3,322
Views
13
CrossRef citations to date
0
Altmetric
Review Articles

Inhibitory mechanisms of polyphenols on heme protein-mediated lipid oxidation in muscle food: New insights and advances

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon

References

  • Abdulla, G., M. A. Abdel-Samie, and D. Zaki. 2016. Evaluation of the antioxidant and antimicrobial effects of ziziphus leaves extract in sausage during cold storage. Pakistan Journal of Food Science 26 (1):10–20.
  • Al-Hijazeen, M., E. J. Lee, A. Mendonca, and D. U. Ahn. 2016. Effects of tannic acid on lipid and protein oxidation, color, and volatiles of raw and cooked chicken breast meat during storage. Antioxidants 5 (2):19. doi: 10.3390/antiox5020019.
  • Arora, A., T. M. Byrem, M. G. Nair, and G. M. Strasburg. 2000. Modulation of liposomal membrane fluidity by flavonoids and isoflavonoids. Archives of Biochemistry and Biophysics 373 (1):102–9. doi: 10.1006/abbi.1999.1525.
  • Augusto, O., and G. Cilento. 1975. The effect of diphenols upon the autoxidation of oxyhemoglobin and oxymyoglobin. Archives of Biochemistry and Biophysics 168 (2):549–56. doi: 10.1016/0003-9861(75)90286-6.
  • Ayala, A., M. F. Munoz, and S. Arguelles. 2014. Lipid peroxidation: Production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxidative Medicine and Cellular Longevity 2014:360438. doi: 10.1155/2014/360438.
  • Ballesteros, A. T. 2009. Antioxidant distribution and effectiveness in a model muscle system. Amherst, MA, USA: University of Massachusetts Amherst.
  • Banasiak, E., and L. Gebicka. 2009. Flavonoids as reductants of ferryl hemoglobin. Acta Biochimica Polonica 56 (3):509–13. doi: 10.18388/abp.2009_2487.
  • Baniwal, P., R. Mehra, N. Kumar, S. Sharma, and S. Kumar. 2021. Cereals: Functional constituents and its health benefits. The Pharma Innovation 10 (3):1–7. doi: 10.22271/tpi.2021.v10.i2e.5681.
  • Barbieri, S., D. Mercatante, S. Balzan, S. Esposto, V. Cardenia, M. Servili, E. Novelli, A. Taticchi, and M. T. Rodriguez-Estrada. 2021. Improved oxidative stability and sensory quality of beef hamburgers enriched with a phenolic extract from olive vegetation water. Antioxidants 10 (12):1969. doi: 10.3390/antiox10121969.
  • Baron, C. P., and H. J. Andersen. 2002. Myoglobin-induced lipid oxidation. A review. Journal of Agricultural and Food Chemistry 50 (14):3887–97. doi: 10.1021/jf011394w.
  • Behl, T., A. Gupta, S. Chigurupati, S. Singh, A. Sehgal, V. N. Badavath, A. Alhowail, V. Mani, S. Bhatia, A. Al-Harrasi, et al. 2022. Natural and synthetic agents targeting reactive carbonyl species against metabolic syndrome. Molecules 27 (5):1583. doi: 10.3390/molecules2705.
  • Berasategi, I., I. Navarro-Blasco, M. I. Calvo, R. Y. Cavero, I. Astiasaran, and D. Ansorena. 2014. Healthy reduced-fat bologna sausages enriched in ALA and DHA and stabilized with Melissa officinalis extract. Meat Science 96 (3):1185–90. doi: 10.1016/j.meatsci.2013.10.023.
  • Berg, J. M., J. L. Tymoczko, and L. Stryer. 2002a. Oxidative phosphorylation. In Biochemistry, 491–526. New York, NY: W. H. Freeman and Company.
  • Berg, J. M., J. L. Tymoczko, and L. Stryer. 2002b. Protein structure and function. In Biochemistry, 41–76. New York, NY: W. H. Freeman and Company.
  • Berg, J. M., J. L. Tymoczko, and L. Stryer. 2002c. Regulatory strategies: Enzymes and hemoglobin. In Biochemistry, 261–94. New York, NY: W. H. Freeman and Company.
  • Biswas, M. S., and J. Mano. 2021. Lipid peroxide-derived reactive carbonyl species as mediators of oxidative stress and signaling. Frontiers in Plant Science 12:720867. doi: 10.3389/fpls.2021.720867.
  • Bolger, Z., N. P. Brunton, J. G. Lyng, and F. J. Monahan. 2016. Quality attributes and retention of vitamin e in reduced salt chicken sausages fortified with vitamin e. Journal of Food Science and Technology 53 (11):3948–59. doi: 10.1007/s13197-016-2385-7.
  • Bors, W., W. Heller, C. Michel, and M. Saran. 1990. Radical chemistry of flavonoid antioxidants. In Antioxidants in therapy and preventive medicine, edited by I. Emerit, L. Packer, and C. Auclair, 165–70. Boston, MA: Springer US. doi: 10.1007/978-1-4684-5730-8_25.
  • Brettonnet, A., A. Hewavitarana, S. Dejong, and M. C. Lanari. 2010. Phenolic acids composition and antioxidant activity of canola extracts in cooked beef, chicken and pork. Food Chemistry 121 (4):927–33. doi: 10.1016/j.foodchem.2009.11.021.
  • Brewer, M. S. 2011. Natural antioxidants: Sources, compounds, mechanisms of action, and potential applications. Comprehensive Reviews in Food Science and Food Safety 10 (4):221–47. doi: 10.1111/j.1541-4337.2011.00156.x.
  • Cai, H., E. W. Grunwald, S. Y. Park, B. Lei, and M. P. Richards. 2013. Lipid oxidation in trout muscle is strongly inhibited by a protein that specifically binds hemin released from hemoglobin. Journal of Agricultural and Food Chemistry 61 (17):4180–7. doi: 10.1021/jf4006142.
  • Cai, H., N. Tatiyaborworntham, J. Yin, and M. P. Richards. 2016. Assessing low redox stability of myoglobin relative to rapid hemin loss from hemoglobin. Journal of Food Science 81 (1):C42–8. doi: 10.1111/1750-3841.13159.
  • Cando, D., D. Morcuende, M. Utrera, and M. Estévez. 2014. Phenolic-rich extracts from willowherb (Epilobium hirsutum L.) inhibit lipid oxidation but accelerate protein carbonylation and discoloration of beef patties. European Food Research and Technology 238 (5):741–51. doi: 10.1007/s00217-014-2152-9.
  • Carlsen, C. U., J. K. S. Møller, and L. H. Skibsted. 2005. Heme-iron in lipid oxidation. Coordination Chemistry Reviews 249 (3–4):485–98. doi: 10.1016/j.ccr.2004.08.028.
  • Chakraborty, S., S. Chaudhuri, B. Pahari, J. Taylor, P. K. Sengupta, and B. Sengupta. 2012. A critical study on the interactions of hesperitin with human hemoglobin: Fluorescence spectroscopic and molecular modeling approach. Journal of Luminescence 132 (6):1522–8. doi: 10.1016/j.jlumin.2012.01.021.
  • Chen, J., J. Yang, L. Ma, J. Li, N. Shahzad, and C. K. Kim. 2020. Structure-antioxidant activity relationship of methoxy, phenolic hydroxyl, and carboxylic acid groups of phenolic acids. Scientific Reports 10 (1):2611. doi: 10.1038/s41598-020-59451-z.
  • Cheynier, V., and M. Moutounet. 1992. Oxidative reactions of caffeic acid in model systems containing polyphenol oxidase. Journal of Agricultural and Food Chemistry 40 (11):2038–44. doi: 10.1021/jf00023a002.
  • Cho, H. S., W. Park, G. E. Hong, J. H. Kim, M. G. Ju, and C. H. Lee. 2015. Antioxidant activity of Allium hookeri root extract and its effect on lipid stability of sulfur-fed pork patties. Korean Journal for Food Science of Animal Resources 35 (1):41–9. doi: 10.5851/kosfa.2015.35.1.41.
  • Cooper, C. E., D. J. Schaer, P. W. Buehler, M. T. Wilson, B. J. Reeder, G. Silkstone, D. A. Svistunenko, L. Bulow, and A. I. Alayash. 2013. Haptoglobin binding stabilizes hemoglobin ferryl iron and the globin radical on tyrosine β145. Antioxidants & Redox Signaling 18 (17):2264–73. doi: 10.1089/ars.2012.4547.
  • Das, S., S. Sarmah, Z. Hazarika, M. A. Rohman, P. Sarkhel, A. N. Jha, and A. Singha Roy. 2020. Targeting the heme protein hemoglobin by (-)-epigallocatechin gallate and the study of polyphenol-protein association using multi-spectroscopic and computational methods. Physical Chemistry Chemical Physics: PCCP 22 (4):2212–28. doi: 10.1039/c9cp05301h.
  • Davies, S. S., and L. S. Zhang. 2017. Reactive carbonyl species scavengers-novel therapeutic approaches for chronic diseases. Current Pharmacology Reports 3 (2):51–67. doi: 10.1007/s40495-017-0081-6.
  • De Graft-Johnson, J., and D. Nowak. 2016. Effect of selected plant phenolics on fe2+-edta-h2o2 system mediated deoxyribose oxidation: Molecular structure-derived relationships of anti-and pro-oxidant actions. Molecules 22 (1):59. doi: 10.3390/molecules22010059.
  • De Granada-Flor, A., C. Sousa, H. A. Filipe, M. S. C. Santos, and R. F. De Almeida. 2019. Quercetin dual interaction at the membrane level. Chemical Communications (Cambridge, England) 55 (12):1750–3. doi: 10.1039/c8cc09656b.
  • Delgado-Pando, G., S. I. Ekonomou, A. C. Stratakos, and T. Pintado. 2021. Clean label alternatives in meat products. Foods 10 (7):1615. doi: 10.3390/foods10071615.
  • Djenane, D., A. Sánchez‐Escalante, J. Beltrán, and P. Roncalés. 2001. Extension of the retail display life of fresh beef packaged in modified atmosphere by varying lighting conditions. Journal of Food Science 66 (1):181–6. doi: 10.1111/j.1365-2621.2001.tb15603.x.
  • Djimsa, B. A., A. Abraham, G. G. Mafi, D. L. Vanoverbeke, and R. Ramanathan. 2017. Effects of metmyoglobin reducing activity and thermal stability of NADH-dependent reductase and lactate dehydrogenase on premature browning in ground beef. Journal of Food Science 82 (2):304–13. doi: 10.1111/1750-3841.13606.
  • Dong, J., X. Li, Y. Zhou, Y. Lu, Y. Lv, Y. Chi, and Q. He. 2021. Interactions of gallic acid with porcine hemoglobin: Effect on the redox state and structure of hemoglobin. Journal of Agricultural and Food Chemistry 69 (1):397–403. doi: 10.1021/acs.jafc.0c06204.
  • Dunford, H. 2002. Oxidations of iron(ii)/(iii) by hydrogen peroxide: From aquo to enzyme. Coordination Chemistry Reviews 233–234:311–8. doi: 10.1016/S0010-8545(02)00024-3.
  • Elroy, N., J. Rogers, G. Mafi, D. Vanoverbeke, S. Hartson, and R. Ramanathan. 2015. Species-specific effects on non-enzymatic metmyoglobin reduction in vitro. Meat Science 105:108–13. doi: 10.1016/j.meatsci.2015.03.010.
  • Fabre, G., I. Bayach, K. Berka, M. Paloncýová, M. Starok, C. Rossi, J.-L. Duroux, M. Otyepka, and P. Trouillas. 2015. Synergism of antioxidant action of vitamins e, c and quercetin is related to formation of molecular associations in biomembranes. Chemical Communications (Cambridge, England) 51 (36):7713–6. doi: 10.1039/c5cc00636h.
  • Fao. 2021. Oecd-fao agricultural outlook 2021–30. Paris, France: OECD Publishing.
  • Friedman, M., and H. S. Jurgens. 2000. Effect of pH on the stability of plant phenolic compounds. Journal of Agricultural and Food Chemistry 48 (6):2101–10. doi: 10.1021/jf990489j.
  • Fukumoto, L. R., and G. Mazza. 2000. Assessing antioxidant and prooxidant activities of phenolic compounds. Journal of Agricultural and Food Chemistry 48 (8):3597–604. doi: 10.1021/jf000220w.
  • Giacomelli, C., K. Ckless, D. Galato, F. S. Miranda, and A. Spinelli. 2002. Electrochemistry of caffeic acid aqueous solutions with pH 2.0 to 8.5. Journal of the Brazilian Chemical Society 13 (3):332–8. doi: 10.1590/S0103-50532002000300007.
  • Girotti, A. W. 1998. Lipid hydroperoxide generation, turnover, and effector action in biological systems. Journal of Lipid Research 39 (8):1529–42. doi: 10.1016/S0022-2275(20)32182-9.
  • Gonzales, S. A., R. B. Pegg, R. K. Singh, and A. Mohan. 2021. Assessing the impact of 4-oxo-2-nonenal on lactate dehydrogenase activity and myoglobin redox stability. Food Bioscience 43:101306. doi: 10.1016/j.fbio.2021.101306.
  • Grunwald, E. W., and M. P. Richards. 2006a. Mechanisms of heme protein-mediated lipid oxidation using hemoglobin and myoglobin variants in raw and heated washed muscle. Journal of Agricultural and Food Chemistry 54 (21):8271–80. doi: 10.1021/jf061231d.
  • Grunwald, E. W., and M. P. Richards. 2006b. Studies with myoglobin variants indicate that released hemin is the primary promoter of lipid oxidation in washed fish muscle. Journal of Agricultural and Food Chemistry 54 (12):4452–60. doi: 10.1021/jf0603228.
  • Grunwald, E. W., and M. P. Richards. 2012. Effects of hemopexin on hemin and hemoglobin-mediated lipid oxidation in washed fish muscle. LWT - Food Science and Technology 46 (2):412–8. doi: 10.1016/j.lwt.2011.12.007.
  • Grunwald, E. W., N. Tatiyaborworntham, C. Faustman, and M. P. Richards. 2017. Effect of 4-hydroxy-2-nonenal on myoglobin-mediated lipid oxidation when varying histidine content and hemin affinity. Food Chemistry 227:289–97. doi: 10.1016/j.foodchem.2017.01.035.
  • Gustavsson, J., C. Cederberg, U. Sonesson, R. Van Otterdijk, and A. Meybeck. 2011. Global food losses and food waste. Rome: FAO.
  • Halake, K., M. Birajdar, and J. Lee. 2016. Structural implications of polyphenolic antioxidants. Journal of Industrial and Engineering Chemistry 35:1–7. doi: 10.1016/j.jiec.2016.01.003.
  • Han, X., T. Shen, and H. Lou. 2007. Dietary polyphenols and their biological significance. International Journal of Molecular Sciences 8 (9):950–88. doi: 10.3390/i8090950.
  • Harborne, J. B., and C. A. Williams. 2000. Advances in flavonoid research since 1992. Phytochemistry 55 (6):481–504. doi: 10.1016/S0031-9422(00)00235-1.
  • Harrysson, H., B. Swolin, M. Axelsson, and I. Undeland. 2020. A trout (oncorhynchus mykiss) perfusion model approach to elucidate the role of blood removal for lipid oxidation and colour changes in ice‐stored fish muscle. International Journal of Food Science & Technology 55 (6):2462–71. doi: 10.1111/ijfs.14497.
  • Hayes, J. E., V. Stepanyan, P. Allen, M. N. O'grady, N. M. O'brien, and J. P. Kerry. 2009. The effect of lutein, sesamol, ellagic acid and olive leaf extract on lipid oxidation and oxymyoglobin oxidation in bovine and porcine muscle model systems. Meat Science 83 (2):201–8. doi: 10.1016/j.meatsci.2009.04.019.
  • Hidalgo, F. J., I. Aguilar, and R. Zamora. 2017. Model studies on the effect of aldehyde structure on their selective trapping by phenolic compounds. Journal of Agricultural and Food Chemistry 65 (23):4736–43. doi: 10.1021/acs.jafc.7b01081.
  • Hu, M., and L. H. Skibsted. 2002. Kinetics of reduction of ferrylmyoglobin by (-)-epigallocatechin gallate and green tea extract. Journal of Agricultural and Food Chemistry 50 (10):2998–3003. doi: 10.1021/jf011535u.
  • Huang, Q., Y. Zhu, L. Lv, and S. Sang. 2020. Targeting the heme protein hemoglobin by (-)-epigallocatechin gallate and the study of polyphenol-protein association using multi-spectroscopic and computational methods. Molecular Nutrition & Food Research 64 (1):e1900274. doi: 10.1002/mnfr.201900274.
  • Huang, X., C. Wang, L. R. Celeste, L. L. Lovelace, S. Sun, J. H. Dawson, and L. Lebioda. 2012. Complex of myoglobin with phenol bound in a proximal cavity. Acta Crystallographica. Section F, Structural Biology and Crystallization Communications 68 (Pt 12):1465–71. doi: 10.1107/S1744309112045514.
  • Iglesias, J., M. Pazos, M. L. Andersen, L. H. Skibsted, and I. Medina. 2009. Caffeic acid as antioxidant in fish muscle: Mechanism of synergism with endogenous ascorbic acid and alpha-tocopherol. Journal of Agricultural and Food Chemistry 57 (2):675–81. doi: 10.1021/jf802888w.
  • Inai, M., Y. Miura, S. Honda, A. Masuda, and T. Masuda. 2014. Metmyoglobin reduction by polyphenols and mechanism of the conversion of metmyoglobin to oxymyoglobin by quercetin. Journal of Agricultural and Food Chemistry 62 (4):893–901. doi: 10.1021/jf404357h.
  • Jiang, J., and Y. L. Xiong. 2016. Natural antioxidants as food and feed additives to promote health benefits and quality of meat products: A review. Meat Science 120:107–17. doi: 10.1016/j.meatsci.2016.04.005.
  • Johns, A. M., L. H. Birkinshaw, and D. A. Ledward. 1989. Catalysts of lipid oxidation in meat products. Meat Science 25 (3):209–20. doi: 10.1016/0309-1740(89)90073-9.
  • Jongberg, S., N. E. Gislason, M. N. Lund, L. H. Skibsted, and A. L. Waterhouse. 2011. Thiol-quinone adduct formation in myofibrillar proteins detected by LC-MS. Journal of Agricultural and Food Chemistry 59 (13):6900–5. doi: 10.1021/jf200965s.
  • Jongberg, S., M. N. Lund, L. H. Skibsted, and M. J. Davies. 2014. Competitive reduction of perferrylmyoglobin radicals by protein thiols and plant phenols. Journal of Agricultural and Food Chemistry 62 (46):11279–88. doi: 10.1021/jf5041433.
  • Jongberg, S., M. A. Tørngren, A. Gunvig, L. H. Skibsted, and M. N. Lund. 2013. Effect of green tea or rosemary extract on protein oxidation in bologna type sausages prepared from oxidatively stressed pork. Meat Science 93 (3):538–46. doi: 10.1016/j.meatsci.2012.11.005.
  • Kassa, T., J. G. Whalin, M. P. Richards, and A. I. Alayash. 2021. Caffeic acid: An antioxidant with novel antisickling properties. FEBS Open Bio 11 (12):3293–303. doi: 10.1002/2211-5463.13295.
  • Kathirvel, P., and M. P. Richards. 2009. Mechanisms by which flavonol aglycones inhibit lipid oxidation better than glycosylated flavonols in comminuted muscle tissue. Food Chemistry 117 (1):75–82. doi: 10.1016/j.foodchem.2009.03.079.
  • Keppler, J. K., K. Schwarz, and A. J. Van Der Goot. 2020. Covalent modification of food proteins by plant-based ingredients (polyphenols and organosulphur compounds): A commonplace reaction with novel utilization potential. Trends in Food Science & Technology 101:38–49. doi: 10.1016/j.tifs.2020.04.023.
  • Kim, J. H., D. U. Ahn, J. B. Eun, and S. H. Moon. 2016. Antioxidant effect of extracts from the coffee residue in raw and cooked meat. Antioxidants 5 (3):21–31. doi: 10.3390/antiox5030021.
  • Kim, S. J., S. C. Min, H. J. Shin, Y. J. Lee, A. R. Cho, S. Y. Kim, and J. Han. 2013. Evaluation of the antioxidant activities and nutritional properties of ten edible plant extracts and their application to fresh ground beef. Meat Science 93 (3):715–22. doi: 10.1016/j.meatsci.2012.11.029.
  • Kim, Y., J. B. Keogh, and P. M. Clifton. 2016. Polyphenols and glycemic control. Nutrients 8 (1):17. doi: 10.3390/nu8010017.
  • Kroll, J., and H. M. Rawel. 2001. Reactions of plant phenols with myoglobin: Influence of chemical structure of the phenolic compounds. Journal of Food Science 66 (1):48–58. doi: 10.1111/j.1365-2621.2001.tb15580.x.
  • Kroll, J., H. M. Rawel, and N. Seidelmann. 2000. Physicochemical properties and susceptibility to proteolytic digestion of myoglobin-phenol derivatives. Journal of Agricultural and Food Chemistry 48 (5):1580–7. doi: 10.1021/jf991172m.
  • Kumar, H., N. Choudhary, N. Varsha, S. Kumar, and R. Seth. 2014. Phenolic compounds and their health benefits: A review. Journal of Food Research and Technology 2 (2):46–59.
  • Kumar, Y., D. N. Yadav, T. Ahmad, and K. Narsaiah. 2015. Recent trends in the use of natural antioxidants for meat and meat products. Comprehensive Reviews in Food Science and Food Safety 14 (6):796–812. doi: 10.1111/1541-4337.12156.
  • Lai, W.-F. 2021. Design of polymeric films for antioxidant active food packaging. International Journal of Molecular Sciences 23 (1):12. doi: 10.3390/ijms23010012.
  • Lapidot, T., R. Granit, and J. Kanner. 2005. Lipid hydroperoxidase activity of myoglobin and phenolic antioxidants in simulated gastric fluid. Journal of Agricultural and Food Chemistry 53 (9):3391–6. doi: 10.1021/jf040400w.
  • Larsson, K. J., and I. K. Undeland. 2010. Effect of caffeic acid on haemoglobin-mediated lipid and protein oxidation in washed cod mince during ice and frozen storage. Journal of the Science of Food and Agriculture 90 (14):2531–40. doi: 10.1002/jsfa.4121.
  • Lee, C.-H., C. G. Krueger, J. D. Reed, and M. P. Richards. 2006. Inhibition of hemoglobin-mediated lipid oxidation in washed fish muscle by cranberry components. Food Chemistry 99 (3):591–9. doi: 10.1016/j.foodchem.2005.08.027.
  • Leopoldini, M., N. Russo, and M. Toscano. 2011. The molecular basis of working mechanism of natural polyphenolic antioxidants. Food Chemistry 125 (2):288–306. doi: 10.1016/j.foodchem.2010.08.012.
  • Lesgards, J. F., C. Gauthier, J. Iovanna, N. Vidal, A. Dolla, and P. Stocker. 2011. Effect of reactive oxygen and carbonyl species on crucial cellular antioxidant enzymes. Chemico-Biological Interactions 190 (1):28–34. doi: 10.1016/j.cbi.2010.12.028.
  • Li, J., H. Zhang, X. Yang, L. Zhu, G. Wu, X. Qi, and H. Zhang. 2022. Trapping of reactive carbonyl species by fiber-bound polyphenols from whole grains under simulated physiological conditions. Food Research International (Ottawa, ON) 156:111142. doi: 10.1016/j.foodres.2022.111142.
  • Liu, F., Q. Xu, R. Dai, and Y. Ni. 2015. Effects of natural antioxidants on colour stability, lipid oxidation and metmyoglobin reducing activity in raw beef patties. Acta Scientiarum Polonorum. Technologia Alimentaria 14 (1):37–44. doi: 10.17306/J.AFS.2015.1.4.
  • Liu, H., H. Liu, W. Wang, C. Khoo, J. Taylor, and L. Gu. 2011. Cranberry phytochemicals inhibit glycation of human hemoglobin and serum albumin by scavenging reactive carbonyls. Food & Function 2 (8):475–82. doi: 10.1039/c1fo10087d.
  • Liu, S., Y. Zhang, G. Zhou, X. Ren, Y. Bao, Y. Zhu, X. Zeng, and Z. Peng. 2019. Lipolytic degradation, water and flavor properties of low sodium dry cured beef. International Journal of Food Properties 22 (1):1322–39. doi: 10.1080/10942912.2019.1642354.
  • Loncaric, M., I. Strelec, T. Moslavac, D. Subaric, V. Pavic, and M. Molnar. 2021. Lipoxygenase inhibition by plant extracts. Biomolecules 11 (2):152. doi: 10.3390/biom11020152.
  • López Durán, V., P. A. Larsson, and L. Wågberg. 2016. On the relationship between fibre composition and material properties following periodate oxidation and borohydride reduction of lignocellulosic fibres. Cellulose 23 (6):3495–510. doi: 10.1007/s10570-016-1061-4.
  • Lynch, M., and C. Faustman. 2000. Effect of aldehyde lipid oxidation products on myoglobin. Journal of Agricultural and Food Chemistry 48 (3):600–4. doi: 10.1021/jf990732e.
  • Mannino, M. H., R. S. Patel, A. M. Eccardt, B. E. Janowiak, D. C. Wood, F. He, and J. S. Fisher. 2020. Reversible oxidative modifications in myoglobin and functional implications. Antioxidants 9 (6):549. doi: 10.3390/antiox9060549.
  • Mano, J., S. Kanameda, R. Kuramitsu, N. Matsuura, and Y. Yamauchi. 2019. Detoxification of reactive carbonyl species by glutathione transferase Tau isozymes. Frontiers in Plant Science 10:487. doi: 10.3389/fpls.2019.00487.
  • Maqsood, S., and S. Benjakul. 2010. Comparative studies of four different phenolic compounds on in vitro antioxidative activity and the preventive effect on lipid oxidation of fish oil emulsion and fish mince. Food Chemistry 119 (1):123–32. doi: 10.1016/j.foodchem.2009.06.004.
  • Marcinkowska-Lesiak, M., E. Poławska, A. Stelmasiak, and A. Wierzbicka. 2017. Quality of pork loin stored under different light intensity. CyTA - Journal of Food 15 (3):336–43. doi: 10.1080/19476337.2016.1256912.
  • Marques, J. T., A. S. Viana, and R. F. De Almeida. 2014. A biomimetic platform to study the interactions of bioelectroactive molecules with lipid nanodomains. Langmuir 30 (42):12627–37. doi: 10.1021/la503086a.
  • Masuda, T., M. Inai, Y. Miura, A. Masuda, and S. Yamauchi. 2013. Effect of polyphenols on oxymyoglobin oxidation: Prooxidant activity of polyphenols in vitro and inhibition by amino acids. Journal of Agricultural and Food Chemistry 61 (5):1097–104. doi: 10.1021/jf304775x.
  • Matsuzaki, K., K. Kumatoriya, M. Tando, T. Kometani, and M. Shinohara. 2022. Polyphenols from persimmon fruit attenuate acetaldehyde-induced DNA double-strand breaks by scavenging acetaldehyde. Scientific Reports 12 (1):10300. doi: 10.1038/s41598-022-14374-9.
  • Milinčić, D. D., D. A. Popović, S. M. Lević, A. Ž. Kostić, ŽL. Tešić, V. A. Nedović, and M. B. Pešić. 2019. Application of polyphenol-loaded nanoparticles in food industry. Nanomaterials 9 (11):1629. doi: 10.3390/nano9111629.
  • Miller, N. J., and M. B. Ruiz-Larrea. 2002. Flavonoids and other plant phenols in the diet: Their significance as antioxidants. Journal of Nutritional & Environmental Medicine 12 (1):39–51. doi: 10.1080/13590840220123352.
  • Min, B., K. C. Nam, J. Cordray, and D. U. Ahn. 2008. Endogenous factors affecting oxidative stability of beef loin, pork loin, and chicken breast and thigh meats. Journal of Food Science 73 (6):C439–46. doi: 10.1111/j.1750-3841.2008.00805.x.
  • Miura, Y., M. Inai, S. Honda, A. Masuda, and T. Masuda. 2014. Reducing effects of polyphenols on metmyoglobin and the in vitro regeneration of bright meat color by polyphenols in the presence of cysteine. Journal of Agricultural and Food Chemistry 62 (39):9472–8. doi: 10.1021/jf5039508.
  • Mohan, A., A. Roy, K. Duggirala, and L. Klein. 2022. Oxidative reactions of 4-oxo-2-nonenal in meat and meat products. LWT 165:113747. doi: 10.1016/j.lwt.2022.113747.
  • Navarro, M., and F.J. Morales. 2015. Mechanism of reactive carbonyl species trapping by hydroxytyrosol under simulated physiological conditions. Food Chemistry 175: 92–9. doi: 10.1016/j.foodchem.2014.11.117.
  • Neunert, G., P. Górnaś, K. Dwiecki, A. Siger, and K. Polewski. 2015. Synergistic and antagonistic effects between alpha-tocopherol and phenolic acids in liposome system: Spectroscopic study. European Food Research and Technology 241 (6):749–57. doi: 10.1007/s00217-015-2500-4.
  • Ozcan, T., A. Akpinar-Bayizit, L. Yilmaz-Ersan, and B. Delikanli. 2014. Phenolics in human health. International Journal of Chemical Engineering and Applications 5 (5):393–6. doi: 10.7763/IJCEA.2014.V5.416.
  • Ozyurt, H., C. Luna, and M. Estevez. 2016. Redox chemistry of the molecular interactions between tea catechins and human serum proteins under simulated hyperglycemic conditions. Food & Function 7 (3):1390–400. doi: 10.1039/c5fo01525a.
  • Pahari, B., S. Chakraborty, B. Sengupta, S. Chaudhuri, W. Martin, J. Taylor, J. Henley, D. Davis, P. K. Biswas, A. K. Sharma, et al. 2013. Biophysical characterization of Genistein in its natural carrier human hemoglobin using spectroscopic and computational approaches. Food and Nutrition Sciences 04 (08):83–92. doi: 10.4236/fns.2013.48A011.
  • Papuc, C., M. Crivineanu, V. Nicorescu, C. Papuc, and C. Predescu. 2012. Increase of the stability to oxidation of lipids and proteins in carp muscle (Cyprinus carpio) subject to storage by freezing by polyphenols extracted from sea buckthorn fruits (Hippophae rhamnoides). Revista De Chimie Bucharest Original Edition 63 (12):1198–203.
  • Papuc, C., G. V. Goran, C. N. Predescu, V. Nicorescu, and G. Stefan. 2017. Plant polyphenols as antioxidant and antibacterial agents for shelf-life extension of meat and meat products: Classification, structures, sources, and action mechanisms. Comprehensive Reviews in Food Science and Food Safety 16 (6):1243–68. doi: 10.1111/1541-4337.12298.
  • Park, S. Y., I. Undeland, T. Sannaveerappa, and M. P. Richards. 2013. Novel interactions of caffeic acid with different hemoglobins: Effects on discoloration and lipid oxidation in different washed muscles. Meat Science 95 (1):110–7. doi: 10.1016/j.meatsci.2013.04.003.
  • Pawlikowska-Pawlęga, B., H. Dziubińska, E. Król, K. Trębacz, A. Jarosz-Wilkołazka, R. Paduch, A. Gawron, and W. I. Gruszecki. 2014. Characteristics of quercetin interactions with liposomal and vacuolar membranes. Biochimica et Biophysica Acta 1838 (1 Pt B):254–65. doi: 10.1016/j.bbamem.2013.08.014.
  • Pazos, M., M. L. Andersen, I. Medina, and L. H. Skibsted. 2007. Efficiency of natural phenolic compounds regenerating alpha-tocopherol from alpha-tocopheroxyl radical. Journal of Agricultural and Food Chemistry 55 (9):3661–6. doi: 10.1021/jf063165l.
  • Pazos, M., S. Lois, J. L. Torres, and I. Medina. 2006. Inhibition of hemoglobin-and iron-promoted oxidation in fish microsomes by natural phenolics. Journal of Agricultural and Food Chemistry 54 (12):4417–23. doi: 10.1021/jf0530300.
  • Platzer, M., S. Kiese, T. Herfellner, U. Schweiggert-Weisz, and P. Eisner. 2021. How does the phenol structure influence the results of the Folin-Ciocalteu assay? Antioxidants 10 (5)811. doi: 10.3390/antiox10050:.
  • Platzer, M., S. Kiese, T. Tybussek, T. Herfellner, F. Schneider, U. Schweiggert-Weisz, and P. Eisner. 2022. Radical scavenging mechanisms of phenolic compounds: A quantitative structure-property relationship (QSPR) study. Frontiers in Nutrition 9:882458. doi: 10.3389/fnut.2022.882458.
  • Potapovich, A. I., and V. A. Kostyuk. 2003. Comparative study of antioxidant properties and cytoprotective activity of flavonoids. Biochemistry. Biokhimiia 68 (5):514–9. doi: 10.1023/a:1023947424341.
  • Prabhu, S., A. Molath, H. Choksi, S. Kumar, and R. Mehra. 2021. Classifications of polyphenols and their potential application in human health and diseases. International Journal of Physiology, Nutrition and Physical Education 6 (1):293–301. doi: 10.22271/journalofsport.2021.v6.i1e.2236.
  • Raghavan, S., and M. P. Richards. 2006. Partitioning and inhibition of lipid oxidation in mechanically separated turkey by components of cranberry press cake. Journal of Agricultural and Food Chemistry 54 (17):6403–8. doi: 10.1021/jf061078n.
  • Ramanathan, R., R. A. Mancini, P. Joseph, S. Yin, N. Tatiyaborworntham, K. H. Petersson, Q. Sun, and M. R. Konda. 2011. Effects of lactate on ground lamb colour stability and mitochondria-mediated metmyoglobin reduction. Food Chemistry 126 (1):166–71. doi: 10.1016/j.foodchem.2010.10.093.
  • Ramanathan, R., S. P. Suman, and C. Faustman. 2020. Biomolecular interactions governing fresh meat color in post-mortem skeletal muscle: A review. Journal of Agricultural and Food Chemistry 68 (46):12779–87. doi: 10.1021/acs.jafc.9b08098.
  • Rashmi, H. B., and P. S. Negi. 2020. Phenolic acids from vegetables: A review on processing stability and health benefits. Food Research International (Ottawa, ON) 136:109298. doi: 10.1016/j.foodres.2020.109298.
  • Rasouli, H., M. H. Farzaei, and R. Khodarahmi. 2017. Polyphenols and their benefits: A review. International Journal of Food Properties 20 (2):1–41. 912.2017.1354017. doi: 10.1080/10942.
  • Ratnasari, N., M. Walters, and A. Tsopmo. 2017. Antioxidant and lipoxygenase activities of polyphenol extracts from oat brans treated with polysaccharide degrading enzymes. Heliyon 3 (7):e00351. doi: 10.1016/j.heliyon.2017.e00351.
  • Ravichandran, G., D. K. Lakshmanan, S. Murugesan, A. Elangovan, N. S. Rajasekaran, and S. Thilagar. 2021. Attenuation of protein glycation by functional polyphenolics of dragon fruit (Hylocereus polyrhizus); an in vitro and in silico evaluation. Food Research International (Ottawa, ON) 140:110081. doi: 10.1016/j.foodres.2020.110081.
  • Réblová, Z., J. Kudrnová, L. Trojáková, and J. Pokornya. 1999. Effect of rosemary extracts on the stabilization of frying oil during deepfat frying. Journal of Food Lipids 6 (1):13–23. doi: 10.1111/j.1745-4522.1999.tb00130.x.
  • Reeder, B. J., D. A. Svistunenko, C. E. Cooper, and M. T. Wilson. 2004. The radical and redox chemistry of myoglobin and hemoglobin: From in vitro studies to human pathology. Antioxidants & Redox Signaling 6 (6):954–66. doi: 10.1089/ars.2004.6.954.
  • Richards, M. P. 2010. Heme proteins and oxidation in fresh and processed meats. In Oxidation in foods and beverages and antioxidant applications, ed. Decker, EA, 76–104. London, UK: Woodhead Publishing. doi: 10.1533/9780857090447.1.77.
  • Richards, M. P., and H. O. Hultin. 2002. Contributions of blood and blood components to lipid oxidation in fish muscle. Journal of Agricultural and Food Chemistry 50 (3):555–64. doi: 10.1021/jf010562h.
  • Root, R. W. 1931. The respiratory function of the blood of marine fishes. The Biological Bulletin 61 (3):427–56. doi: 10.2307/1536959.
  • Sannaveerappa, T., H. Cai, M. P. Richards, and I. Undeland. 2014. Factors affecting the binding of trout HbI and HbIV to washed cod mince model system and their influence on lipid oxidation. Food Chemistry 143:392–7. doi: 10.1016/j.foodchem.2013.08.014.
  • Selvaraj, S., S. Krishnaswamy, V. Devashya, S. Sethuraman, and U. M. Krishnan. 2015. Influence of membrane lipid composition on flavonoid–membrane interactions: Implications on their biological activity. Progress in Lipid Research 58:1–13. doi: 10.1016/j.plipres.2014.11.002.
  • Sen, A. R., and P. K. Mandal. 2016. Use of natural antioxidants in muscle foods and their benefits in human health: An overview. International Journal of Meat Science 7 (1):1–5. doi: 10.3923/ijmeat.2017.1.5.
  • Shah, M. A., S. J. Bosco, and S. A. Mir. 2014. Plant extracts as natural antioxidants in meat and meat products. Meat Science 98 (1):21–33. doi: 10.1016/j.meatsci.2014.03.020.
  • Shang, X., J. Du, Y. Zhao, J. Tian, and S. Jiang. 2021. Effect of multiple freeze-thaw cycles on lipid degradation and lipid oxidation of grass carp surimi containing different amounts of pork back fat. Food Science of Animal Resources 41 (6):923–35. doi: 10.5851/kosfa.2021.e46.
  • Shikama, K. 1998. The molecular mechanism of autoxidation for myoglobin and hemoglobin: A venerable puzzle. Chemical Reviews 98 (4):1357–74. doi: 10.1021/cr970042e.
  • Shirasaka, N., H. Ohnishi, K. Sato, R. Miyamoto, T. Terashita, and H. Yoshizumi. 2005. Horseradish peroxidase degrades lipid hydroperoxides and suppresses lipid peroxidation of polyunsaturated fatty acids in the presence of phenolic antioxidants. Journal of Bioscience and Bioengineering 100 (6):653–6. doi: 10.1263/jbb.100.653.
  • Singh, N., and P. S. Rajini. 2008. Antioxidant-mediated protective effect of potato peel extract in erythrocytes against oxidative damage. Chemico-Biological Interactions 173 (2):97–104. doi: 10.1016/j.cbi.2008.03.008.
  • Singla, R. K., A. K. Dubey, A. Garg, R. K. Sharma, M. Fiorino, S. M. Ameen, M. A. Haddad, and M. Al-Hiary. 2019. Natural polyphenols: Chemical classification, definition of classes, subcategories, and structures. Journal of AOAC International 102 (5):1397–400. doi: 10.5740/jaoacint.19-0133.
  • Sinha, R., M. Gadhwal, U. Joshi, S. Srivastava, and G. Govil. 2012. Modifying effect of quercetin on model biomembranes: Studied by molecular dynamic simulation, DSC and NMR. Industrial Crops and Products 4 (1):70–9.
  • Stanic, D., E. Monogioudi, E. Dilek, J. Radosavljevic, M. Atanaskovic-Markovic, O. Vuckovic, L. Raija, M. Mattinen, J. Buchert, and T. C. Velickovic. 2010. Digestibility and allergenicity assessment of enzymatically crosslinked beta-casein. Molecular Nutrition & Food Research 54 (9):1273–84. doi: 10.1002/mnfr.200900184.
  • Sun, J., L. Sun, Y. Meng, X. Yang, and Y. Guo. 2017. Antioxidant activities of young apple polyphenols and its preservative effects on lipids and proteins in grass carp (Ctenopharyngodon idellus) fillets. CyTA - Journal of Food 15 (2):291–300. doi: 10.1080/19476337.2016.1250110.
  • Sun, X., R. A. Sarteshnizi, and C. C. Udenigwe. 2022. Recent advances in protein–polyphenol interactions focusing on structural properties related to antioxidant activities. Current Opinion in Food Science 45:100840. doi: 10.1016/j.cofs.2022.100840.
  • Tatiyaborworntham, N., C. Faustman, S. Yin, R. Ramanathan, R. A. Mancini, S. P. Suman, C. M. Beach, N. B. Maheswarappa, E. W. Grunwald, and M. P. Richards. 2012. Redox instability and hemin loss of mutant sperm whale myoglobins induced by 4-hydroxynonenal in vitro. Journal of Agricultural and Food Chemistry 60 (34):8473–83. doi: 10.1021/jf301770p.
  • Tatiyaborworntham, N., F. Oz, M. P. Richards, and H. Wu. 2022. Paradoxical effects of lipolysis on the lipid oxidation in meat and meat products. Food Chemistry: X 14:100317. doi: 10.1016/j.fochx.2022.100317.
  • Tatiyaborworntham, N., and M. P. Richards. 2018. Mechanisms involved in hemoglobin-mediated oxidation of lipids in washed fish muscle and inhibitory effects of phospholipase A2. Journal of the Science of Food and Agriculture 98 (7):2816–23. doi: 10.1002/jsfa.8779.
  • Tatiyaborworntham, N., J. Yin, and M. P. Richards. 2021. Factors influencing the antioxidant effect of phospholipase A2 against lipid oxidation promoted by trout hemoglobin and hemin in washed muscle. Food Chemistry 343:128428. doi: 10.1016/j.foodchem.2020.128428.
  • Teixeira, J., A. Gaspar, E. M. Garrido, J. Garrido, and F. Borges. 2013. Hydroxycinnamic acid antioxidants: An electrochemical overview. BioMed Research International 2013:251754. doi: 10.1155/2013/251754.
  • Thiansilakul, Y., S. Benjakul, E. W. Grunwald, and M. P. Richards. 2012. Retardation of myoglobin and haemoglobin-mediated lipid oxidation in washed bighead carp by phenolic compounds. Food Chemistry 134 (2):789–96. doi: 10.1016/j.foodchem.2012.02.182.
  • Tian, L., S. Zhang, J. Yi, Z. Zhu, L. Cui, E. A. Decker, and D. J. Mcclements. 2022. Factors impacting the antioxidant/prooxidant activity of tea polyphenols on lipids and proteins in oil-in-water emulsions. LWT 156:113024. doi: 10.1016/j.lwt.2021.113024.
  • Tian, R., L. Zhou, and N. Lu. 2022. Binding of quercetin to hemoglobin reduced hemin release and lipid oxidation. Journal of Agricultural and Food Chemistry 70 (40):12925–34. doi: 10.1021/acs.jafc.2c04129.
  • Tomović, V., M. Jokanović, B. Šojić, S. Škaljac, and M. Ivić. 2017. Plants as natural antioxidants for meat products. IOP Conference Series: Earth and Environmental Science 85:012030. doi: 10.1088/1755-1315/85/1/012030.
  • Tsuchiya, H., T. Tanaka, and M. Nagayama. 2008. Antiproliferative effects associated with membrane lipid interaction of green tea catechins. Journal of Health Science 54 (5):576–80. doi: 10.1248/jhs.54.576.
  • Undeland, I. 2016. Oxidative stability of seafood. In Oxidative stability and shelf life of foods containing oils and fats, 391–460. Amsterdam, Netherlands: Elsevier.
  • Van Acker, S. A., G. P. Van Balen, D. J. Van Den Berg, A. Bast, and W. J. Van Der Vijgh. 1998. Influence of iron chelation on the antioxidant activity of flavonoids. Biochemical Pharmacology 56 (8):935–43. doi: 10.1016/S0006-2952(98)00102-6.
  • Van Acker, S. A., D. J. Van Den Berg, M. N. Tromp, D. H. Griffioen, W. P. Van Bennekom, W. J. Van Der Vijgh, and A. Bast. 1996. Structural aspects of antioxidant activity of flavonoids. Free Radical Biology & Medicine 20 (3):331–42. doi: 10.1016/0891-5849(95)02047-0.
  • Wallace, W. J., and W. S. Caughey. 1975. Mechanism for the autoxidation of hemoglobin by phenols, nitrite and "oxidant" drugs. Peroxide formation by one electron donation to bound dioxygen. Biochemical and Biophysical Research Communications 62 (3):561–7. doi: 10.1016/0006-291X(75)90435-0.
  • Wang, R., J. Peng, X. Shi, S. Cao, Y. Xu, G. Xiao, and C. Li. 2022. Change in membrane fluidity induced by polyphenols is highly dependent on the position and number of galloyl groups. Biochimica et Biophysica Acta (BBA) - Biomembranes 1864 (11):184015. doi: 10.1016/j.bbamem.2022.184015.
  • Wang, T., R. Jónsdóttir, H. G. Kristinsson, G. Thorkelsson, C. Jacobsen, P. Y. Hamaguchi, and G. Ólafsdóttir. 2010. Inhibition of haemoglobin-mediated lipid oxidation in washed cod muscle and cod protein isolates by Fucus vesiculosus extract and fractions. Food Chemistry 123 (2):321–30. doi: 10.1016/j.foodchem.2010.04.038.
  • Whalin, J. G., L. Liu, S. A. Rankin, W. Zhang, and M. P. Richards. 2022. Color stability and lipid oxidation in pork sausage as affected by rosemary extract and phospholipase A2: A possible role for depletion of neutral lipid hydroperoxides. Journal of Food Processing and Preservation 46 (4):e15997. doi: 10.1111/jfpp.15997.
  • Wojtunik-Kulesza, K., A. Oniszczuk, T. Oniszczuk, M. Combrzyński, D. Nowakowska, and A. Matwijczuk. 2020. Influence of in vitro digestion on composition, bioaccessibility and antioxidant activity of food polyphenols-a non-systematic review. Nutrients 12 (5):1401. doi: 10.3390/nu12051401.
  • Wu, C. H., and G. C. Yen. 2005. Inhibitory effect of naturally occurring flavonoids on the formation of advanced glycation endproducts. Journal of Agricultural and Food Chemistry 53 (8):3167–73. doi: 10.1021/jf048550u.
  • Wu, H., M. Abdollahi, and I. Undeland. 2021. Effect of recovery technique, antioxidant addition and compositional features on lipid oxidation in protein enriched products from cod-salmon and herring backbones. Food Chemistry 360:129973. doi: 10.1016/j.foodchem.2021.129973.
  • Wu, H., S. Ghirmai, and I. Undeland. 2020. Stabilization of herring (Clupea harengus) by-products against lipid oxidation by rinsing and incubation with antioxidant solutions. Food Chemistry 316:126337. doi: 10.1016/j.foodchem.2020.126337.
  • Wu, H., S. Y. Park, and M. P. Richards. 2022. Effects of sodium chloride and sodium tripolyphosphate on the prooxidant properties of hemoglobin in washed muscle system. Food Chemistry: X 16:100480. doi: 10.1016/j.fochx.2022.100480.
  • Wu, H., M. P. Richards, and I. Undeland. 2022. Lipid oxidation and antioxidant delivery systems in muscle food. Comprehensive Reviews in Food Science and Food Safety 21 (2):1275–99. doi: 10.1111/1541-4337.12890.
  • Wu, H., M. Sajib, and I. Undeland. 2021. Controlling hemoglobin-mediated lipid oxidation in herring (Clupea harengus) co-products via incubation or dipping in a recyclable antioxidant solution. Food Control 125:107963. doi: 10.1016/j.foodcont.2021.107963.
  • Wu, H., N. Tatiyaborworntham, M. Hajimohammadi, E. A. Decker, M. P. Richards, and I. Undeland. 2022a. Model systems for studying lipid oxidation associated with muscle foods: Methods, challenges, and prospects. Critical Reviews in Food Science and Nutrition 63:1–19. doi: 10.1080/10408398.2022.2105302.
  • Wu, H., S. Xiao, J. Yin, J. Zhang, and M. P. Richards. 2021. Impact of lipid composition and muscle microstructure on myoglobin-mediated lipid oxidation in washed cod and pig muscle. Food Chemistry 336:127729. doi: 10.1016/j.foodchem.2020.127729.
  • Wu, H., J. Yin, S. Xiao, J. Zhang, and M. P. Richards. 2022b. Quercetin as an inhibitor of hemoglobin-mediated lipid oxidation: Mechanisms of action and use of molecular docking. Food Chemistry 384:132473. doi: 10.1016/j.foodchem.2022.132473.
  • Wu, H., J. Yin, J. Zhang, and M. P. Richards. 2017. Factors affecting lipid oxidation due to pig and turkey hemolysate. Journal of Agricultural and Food Chemistry 65 (36):8011–7. doi: 10.1021/acs.jafc.7b02764.
  • Xiao, J. B., J. L. Huo, F. Yang, and X. Q. Chen. 2011. Noncovalent interaction of dietary polyphenols with bovine hemoglobin in vitro: Molecular structure/property-affinity relationship aspects. Journal of Agricultural and Food Chemistry 59 (15):8484–90. doi: 10.1021/jf201536v.
  • Xu, Y., M. Han, M. Huang, and X. Xu. 2021. Enhanced heat stability and antioxidant activity of myofibrillar protein-dextran conjugate by the covalent adduction of polyphenols. Food Chemistry 352:129376. doi: 10.1016/j.foodchem.2021.129376.
  • Xu, Y., T. Nakano, and Y. Ochiai. 2021. Metmyoglobin reducing activity in the mitochondrial fraction from the dark muscle of tuna. Food Science and Technology Research 27 (3):397–403. doi: 10.3136/fstr.27.397.
  • Yang, X.-Y., B.-C. Xu, H.-M. Lei, L. Xin, L.-X. Zhu, Y.-M. Zhang, Y.-W. Mao, and R.-R. Liang. 2022. Effects of grape seed extract on meat color and premature browning of meat patties in high-oxygen packaging. Journal of Integrative Agriculture 21 (8):2445–55. doi: 10.1016/S2095-3119(21)63854-6.
  • Yin, J., C. A. Bingman, N. Tatiyaborworntham, W. Zhang, and M. P. Richards. 2016. Crystallization of quinone adducted to turkey hemoglobin and its role in inhibiting lipid oxidation. 62nd International Congress of Meat Science and Technology. Bangkok, Thailand.
  • Yin, S., C. Faustman, N. Tatiyaborworntham, R. Ramanathan, N. B. Maheswarappa, R. A. Mancini, P. Joseph, S. P. Suman, and Q. Sun. 2011. Species-specific myoglobin oxidation. Journal of Agricultural and Food Chemistry 59 (22):12198–203. doi: 10.1021/jf202844t.
  • Yin, S., C. Faustman, N. Tatiyaborworntham, R. Ramanathan, and Q. Sun. 2013. The effects of HNE on ovine oxymyoglobin redox stability in a microsome model. Meat Science 95 (2):224–8. doi: 10.1016/j.meatsci.2013.04.055.
  • Yuan, Y., B. Pan, X. Niu, X. Yao, M. Sun, M. Xu, and Q. Zhu. 2019. Impacts of epicatechin on the formation of advanced lipid oxidation end products (ALEs) in a fish oil oxidation model. LWT 111:582–7. doi: 10.1016/j.lwt.2019.05.081.
  • Zamora, R., and F. J. Hidalgo. 2016. The triple defensive barrier of phenolic compounds against the lipid oxidation-induced damage in food products. Trends in Food Science & Technology 54:165–74. doi: 10.1016/j.tifs.2016.06.006.
  • Zhang, H., J. Wu, and X. Guo. 2016. Effects of antimicrobial and antioxidant activities of spice extracts on raw chicken meat quality. Food Science and Human Wellness 5 (1):39–48. doi: 10.1016/j.fshw.2015.11.003.
  • Zhang, Y., X. Tian, Y. Jiao, Y. Wang, J. Dong, N. Yang, Q. Yang, W. Qu, and W. Wang. 2022. Free iron rather than heme iron mainly induces oxidation of lipids and proteins in meat cooking. Food Chemistry 382:132345. doi: 10.1016/j.foodchem.2022.132345.
  • Zhang, Y., F. Yang, M. A. Jamali, and Z. Peng. 2016. Antioxidant enzyme activities and lipid oxidation in rape (Brassica campestris L.) bee pollen added to salami during processing. Molecules 21 (11):1439–52. doi: 10.3390/molecules21111439.
  • Zhang, Y. Y., K. Thakur, C. K. Wei, H. Wang, J. G. Zhang, and Z. J. Wei. 2019. Evaluation of inhibitory activity of natural plant polyphenols on Soybean lipoxygenase by UFLC-mass spectrometry. South African Journal of Botany 120:179–85. doi: 10.1016/j.sajb.2018.05.002.
  • Zhou, B., L. M. Wu, L. Yang, and Z. L. Liu. 2005. Evidence for alpha-tocopherol regeneration reaction of green tea polyphenols in SDS micelles. Free Radical Biology & Medicine 38 (1):78–84. doi: 10.1016/j.freeradbiomed.2004.09.023.
  • Zhu, Q., Y. Qian, Z.-P. Zheng, C. Lo, F. Chen, and M. Wang. 2013. Natural polyphenols alleviated lipid peroxidation-induced modification on BSA. Journal of Functional Foods 5 (1):355–61. doi: 10.1016/j.jff.2012.11.006.
  • Zhu, Q., N. Q. Zhang, C. F. Lau, J. Chao, Z. Sun, R. C. Chang, F. Chen, and M. Wang. 2012. In vitro attenuation of acrolein-induced toxicity by phloretin, a phenolic compound from apple. Food Chemistry 135 (3):1762–8. doi: 10.1016/j.foodchem.2012.06.053.
  • Zhu, Q., Z. P. Zheng, K. W. Cheng, J. J. Wu, S. Zhang, Y. S. Tang, K. H. Sze, J. Chen, F. Chen, and M. Wang. 2009. Natural polyphenols as direct trapping agents of lipid peroxidation-derived acrolein and 4-hydroxy-trans-2-nonenal. Chemical Research in Toxicology 22 (10):1721–7. doi: 10.1021/tx900221s.