of three important classes of grape phenolics: Anthocyanins, stilbenes and flavonols. International Journal of Molecular Sciences 14 (10):19651–69. doi: 10.3390/ijms141019651.
  • Fleschhut, J., F. Kratzer, G. Rechkemmer, and S. E. Kulling. 2006. Stability and biotransformation of various dietary anthocyanins in vitro. European Journal of Nutrition 45 (1):7–18. doi: 10.1007/s00394-005-0557-8.
  • Florent, C., B. Flourie, A. Leblond, M. Rautureau, J. J. Bernier, and J. C. Rambaud. 1985. Influence of chronic lactulose ingestion on the colonic metabolism of lactulose in man (an in vivo study). The Journal of Clinical Investigation 75 (2):608–13. doi: 10.1172/JCI111738.
  • Forester, S. C., and A. L. Waterhouse. 2008. Identification of cabernet sauvignon anthocyanin gut microflora metabolites. Journal of Agricultural and Food Chemistry 56 (19):9299–304. doi: 10.1021/jf801309n.
  • François, I. E. J. A., O. Lescroart, W. S. Veraverbeke, M. Marzorati, S. Possemiers, H. Hamer, K. Windey, G. W. Welling, J. A. Delcour, C. M. Courtin, et al. 2014. Effects of wheat bran extract containing arabinoxylan oligosaccharides on gastrointestinal parameters in healthy preadolescent children. Journal of Pediatric Gastroenterology and Nutrition 58 (5):647–53. doi: 10.1097/MPG.0000000000000285.
  • Gil-Sánchez, I., B. Ayuda-Durán, S. González-Manzano, C. Santos-Buelga, C. Cueva, M. A. Martín-Cabrejas, M. Sanz-Buenhombre, A. Guadarrama, M. V. Moreno-Arribas, and B. Bartolomé. 2017. Chemical characterization and in vitro colonic fermentation of grape pomace extracts. Journal of the Science of Food and Agriculture 97 (10):3433–44. doi: 10.1002/jsfa.8197.
  • Gil-Sánchez, I., C. Cueva, M. Sanz-Buenhombre, A. Guadarrama, M. V. Moreno-Arribas, and B. Bartolomé. 2018. Dynamic gastrointestinal digestion of grape pomace extracts: Bioaccessible phenolic metabolites and impact on human gut microbiota. Journal of Food Composition and Analysis 68:41–52. doi: 10.1016/j.jfca.2017.05.005.
  • Gil-Sánchez, I., A. Esteban-Fernández, D. González de Llano, M. Sanz-Buenhombre, A. Guadarrana, N. Salazar, M. Gueimonde, C. G. de los Reyes-Gavilánc, L. Martín Gómez, M. L. García Bermejo, et al. 2018. Supplementation with grape pomace in healthy women: Changes in biochemical parameters, gut microbiota and related metabolic biomarkers. Journal of Functional Foods 45:34–46. doi: 10.1016/j.jff.2018.03.031.
  • González-Barrio, R., C. A. Edwards, and A. Crozier. 2011. Colonic catabolism of ellagitannins, ellagic acid, and raspberry anthocyanins: In vivo and in vitro studies. Drug Metabolism and Disposition: The Biological Fate of Chemicals 39 (9):1680–8. doi: 10.1124/dmd.111.039651.
  • Griffin, L. E., K. A. Witrick, C. Klotz, M. R. Dorenkott, K. M. Goodrich, G. Fundaro, R. P. McMillan, M. W. Hulver, M. A. Ponder, and A. P. Neilson. 2017. Alterations to metabolically active bacteria in the mucosa of the small intestine predict anti-obesity and anti-diabetic activities of grape seed extract in mice. Food & Function 8 (10):3510–22. doi: 10.1039/c7fo01236e.
  • Han, F., P. Yang, H. Wang, I. Fernandes, N. Mateus, and Y. Liu. 2019. Digestion and absorption of red grape and wine anthocyanins through the gastrointestinal tract. Trends in Food Science & Technology 83:211–24. doi: 10.1016/j.tifs.2018.11.025.
  • Hanske, L., W. Engst, G. Loh, S. Sczesny, M. Blaut, and A. Braune. 2013. Contribution of gut bacteria to the metabolism of cyanidin 3-glucoside in human microbiota-associated rats. The British Journal of Nutrition 109 (8):1433–41. doi: 10.1017/S0007114512003376.
  • He, J., T. C. Wallace, K. E. Keatley, M. L. Failla, and M. M. Giusti. 2009. Stability of black raspberry anthocyanins in the digestive tract lumen and transport efficiency into gastric and small intestinal tissues in the rat. Journal of Agricultural and Food Chemistry 57 (8):3141–8. doi: 10.1021/jf900567t.
  • Hidalgo, M., S. Martin-Santamaria, I. Recio, C. Sanchez-Moreno, B. D. Pascual-Teresa, G. Rimbach, and S. De Pascual-Teresa. 2012. Potential anti-inflammatory, anti-adhesive, anti/estrogenic, and angiotensin-converting enzyme inhibitory activities of anthocyanins and their gut metabolites. Genes & Nutrition 7 (2):295–306. doi: 10.1007/s12263-011-0263-5.
  • Hidalgo, M., M. J. Oruna-Concha, S. Kolida, G. E. Walton, S. Kallithraka, J. P. E. Spencer, G. R. Gibson, and S. De Pascual-Teresa. 2012. Metabolism of anthocyanins by human gut microflora and their influence on gut bacterial growth. Journal of Agricultural and Food Chemistry 60 (15):3882–90. doi: 10.1021/jf3002153.
  • Huang, D. C. 2007. Research on determination methods of resveratrol from grape seed ultrafine-powder. Master thesis, North West Agriculture and Forestry University.
  • Janle, E. M., M. A. Lila, M. Grannan, L. Wood, A. Higgins, G. G. Yousef, R. B. Rogers, H. Kim, G. S. Jackson, L. Ho, et al. 2010. Pharmacokinetics and tissue distribution of 14C-labeled grape polyphenols in the periphery and the central nervous system following oral administration. Journal of Medicinal Food 13 (4):926–33. doi: 10.1089/jmf.2009.0157.
  • Kammerer, D., A. Claus, R. Carle, and A. Schieber. 2004. Polyphenol screening of pomace from red and white grape varieties (Vitis vinifera L.) by HPLC-DAD-MS/MS. Journal of Agricultural and Food Chemistry 52 (14):4360–7. doi: 10.1021/jf049613b.
  • Kay, C. D., G. Pereira-Caro, I. A. Ludwig, M. N. Clifford, and A. Crozier. 2017. Anthocyanins and flavanones are more bioavailable than previously perceived: A review of recent evidence. Annual Review of Food Science and Technology 8:155–80. doi: 10.1146/annurev-food-030216-025636.
  • Keppler, K., and H. U. Humpf. 2005. Metabolism of anthocyanins and their phenolic degradation products by the intestinal microflora. Bioorganic & Medicinal Chemistry 13 (17):5195–205. doi: 10.1016/j.bmc.2005.05.003.
  • Kim, H., D. H. Kim, K. H. Seo, J. W. Chon, S. Y. Nah, G. E. Bartley, T. Arvik, R. Lipson, and W. Yokoyama. 2015. Modulation of the intestinal microbiota is associated with lower plasma cholesterol and weight gain in hamsters fed chardonnay grape seed flour. Journal of Agricultural and Food Chemistry 63 (5):1460–7. doi: 10.1021/jf5026373.
  • Kutschera, M., W. Engst, M. Blaut, and A. Braune. 2011. Isolation of catechin-converting human intestinal bacteria. Journal of Applied Microbiology 111 (1):165–75. doi: 10.1111/j.1365-2672.2011.05025.x.
  • Ky, I., B. Lorrain, N. Kolbas, A. Crozier, and P. L. Teissedre. 2014. Wine by-products: Phenolic characterization and antioxidant activity evaluation of grapes and grape pomaces from six different French grape varieties. Molecules (Basel, Switzerland) 19 (1):482–506. doi: 10.3390/molecules19010482.
  • Laurent, C., P. Besançon, and B. Caporiccio. 2007. Flavonoids from a grape seed extract interact with digestive secretions and intestinal cells as assessed in an in vitro digestion/Caco-2 cell culture model. Food Chemistry 100 (4):1704–12. doi: 10.1016/j.foodchem.2005.10.016.
  • Li, Chunyang. 2006. Extraction and purificaiton of proanthocyanidin from grape seed, its structure and functionality, PhD thesis, Jiangnan University.
  • Li, H., and H. Wang. 2007. Oenology. Beijing: Science Press.
  • Li, P. H. 2008. Research in the antioxidant activity of ultra-fine powder of grape seed. Master thesis, North West Agriculture and Forestry University.
  • Lin, Q. L., and Z. P. Shi. 2001. Correlation between antioxidative strength and molecule structure of native flavonoids and phenolic acids. Food Science 22 (6):85–91. doi: 10.3321/j.issn:1002-6630.2001.06.025.
  • Li, T. 2008. Study on extraction techniques of resveratrol in grape residue and difference analysis of resveratrol content in grape. Master thesis, Gansu Agricultural University.
  • Liao, H., L. M. Chou, Y. W. Chien, C. H. Wu, J. S. Chang, C. I. Lin, and S. H. Lin. 2017. Grape powder consumption affects the expression of neurodegeneration-related brain proteins in rats chronically fed a high-fructose–high-fat diet. The Journal of Nutritional Biochemistry 43:132–40. doi: 10.1016/j.jnutbio.2017.02.013.
  • Lingua, M. S., M. G. Theumer, P. Kruzynski, D. A. Wunderlin, and M. V. Baroni. 2019. Bioaccessibility of polyphenols and antioxidant properties of the white grape by simulated digestion and Caco-2 cell assays: Comparative study with its winemaking product. Food Research International (Ottawa, ON) 122:496–505. doi: 10.1016/j.foodres.2019.05.022.
  • Lorenzo, C. D., F. Colombo, S. Biella, C. Stockley, and P. Restani. 2021. Polyphenols and human health: The role of bioavailability. Nutrients 13 (1):273–30. doi: 10.3390/nu13010273.
  • Lu, F., F. Liu, Q. Zhou, X. Hu, and Y. Zhang. 2019. Effects of grape pomace and seed polyphenol extracts on the recovery of gut microbiota after antibiotic treatment in high-fat diet-fed mice. Food Science & Nutrition 7 (9):2897–906. doi: 10.1002/fsn3.1141.
  • Ma, J. J. 2014. Study on the degree of polymerization of phenolic substances and proanthocyanidins in grapes and wine. Master thesis, Shaanxi Normal University.
  • Machado, N. F. L., and R. Domínguez-Perles. 2017. Addressing facts and gaps in the phenolics chemistry of winery by-products. Molecules 22 (2):1–48. doi: 10.3390/molecules22020:286.
  • Maier, T., A. Schieber, D. R. Kammerer, and R. Carle. 2009. Residues of grape (Vitis vinifera L.) seed oil production as a valuable source of phenolic antioxidants. Food Chemistry 112 (3):551–9. doi: 10.1016/j.foodchem.2008.06.005.
  • Makarewicz, M., I. Drożdż, T. Tarko, and A. Duda-Chodak. 2021. The interactions between polyphenols and microorganisms, especially gut microbiota. Antioxidants 10 (2):188–70. doi: 10.3390/antiox10020188.
  • Manach, C, and J. L. Donovan. 2004. Pharmacokinetics and metabolism of dietary flavonoids in humans. Free Radical Research 38 (8):771–85. doi: 10.1080/10715760410001727858. PMID: 15493450
  • Margalef, M., Z. Pons, L. Iglesias-Carres, L. Arola, B. Muguerza, and A. Arola-Arnal. 2016. Gender-related similarities and differences in the body distribution of grape seed flavanols in rats. Molecular Nutrition & Food Research 60 (4):760–72. doi: 10.1002/mnfr.201500717.
  • Margalef, M., Z. Pons, L. Iglesias-Carres, F. I. Bravo, B. Muguerza, and A. Arola-Arnal. 2015. Lack of tissue accumulation of grape seed flavanols after daily long-term administration in healthy and cafeteria-diet obese rats. Journal of Agricultural and Food Chemistry 63 (45):9996–10003. doi: 10.1021/acs.jafc.5b03856.
  • Margalef, M., Z. Pons, L. Iglesias-Carres, M. Quiñones, F. I. Bravo, A. Arola-Arnal, and B. Muguerza. 2017. Rat health status affects bioavailability, target tissue levels, and bioactivity of grape seed flavanols. Molecular Nutrition & Food Research 61 (2):1600342–9. doi: 10.1002/mnfr.201600342.
  • Maryam, A., and H. Hosein. 2016. Grapes (Vitis vinifera) as a potential candidate for the therapy of the metabolic syndrome. Phytotherapy Research 30 (5):540–56. doi: 10.1002/ptr.5570.
  • Mateos-Martín, M. L., J. Pérez-Jiménez, E. Fuguet, and J. L. Torres. 2012. Non-extractable proanthocyanidins from grapes are a source of bioavailable (epi)catechin and derived metabolites in rats. The British Journal of Nutrition 108 (2):290–7. doi: 10.1017/S0007114511005678. PMID: 22142937
  • Mattivi, F., R. Guzzon, U. Vrhovsek, M. Stefanini, and R. Velasco. 2006. Metabolite profiling of grape: Flavonols and anthocyanins. Journal of Agricultural and Food Chemistry 54 (20):7692–702. doi: 10.1021/jf061538c.
  • Maurer, L. H., C. B. B. Cazarin, A. Quatrin, N. M. Minuzzi, E. L. Costa, J. Morari, L. A. Velloso, R. F. Leal, E. Rodrigues, V. C. Bochi, et al. 2019. Grape peel powder promotes intestinal barrier homeostasis in acute TNBS-colitis: A major role for dietary fiber and fiber-bound polyphenols. Food Research International (Ottawa, ON) 123 (9):425–39. doi: 10.1016/j.foodres.2019.04.068.
  • Mcdougall, G. J., S. Conner, G. Pereira-Caro, R. Gonzalez-Barrio, E. M. Brown, S. Verrall, D. Stewart, T. Moffet, M. Ibars, R. Lawther, et al. 2014. Tracking (poly)phenol components from raspberries in ileal fluid. Journal of Agricultural and Food Chemistry 62 (30):7631–41. doi: 10.1021/jf502259j.
  • Monagas, M., B. Bartolomé, and C. Gómez-Cordovés. 2005. Updated knowledge about the presence of phenolic compounds in wine. Critical Reviews in Food Science and Nutrition 45 (2):85–118. doi: 10.1080/10408690490911710.
  • Monagas, M., C. Gómez-Cordovés, B. Bartolomé, O. Laureano, and J. M. Ricardo Da Silva. 2003. Monomeric, oligomeric, and polymeric flavan-3-ol composition of wines and grapes from Vitis vinifera L. cv. Graciano, Tempranillo, and Cabernet sauvignon. Journal of Agricultural and Food Chemistry 51 (22):6475–81. doi: 10.1021/jf030325+.
  • Monagas, M., N. Khan, C. Andrés-Lacueva, M. Urpí-Sardá, M. Vázquez-Agell, R. M. Lamuela-Raventós, and R. Estruch. 2009. Dihydroxylated phenolic acids derived from microbial metabolism reduce lipopolysaccharide-stimulated cytokine secretion by human peripheral blood mononuclear cells. The British Journal of Nutrition 102 (2):201–6. doi: 10.1017/S0007114508162110.
  • Nassiri-Asl, M., and H. Hosseinzadeh. 2016. Review of the pharmacological effects of Vitis vinifera (grape) and its bioactive constituents: An update. Phytotherapy Research: PTR 30 (9):1392–403. doi: 10.1002/ptr.5644.
  • Nawaz, H., J. Shi, G. S. Mittal, and Y. Kakuda. 2006. Extraction of polyphenols from grape seeds and concentration by ultrafiltration. Separation and Purification Technology 48 (2):176–81. doi: 10.1016/j.seppur.2005.07.006.
  • Novotny, J. A., T. Y. Chen, A. I. Terekhov, S. K. Gebauer, D. J. Baer, L. Ho, G. M. Pasinetti, and M. G. Ferruzzi. 2017. The effect of obesity and repeated exposure on pharmacokinetic response to grape polyphenols in humans. Molecular Nutrition & Food Research 61 (11):1700043–6. doi: 10.1002/mnfr.201700043.
  • Oliveira, J., M. Alhinho Da Silva, N. Teixeira, V. De Freitas, and E. Salas. 2015. Screening of anthocyanins and anthocyanin-derived pigments in red wine grape pomace using LC-DAD/MS and MALDI-TOF techniques. Journal of Agricultural and Food Chemistry 63 (35):7636–44. doi: 10.1021/acs.jafc.5b00256.
  • Pantelić, M. M., D. Dabić Zagorac, S. M. Davidović, S. R. Todić, Z. S. Bešlić, U. M. Gašić, ŽL. Tešić, and M. M. Natić. 2016. Identification and quantification of phenolic compounds in berry skin, pulp, and seeds in 13 grapevine varieties grown in Serbia. Food Chemistry 211:243–52. doi: 10.1016/j.foodchem.2016.05.051.
  • Peixoto, C. M., M. I. Dias, M. J. Alves, R. C. Calhelha, L. Barros, S. P. Pinho, and I. Ferreira. 2018. Grape pomace as a source of phenolic compounds and diverse bioactive properties. Food Chemistry 253:132–8. doi: 10.1016/j.foodchem.2018.01.163.
  • Pérez-Jiménez, J., M. E. Díaz-Rubio, and F. Saura-Calixto. 2013. Non-extractable polyphenols, a major dietary antioxidant: Occurrence, metabolic fate and health effects. Nutrition Research Reviews 26 (2):118–29. doi: 10.1017/S0954422413000097.
  • Pérez-Ramírez, I. F., R. Reynoso-Camacho, F. Saura-Calixto, and J. Pérez-Jiménez. 2018. Comprehensive characterization of extractable and nonextractable phenolic compounds by high-performance liquid chromatography-electrospray ionization-quadrupole time-of-flight of a grape/pomegranate pomace dietary supplement. Journal of Agricultural and Food Chemistry 66 (3):661–73. doi: 10.1021/acs.jafc.7b05901.
  • Prasain, J. K., N. Peng, Y. Dai, R. Moore, A. Arabshahi, L. Wilson, S. Barnes, J. Michael Wyss, H. Kim, and R. L. Watts. 2009. Liquid chromatography tandem mass spectrometry identification of proanthocyanidins in rat plasma after oral administration of grape seed extract. Phytomedicine 16 (2–3):233–43. doi: 10.1016/j.phymed.2008.08.006.
  • Ramos-Romero, S., D. Martínez-Maqueda, M. Hereu, S. Amézqueta, J. L. Torres, and J. Pérez-Jiménez. 2020. Modifications of gut microbiota after grape pomace supplementation in subjects at cardiometabolic risk: A randomized cross-over controlled clinical trial. Foods 9 (9):1279. doi: 10.3390/foods9091279.
  • Renard, C., A. A. Watrelot, and C. Le Bourvellec. 2017. Interactions between polyphenols and polysaccharides: Mechanisms and consequences in food processing and digestion. Trends in Food Science & Technology 60:43–51. doi: 10.1016/j.tifs.2016.10.022.
  • Rodriguez Lanzi, C., D. J. Perdicaro, A. Antoniolli, A. R. Fontana, R. M. Miatello, R. Bottini, and M. A. Vazquez Prieto. 2016. Grape pomace and grape pomace extract improve insulin signaling in high-fat-fructose fed rat-induced metabolic syndrome. Food & Function 7 (3):1544–53. doi: 10.1039/c5fo01065a.
  • Rodriguez Lanzi, C., D. J. Perdicaro, A. Antoniolli, P. Piccoli, M. A. Vazquez Prieto, and A. Fontana. 2018. Phenolic metabolites in plasma and tissues of rats fed with a grape pomace extract as assessed by liquid chromatography-tandem mass spectrometry. Archives of Biochemistry and Biophysics 651:28–33. doi: 10.1016/j.abb.2018.05.021.
  • Ruberto, G., A. Renda, C. Daquino, V. Amico, C. Spatafora, C. Tringali, and N. De Tommasi. 2007. Polyphenol constituents and antioxidant activity of grape pomace extracts from five sicilian red grape cultivars. Food Chemistry 100 (1):203–10. doi: 10.1016/j.foodchem.2005.09.041.
  • Sánchez-Patán, F., R. Tabasco, M. Monagas, T. Requena, C. Peláez, M. V. Moreno-Arribas, and B. Bartolomé. 2012. Capability of Lactobacillus plantarum IFPL935 to catabolize flavan-3-ol compounds and complex phenolic extracts. Journal of Agricultural and Food Chemistry 60 (29):7142–51. doi: 10.1021/jf3006867.
  • Sandoval, V., H. Sanz-Lamora, G. Arias, P. F. Marrero, D. Haro, and J. Relat. 2020. Metabolic impact of flavonoids consumption in obesity: From central to peripheral. Nutrients 12 (8):2393. doi: 10.3390/nu12082393.
  • Santos, I. B., G. F. de Bem, V. S. C. Cordeiro, C. d Costa, L. de Carvalho, A. P. M. da Rocha, G. d Costa, D. T. Ognibene, R. S. de Moura, and A. C. Resende. 2017. Supplementation with Vitis vinifera L. skin extract improves insulin resistance and prevents hepatic lipid accumulation and steatosis in high-fat diet–fed mice. Nutrition Research (New York, N.Y.) 43:69–81. doi: 10.1016/j.nutres.2017.05.007.
  • Sasot, G., M. Martínez-Huélamo, A. Vallverdú-Queralt, M. Mercader-Martí, R. Estruch, and R. M. Lamuela-Raventós. 2017. Identification of phenolic metabolites in human urine after the intake of a functional food made from grape extract by a high resolution LTQ-Orbitrap-MS approach. Food Research International (Ottawa, ON) 100 (Pt 3):435–44. doi: 10.1016/j.foodres.2017.01.020.
  • Schoefer, L., R. Mohan, A. Schwiertz, A. Braune, and M. Blaut. 2003. Anaerobic degradation of flavonoids by clostridium orbiscindens. Applied and Environmental Microbiology 69 (10):5849–54. doi: 10.1128/AEM.69.10.5849-5854.2003.
  • Simonetti, G., F. D. D’Auria, N. Mulinacci, M. Innocenti, D. Antonacci, L. Angiolella, A. R. Santamaria, A. Valletta, L. Donati, and G. Pasqua. 2017. Anti-dermatophyte and anti-malassezia activity of extracts rich in polymeric flavan-3-ols obtained from Vitis vinifera seeds. Phytotherapy Research: PTR 31 (1):124–31. doi: 10.1002/ptr.5739.
  • Sivaprakasapillai, B., I. Edirisinghe, J. Randolph, F. Steinberg, and T. Kappagoda. 2009. Effect of grape seed extract on blood pressure in subjects with the metabolic syndrome. Metabolism: clinical and Experimental 58 (12):1743–6. doi: 10.1016/j.metabol.2009.05.030. PMID: 19608210
  • Song, P., R. Zhang, X. Wang, P. He, L. Tan, and X. Ma. 2011. Dietary grape-seed procyanidins decreased postweaning diarrhea by modulating intestinal permeability and suppressing oxidative stress in rats. Journal of Agricultural and Food Chemistry 59 (11):6227–32. doi: 10.1021/jf200120y.
  • Stalmach, A., C. A. Edwards, J. D. Wightman, and A. Crozier. 2012. Gastrointestinal stability and bioavailability of (poly)phenolic compounds following ingestion of concord grape juice by humans. Molecular Nutrition & Food Research 56 (3):497–509. doi: 10.1002/mnfr.201100566.
  • Stalmach, A., C. A. Edwards, J. D. Wightman, and A. Crozier. 2013. Colonic catabolism of dietary phenolic and polyphenolic compounds from concord grape juice. Food & Function 4 (1):52–62. doi: 10.1039/c2fo30151b.
  • Stephanie, D., M. Isabelle, H. Jean-feancois, T. Daniel, and A. Scalbert. 2003. Transport of proanthocyanidin dimer, trimer, and polymer across monolayers of human intestinal epithelial caco-2 cells. Antioxidants & Redox Signaling 3 (1):957–967. doi: 10.1089/152308601317203503.
  • Sun, B. S., T. Pinto, and M. C. Leandro. 1999. Transfer of catechins and proanthocyanidins from solid parts of the grape cluster into wine. American Journal of Enology & Viticulture 50 (2):179–84. doi: 10.1007/s001220051078.
  • Sun, B., A. M. Ribes, M. C. Leandro, A. P. Belchior, and M. I. Spranger. 2006. Stilbenes: Quantitative extraction from grape skins, contribution of grape solids to wine and variation during wine maturation. Analytica Chimica Acta 563 (1–2):382–90. doi: 10.1016/j.aca.2005.12.002.
  • Taladrid, D., M. De Celis, I. Belda, B. Bartolomé, and M. V. Moreno-Arribas. 2022. Hypertension-and glycaemia-lowering effects of a grape-pomace-derived seasoning in high-cardiovascular risk and healthy subjects. interplay with the gut microbiome. Food & Function 13 (4):2068–82. doi: 10.1039/d1fo03942c.
  • Taladrid, D., D. G. de Llano, I. Zorraquín-Peña, A. Tamargo, M. Silva, N. Molinero, M. V. Moreno-Arribas, and B. Bartolomé. 2021. Gastrointestinal digestion of a grape pomace extract: Impact on intestinal barrier permeability and interaction with gut microbiome. Nutrients 13 (7):2467. doi: 10.3390/nu13072467.
  • Touriño, S., E. Fuguet, M. P. Vinardell, M. Cascante, and J. L. Torres. 2009. Phenolic metabolites of grape antioxidant dietary fiber in rat urine. Journal of Agricultural and Food Chemistry 57 (23):11418–26. doi: 10.1021/jf901972c.
  • Touriño, S., J. Pérez-Jiménez, M. L. Mateos-Martín, E. Fuguet, M. P. Vinardell, M. Cascante, and J. L. Torres. 2011. Metabolites in contact with the rat digestive tract after ingestion of a phenolic-rich dietary fiber matrix. Journal of Agricultural and Food Chemistry 59 (11):5955–63. doi: 10.1021/jf200159f.
  • Tzounis, X., J. Vulevic, G. G. C. Kuhnle, T. George, J. Leonczak, G. R. Gibson, C. Kwik-Uribe, and J. P. E. Spencer. 2008. Flavanol monomer-induced changes to the human faecal microflora. The British Journal of Nutrition 99 (4):782–92. doi: 10.1017/S000711450785338.
  • Vlassopoulos, A., M. E. J. Lean, and E. Combet. 2015. Inhibition of protein glycation by phenolic acids: Physiological relevance and implication of protein-phenolic interactions. Proceedings of the Nutrition Society, 74 (OCE1), E88. doi: 10.1017/S0029665115001032.
  • Wang, B. 2012. Orthogonal test design for optimisation of extraction of trans-resveratrol from pinot noir-grape pomace. Natural Product Research 26 (9):821–9. doi: 10.1080/14786419.2011.559638.
  • Wang, C. D. 2004. Study on content of total polyphenols in abandoned branches of grapevine. North West Agriculture and Forestry University.
  • Wang, J. F., R. G. Li, W. Liu, C. Y. Liu, H. F. Xi, L. Ma, S. H. Li, and L. J. Wang. 2011. Progress on the major derivatives of resveratrol. Acta Horticulturae Sinica 38 (4):790–8. doi:CNKI:SUN:YYXB.0.2011-04-026.
  • Wang, L. Q., M. R. Meselhy, Y. Li, N. Nakamura, B. S. Min, G. W. Qin, and M. Hattori. 2001. The heterocyclic ring fission and dehydroxylation of catechins and related compounds by Eubacterium sp. strain SDG-2, a human intestinal bacterium. Chemical & Pharmaceutical Bulletin 49 (12):1640–3. doi: 10.1248/cpb.49.1640.
  • Waterhouse, A., G. L. Sacks, and D. W. Jeffery. 2016. Understanding wine chemistry. New Jersey: Wiley, 68–78. doi: 10.1002/9781118730720.
  • Williamson, G., and M. N. Clifford. 2010. Colonic metabolites of berry polyphenols: The missing link to biological activity? British Journal of Nutrition 104 (S3):S48–S66. doi: 10.1017/S0007114510003946.
  • Windey, K., V. De Preter, G. Huys, W. F. Broekaert, J. A. Delcour, T. Louat, J. Herman, and K. Verbeke. 2015. Wheat bran extract alters colonic fermentation and microbial composition, but does not affect faecal water toxicity: A randomised controlled trial in healthy subjects. British Journal of Nutrition 113 (2):225–38. doi: 10.1017/S0007114514003523.
  • Yang, P., C. Yuan, H. Wang, F. Han, Y. Liu, L. Wang, and Y. Liu. 2018. Stability of anthocyanins and their degradation products from cabernet sauvignon red wine under gastrointestinal pH and temperature conditions. Molecules 23 (2):354. doi: 10.3390/molecules23020354.
  • Zhang, L., M. Zhu, T. Shi, C. Guo, Y. Huang, Y. Chen, and M. Xie. 2017. Recovery of dietary fiber and polyphenol from grape juice pomace and evaluation of their functional properties and polyphenol compositions. Food & Function 8 (1):341–51. doi: 10.1039/c6fo01423b.
  • Zhou, P. H. 2016. Penglai regions in different white wine grape polyphenols diversity research. Liquor Maling 43 (2):89–92. doi: 10.3969/j.issn.1002-8110.2016.02.026.
  • Zhu, M. R., and Y. L. Fang. 2015. Research progress and application of grape polyphenol. China Brewing 34 (12):1–4. doi: 10.11882/j.issn.0254-5071.2015.12.001.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.