894
Views
6
CrossRef citations to date
0
Altmetric
Review Articles

Shared signaling pathways and targeted therapy by natural bioactive compounds for obesity and type 2 diabetes

, &

References

  • Abdulwahab, D. A., M. A. El-Missiry, S. Shabana, A. I. Othman, and M. E. Amer. 2021. Melatonin protects the heart and pancreas by improving glucose homeostasis, oxidative stress, inflammation, and apoptosis in T2DM-induced rats. Heliyon 7 (3):e06474. doi: 10.1016/j.heliyon.2021.e06474.
  • Agarwal, S., M. Chattopadhyay, S. Mukherjee, S. Dasgupta, S. Mukhopadhyay, and S. Bhattacharya. 2017. Fetuin-A downregulates adiponectin through the Wnt-PPARγ pathway in lipid-induced inflamed adipocytes. Biochimica et Biophysica Acta. Molecular Basis of Disease 1863 (1):174–81. doi: 10.1016/j.bbadis.2016.10.002.
  • Ahima, R. S, and J. S. Flier. 2000. Adipose tissue is an endocrine organ. Trends in Endocrinology & Metabolism 11 (8):327–32. doi: 10.1016/S1043-2760(00)00301-5.
  • Ahn, J., H. Lee, S. Kim, J. Park, and T. Ha. 2008. The anti-obesity effect of quercetin is mediated by the AMPK and MAPK signaling pathways. Biochemical and Biophysical Research Communications 373 (4):545–9. doi: 10.1016/j.bbrc.2008.06.077.
  • Akira, Y., K. Toshihisa, and S. Tatsuo. 2000. Regulation of osteoblast differentiation mediated by bone morphogenetic proteins, hedgehogs, and Cbfa1. Endocrine Reviews 4:393–411. doi: 10.1210/er.21.4.393.
  • Alexander, A, and C. L. Walker. 2011. The role of LKB1 and AMPK in cellular responses to stress and damage. FEBS Letters 585 (7):952–7. doi: 10.1016/j.febslet.2011.03.010.
  • Archer, E., C. J. Lavie, and J. O. Hill. 2018. The contributions of ‘diet’, ‘genes’, and physical activity to the etiology of obesity: Contrary evidence and consilience. Progress in Cardiovascular Diseases 61 (2):89–102. doi: 10.1016/j.pcad.2018.06.002.
  • Ariel, R., P. Sánchez, and N. Dahmane. 2002. Gli and hedgehog in cancer: Tumours, embryos and stem cells. Nature Reviews. Cancer 2 (5):361–72. doi: 10.1038/nrc796.
  • Atkinson, L. L., R. Kozak, S. E. Kelly, A. Onay Besikci, J. C. Russell, and G. D. Lopaschuk. 2003. Lopaschuk. Potential mechanisms and consequences of cardiac triacylglycerol accumulation in insulin-resistant rats. American Journal of Physiology. Endocrinology and Metabolism 284 (5):E923–30. doi: 10.1152/ajpendo.00360.2002.
  • Avruch, J. 1998. Insulin signal transduction through protein kinase cascades. Molecular and Cellular Biochemistry 182 (1–2):31–48. doi: 10.1023/A:1006823109415.
  • Axelsson, A. S., E. Tubbs, B. Mecham, S. Chacko, H. A. Nenonen, Y. Tang, J. W. Fahey, J. M. J. Derry, C. B. Wollheim, N. Wierup, et al. 2017. Sulforaphane reduces hepatic glucose production and improves glucose control in patients with type 2 diabetes. Science Translational Medicine 9 (394):eaah4477. doi: 10.1126/scitranslmed.aah4477.
  • Bao, Y., J. Xiao, Z. Weng, X. Lu, X. Shen, and F. Wang. 2020. A phenolic glycoside from Moringa oleifera Lam. Improves the carbohydrate and lipid metabolisms through AMPK in db/db mice. Food Chemistry 311:125948. doi: 10.1016/j.foodchem.2019.125948.
  • Barron, E., C. Bakhai, P. Kar, A. Weaver, D. Bradley, H. Ismail, P. Knighton, N. Holman, K. Khunti, N. Sattar, et al. 2020. Associations of type 1 and type 2 diabetes with COVID-19-related mortality in England: A whole-population study. The Lancet Diabetes & Endocrinology 8 (10):813–22. doi: 10.1016/S2213-8587(20)30272-2.
  • Benchoula, K., A. Arya, I. S. Parhar, and W. E. Hwa. 2021. FoxO1 signaling as a therapeutic target for type 2 diabetes and obesity. European Journal of Pharmacology 891:173758. doi: 10.1016/j.ejphar.2020.173758.
  • Benchoula, K., I. S. Parhar, and E. H. Wong. 2021. The crosstalk of hedgehog, PI3K and Wnt pathways in diabetes. Archives of Biochemistry and Biophysics 698:108743. doi: 10.1016/j.abb.2020.108743.
  • Bi, P, and S. Kuang. 2015. Notch signaling as a novel regulator of metabolism. Trends in Endocrinology and Metabolism: TEM 26 (5):248–55. doi: 10.1016/j.tem.2015.02.006.
  • Bi, P., T. Shan, W. Liu, F. Yue, X. Yang, X.-R. Liang, J. Wang, J. Li, N. Carlesso, X. Liu, et al. 2014. Inhibition of Notch signaling promotes browning of white adipose tissue and ameliorates obesity. Nature Medicine 20 (8):911–8. doi: 10.1038/nm.3615.
  • Blumenthal, A., S. Ehlers, J. Lauber, J. Buer, C. Lange, T. Goldmann, H. Heine, E. Brandt, and N. Reiling. 2006. The Wingless homolog WNT5A and its receptor Frizzled-5 regulate inflammatory responses of human mononuclear cells induced by microbial stimulation. Blood 108 (3):965–73. doi: 10.1182/blood-2005-12-5046.
  • Bolen, J. B, and J. S. Brugge. 1997. Leukocyte protein tyrosine kinases: Potential targets for drug discovery. Annual Review of Immunology 15 (1):371–404. doi: 10.1146/annurev.immunol.15.1.371.
  • Bolli, R., B. Dawn, Y, and T. Xuan. 2003. Role of the JAK-STAT pathway in protection against myocardial ischemia/reperfusion injury. Trends in Cardiovascular Medicine 13 (2):72–9. doi: 10.1016/S1050-1738(02)00230-X.
  • Callewaert, H. I., C. A. Gysemans, L. Ladrière, W. D’Hertog, J. Hagenbrock, L. Overbergh, D. L. Eizirik, and C. Mathieu. 2007. Deletion of STAT-1 pancreatic islets protects against streptozotocin-induced diabetes and early graft failure but not against late rejection. Diabetes 56 (8):2169–73. doi: 10.2337/db07-0052.
  • Cao, W., K. W. Daniel, J. Robidoux, P. Puigserver, A. V. Medvedev, X. Bai, L. M. Floering, B. M. Spiegelman, and S. Collins. 2004. P38 mitogen-activated protein kinase is the central regulator of cyclic AMP-dependent transcription of the brown fat uncoupling protein 1 gene. Molecular and Cellular Biology 24 (7):3057–67. doi: 10.1128/MCB.24.7.3057-3067.2004.
  • Chartoumpekis, D. V., D. L. Palliyaguru, N. Wakabayashi, N. K. H. Khoo, G. Schoiswohl, R. M. O’Doherty, and T. W. Kensler. 2015. Notch intracellular domain overexpression in adipocytes confers lipodystrophy in mice. Molecular Metabolism 4 (7):543–50. doi: 10.1016/j.molmet.2015.04.004.
  • Chau, M. D. L., J. Gao, Q. Yang, Z. Wu, and J. Gromada. 2010. Fibroblast growth factor 21 regulates energy metabolism by activating the AMPK-SIRT1-PGC-1alpha pathway. Proceedings of the National Academy of Sciences of the United States of America 107 (28):12553–8. doi: 10.1073/pnas.1006962107.
  • Chen, J., C. Bao, J. T. Kim, J. S. Cho, S. Qiu, and H. J. Lee. 2018. Sulforaphene inhibition of adipogenesis via hedgehog signaling in 3T3-L1 adipocytes. Journal of Agricultural and Food Chemistry 66 (45):11926–34. doi: 10.1021/acs.jafc.8b04330.
  • Chen, M. Z., J. C. Chang, J. Zavala-Solorio, L. Kates, M. Thai, A. Ogasawara, X. Bai, S. Flanagan, V. Nunez, K. Phamluong, et al. 2017. FGF21 mimetic antibody stimulates UCP1-independent brown fat thermogenesis via FGFR1/βKlotho complex in non-adipocytes. Molecular Metabolism 6 (11):1454–67. doi: 10.1016/j.molmet.2017.09.003.
  • Chen, J., C. Ning, J. Mu, D. Li, Y. Ma, and X. Meng. 2021. Role of Wnt signaling pathways in type 2 diabetes mellitus. Molecular and Cellular Biochemistry 476 (5):2219–32. doi: 10.1007/s11010-021-04086-5.
  • Chen, Z., T. Xing, J. Li, L. Zhang, Y. Jiang, and F. Gao. 2022. Oxidative stress induced by hydrogen peroxide promotes glycolysis by activating CaMKK/LKB1/AMPK pathway in broiler breast muscle. Poultry Science 101 (3):101681. doi: 10.1016/j.psj.2021.101681.
  • Chi, P. L., C. C. Lin, Y. W. Chen, L. D. Hsiao, and C. M. Yang. 2015. CO induces Nrf2-dependent heme oxygenase-1 transcription by cooperating with Sp1 and c-Jun in rat brain astrocytes. Molecular Neurobiology 52 (1):277–92. doi: 10.1007/s12035-014-8869-4.
  • Cho, Y. M., D. H. Kim, K. H. Lee, S. W. Jeong, and O. J. Kwon. 2018. The IRE1α-XBP1s pathway promotes insulin-stimulated glucose ­uptake in adipocytes by increasing PPARγ activity. Experimental & Molecular Medicine 50 (8):1–15. doi: 10.1038/s12276-018-0131-0.
  • Clevers, H. 2006. Wnt/beta-catenin signaling in development and disease. Cell 127 (3):469–80. doi: 10.1016/j.cell.2006.10.018.
  • Colby, D. W, and S. B. Prusiner. 2011. Prions. Cold Spring Harbor Perspectives in Biology 3 (1):a006833. doi: 10.1101/cshperspect.a006833.
  • Collins, Q. F., Y. Xiong, E. G. Lupo, H. Y. Liu, and W. Cao. 2006. P38 mitogen-activated protein kinase mediates free fatty acid-induced gluconeogenesis in hepatocytes. The Journal of Biological Chemistry 281 (34):24336–44. doi: 10.1074/jbc.m602177200.
  • Coppieters, K. T., F. Dotta, N. Amirian, P. D. Campbell, T. W. H. Kay, M. A. Atkinson, B. O. Roep, and M. G. Herrath. 2012. Demonstration of islet-autoreactive CD8 T cells in insulitic lesions from recent onset and long-term type 1 diabetes patients. The Journal of Experimental Medicine 209 (1):51–60. doi: 10.1084/jem.20111187.
  • Dérijard, B., M. Hibi, I. H. Wu, T. Barrett, B. Su, T. Deng, M. Karin, and R. J. Davis. 1994. JNK1: A protein kinase stimulated by UV light and Ha-Ras that binds and phosphorylates the c-Jun activation domain. Cell 76 (6):1025–37. doi: 10.1016/0092-8674(94)90380-8.
  • Derosa, G, and P. Maffioli. 2012. Anti-obesity drugs: A review about their effects and their safety. Expert Opinion on Drug Safety 11 (3):459–71. doi: 10.1517/14740338.2012.675326.
  • Dong, Q., G. Majumdar, R. N. O’Meally, R. N. Cole, M. B. Elam, and R. Raghow. 2020. Insulin-induced de novo lipid synthesis occurs mainly via mTOR-dependent regulation of proteostasis of SREBP-1c. Molecular and Cellular Biochemistry 463 (1–2):13–31. doi: 10.1007/s11010-019-03625-5.
  • Duseja, A., and Y. K. Chawla. 2014. Obesity and NAFLD. Clinics in Liver Disease 18 (1):59–71. doi: 10.1016/j.cld.2013.09.002.
  • Ejaz, A., L. Martinez-Guino, A. B. Goldfine, F. Ribas-Aulinas, V. De Nigris, S. Ribó, A. Gonzalez-Franquesa, P. M. Garcia-Roves, E. Li, J. M. Dreyfuss, et al. 2016. Dietary betaine supplementation increases Fgf21 levels to improve glucose homeostasis and reduce hepatic lipid accumulation in mice. Diabetes 65 (4):902–12. doi: 10.2337/db15-1094.
  • Engin, A. 2017. The definition and prevalence of obesity and metabolic syndrome. Advances in Experimental Medicine and Biology 960:1–17. doi: 10.1007/978-3-319-48382-5_1.
  • Fisher, F. M., J. L. Estall, A. C. Adams, P. J. Antonellis, H. A. Bina, J. S. Flier, A. Kharitonenkov, B. M. Spiegelman, and E. Maratos-Flier. 2011. Integrated regulation of hepatic metabolism by fibroblast growth factor 21 (FGF21) in vivo. Endocrinology 152 (8):2996–3004. doi: 10.1210/en.2011-0281.
  • Foster, S. L., D. C. Hargreaves, and R. Medzhitov. 2007. Gene-specific control of inflammation by TLR-induced chromatin modifications. Nature 447 (7147):972–8. doi: 10.1038/nature05836.
  • Garg, N., G. Thakur, H. Khan, A. Kaur, and A. Mannan. 2021. Mechanistic interventions of selected ocimum species in management of diabetes, obesity and liver disorders: Transformative developments from preclinical to clinical approaches. Biointerface Research in Applied Chemistry 12 (1):1304–23. doi: 10.33263/BRIAC121.13041323.
  • Ge, X., P. Lyu, Y. Gu, L. Li, J. Li, Y. Wang, L. Zhang, C. Fu, and Z. Cao. 2015. Sonic hedgehog stimulates glycolysis and proliferation of breast cancer cells: Modulation of PFKFB3 activation. Biochemical and Biophysical Research Communications 464 (3):862–8. doi: 10.1016/j.bbrc.2015.07.052.
  • Geng, L., K. S. L. Lam, and A. Xu. 2020. The therapeutic potential of FGF21 in metabolic diseases: From bench to clinic. Nature Reviews. Endocrinology 16 (11):654–67. doi: 10.1038/s41574-020-0386-0.
  • Guo, C., L. Zhao, Y. Li, X. Deng, and G. Yuan. 2021. Relationship between FGF21 and drug or nondrug therapy of type 2 diabetes mellitus. Journal of Cellular Physiology 236 (1):55–67. doi: 10.1002/jcp.29879.
  • Gurzov, E. N., W. J. Stanley, E. G. Pappas, H. E. Thomas, and D. J. Gough. 2016. The JAK/STAT pathway in obesity and diabetes. The FEBS Journal 283 (16):3002–15. doi: 10.1111/febs.13709.
  • Gwinn, D. M., D. B. Shackelford, D. F. Egan, M. M. Mihaylova, A. Mery, D. S. Vasquez, B. E. Turk, and R. J. Shaw. 2008. AMPK phosphorylation of raptor mediates a metabolic checkpoint. Molecular Cell 30 (2):214–26. doi: 10.1016/j.molcel.2008.03.003.
  • Haizhao, S., Z. Zihuan, W. Jianan, L. Jia, C. Qiang, Z. Xiaodong, and P. Jonathan. 2016. White pitaya (Hylocereus undatus) juice attenuates insulin resistance and hepatic steatosis in diet-induced obese mice. Plos One. 11 (2):e0149670. doi: 10.1371/journal.pone.0149670.
  • Han, H.-S., H.-H. Lee, H.-S. Gil, K.-S. Chung, J.-K. Kim, D.-H. Kim, J. Yoon, E. K. Chung, J. K. Lee, W. M. Yang, et al. 2021. Standardized hot water extract from the leaves of Hydrangea serrata (Thunb.) Ser. Alleviates obesity via the AMPK pathway and modulation of the gut microbiota composition in high fat diet-induced obese mice. Food & Function 12 (6):2672–85. doi: 10.1039/d0fo02185g.
  • Hanna, A, and L. A. Shevde. 2016. Erratum to: “Hedgehog signaling: Modulation of cancer properties and tumor microenvironment”. Molecular Cancer 15 (1):35. doi: 10.1186/s12943-016-0522-6.
  • Hannon, T. S., G. Rao, and S. A. Arslanian. 2005. Childhood obesity and type 2 diabetes mellitus. Pediatrics 116 (2):473–80. doi: 10.1542/peds.2004-2536.
  • Hardie, D. G, and D. R. Alessi. 2013. LKB1 and AMPK and the cancer-metabolism link—Ten years after. BMC Biology 11:36. doi: 10.1186/1741-7007-11-36.
  • He, J., T. Sheng, A. A. Stelter, C. Li, X. Zhang, M. Sinha, B. A. Luxon, and J. Xie. 2006. Suppressing Wnt signaling by the hedgehog pathway through sFRP-1. The Journal of Biological Chemistry 281 (47):35598–602. doi: 10.1074/jbc.C600200200.
  • Himori, N., K. Yamamoto, K. Maruyama, M. Ryu, K. Taguchi, M. Yamamoto, and T. Nakazawa. 2013. Critical role of Nrf2 in oxidative stress-induced retinal ganglion cell death. Journal of Neurochemistry 127 (5):669–80. doi: 10.1111/jnc.12325.
  • Hoeflich, K. P., J. Luo, E. A. Rubie, M. S. Tsao, O. Jin, and J. R. Woodgett. 2000. Requirement for glycogen synthase kinase-3beta in cell survival and NF-kappaB activation. Nature 406 (6791):86–90. doi: 10.1038/35017574.
  • Hotamisligil, G. S. 2010. Endoplasmic reticulum stress and the inflammatory basis of metabolic disease. Cell 140 (6):900–17. doi: 10.1016/j.cell.2010.02.034.
  • Hui, C. C, and S. Angers. 2011. Gli proteins in development and disease. Annual Review of Cell and Developmental Biology 27 (1):513–37. doi: 10.1146/annurev-cellbio-092910-154048.
  • Iida, S., W. Chen, T. Nakadai, Y. Ohkuma, and R. G. Roeder. 2015. PRDM16 enhances nuclear receptor-dependent transcription of the brown fat-specific Ucp1 gene through interactions with Mediator subunit MED1. Genes & Development 29 (3):308–21. doi: 10.1101/gad.252809.114.
  • Inagaki, T., J. Sakai, and S. Kajimura. 2017. Transcriptional and epigenetic control of brown and beige adipose cell fate and function. Nature Reviews. Molecular Cell Biology 18 (8):527. doi: 10.1038/nrm.2017.72.
  • Jaiswal, A. K. 2004. Nrf2 signaling in coordinated activation of antioxidant gene expression. Free Radical Biology & Medicine 36 (10):1199–207. doi: 10.1016/j.freeradbiomed.2004.02.074.
  • Jiang, M., J. He, H. Gu, Y. Yang, Y. Huang, X. Xu, and L. Liu. 2020. Protective effect of resveratrol on obesity-related osteoarthritis via alleviating JAK2/STAT3 signaling pathway is independent of SOCS3. Toxicology and Applied Pharmacology 388:114871. doi: 10.1016/j.taap.2019.114871.
  • Jiang, S., C. Yan, Q.-C. Fang, M.-L. Shao, Y.-L. Zhang, Y. Liu, Y.-P. Deng, B. Shan, J.-Q. Liu, H.-T. Li, et al. 2014. Fibroblast growth factor 21 is regulated by the IRE1α-XBP1 branch of the unfolded protein response and counteracts endoplasmic reticulum stress-induced hepatic steatosis. The Journal of Biological Chemistry 289 (43):29751–65. doi: 10.1074/jbc.M114.565960.
  • Jin, W., Y. Xue, Y. Xue, X. Han, Q. Song, J. Zhang, Z. Li, J. Cheng, S. Guan, S. Sun, et al. 2020. Tannic acid ameliorates arsenic trioxide-induced nephrotoxicity, contribution of NF-κB and Nrf2 pathways. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie 126:110047. doi: 10.1016/j.biopha.2020.110047.
  • Jung, S.-R., N.-J. Song, H. S. Hwang, J. J. An, Y.-J. Cho, H. Y. Kweon, S.-W. Kang, K. G. Lee, K. Yoon, B.-J. Kim, et al. 2011. Silk peptides inhibit adipocyte differentiation through modulation of the Notch pathway in C3H10T1/2 cells. Nutrition Research (New York, N.Y.) 31 (9):723–30. doi: 10.1016/j.nutres.2011.08.010.
  • Karin, M., Y. Cao, F. R. Greten, and Z. W. Li. 2002. NF-kappaB in cancer: From innocent bystander to major culprit. Nature Reviews. Cancer 2 (4):301–10. doi: 10.1038/nrc780.
  • Kim, Y., H. Lee, S. Y. Kim, and Y. Lim. 2019. Effects of lespedeza bicolor extract on regulation of AMPK associated hepatic lipid metabolism in type 2 diabetic mice. Antioxidants 8 (12):599. doi: 10.3390/antiox8120599.
  • Kim, W. K., V. Meliton, C. M. Amantea, T. J. Hahn, and F. Parhami. 2007. 20(S)-hydroxycholesterol inhibits PPARgamma expression and adipogenic differentiation of bone marrow stromal cells through a hedgehog-dependent mechanism. Journal of Bone and Mineral Research: The Official Journal of the American Society for Bone and Mineral Research 22 (11):1711–9. doi: 10.1359/jbmr.070710.
  • Kim, M., K. Song, and Y. S. Kim. 2017. Alantolactone improves palmitate-induced glucose intolerance and inflammation in both lean and obese states in vitro: Adipocyte and adipocyte-macrophage co-culture system. International Immunopharmacology 49:187–94. doi: 10.1016/j.intimp.2017.05.037.
  • Kobayashi, A., M.-I. Kang, H. Okawa, M. Ohtsuji, Y. Zenke, T. Chiba, K. Igarashi, and M. Yamamoto. 2004. Oxidative stress sensor Keap1 functions as an adaptor for Cul3-based E3 ligase to regulate proteasomal degradation of Nrf2. Molecular and Cellular Biology 24 (16):7130–9. doi: 10.1128/MCB.24.16.7130-7139.2004.
  • Könner, A. C, and J. C. Brüning. 2011. Toll-like receptors: Linking inflammation to metabolism. Trends in Endocrinology and Metabolism: TEM 22 (1):16–23. doi: 10.1016/j.tem.2010.08.007.
  • Lamming, D. W, and D. M. Sabatini. 2013. A central role for mTOR in lipid homeostasis. Cell Metabolism 18 (4):465–9. doi: 10.1016/j.cmet.2013.08.002.
  • Laplante, M, and D. M. Sabatini. 2012. MTOR signaling in growth control and disease. Cell 149 (2):274–93. doi: 10.1016/j.cell.2012.03.017.
  • Lee, J. H., J. K. Jeong, and S. Y. Park. 2014. Sulforaphane-induced autophagy flux prevents prion protein-mediated neurotoxicity through AMPK pathway. Neuroscience 278:31–9. doi: 10.1016/j.neuroscience.2014.07.072.
  • Lee, D. H., S. H. Park, E. Lee, H. D. Seo, J. Ahn, Y. J. Jang, T. Y. Ha, S. S. Im, and C. H. Jung. 2021. Withaferin A exerts an anti-obesity effect by increasing energy expenditure through thermogenic gene expression in high-fat diet-fed obese mice. Phytomedicine: International Journal of Phytotherapy and Phytopharmacology 82:153457. doi: 10.1016/j.phymed.2020.153457.
  • Liangpunsakul, S., R. A. Ross, and D. W. Crabb. 2013. Activation of carbohydrate response element-binding protein by ethanol. Journal of Investigative Medicine: The Official Publication of the American Federation for Clinical Research 61 (2):270–7. doi: 10.2310/JIM.0b013e31827c2795.
  • Liao, Z., J. Zhang, B. Liu, T. Yan, F. Xu, F. Xiao, B. Wu, K. Bi, and Y. Jia. 2019. Polysaccharide from okra (Abelmoschus esculentus (L.) Moench) improves antioxidant capacity via PI3K/AKT pathways and Nrf2 translocation in a type 2 diabetes model. Molecules 24 (10):1906. doi: 10.3390/molecules24101906.
  • Lichanska, A. M, and M. J. Waters. 2008. How growth hormone controls growth, obesity and sexual dimorphism. Trends in Genetics: TIG 24 (1):41–7. doi: 10.1016/j.tig.2007.10.006.
  • Li, Q. Y., L. Chen, M. M. Yan, X. J. Shi, and M. K. Zhong. 2015. Tectorigenin regulates adipogenic differentiation and adipocytokines secretion via PPARγ and IKK/NF-κB signaling. Pharmaceutical Biology 53 (11):1567–75. doi: 10.3109/13880209.2014.993038.
  • Li, R., Y. Liu, Y. G. Shan, L. Gao, F. Wang, and C. G. Qiu. 2019. Bailcalin protects against diabetic cardiomyopathy through Keap1/Nrf2/AMPK-mediated antioxidative and lipid-lowering effects. Oxidative Medicine and Cellular Longevity 2019:1–15. doi: 10.1155/2019/3206542.
  • Li, L., W. Luo, Y. Qian, W. Zhu, J. Qian, J. Li, Y. Jin, X. Xu, and G. Liang. 2019. Luteolin protects against diabetic cardiomyopathy by inhibiting NF-κB-mediated inflammation and activating the Nrf2-mediated antioxidant responses. Phytomedicine: International Journal of Phytotherapy and Phytopharmacology 59:152774. doi: 10.1016/j.phymed.2018.11.034.
  • Lin, Z., H. Tian, K. S. L. Lam, S. Lin, R. C. L. Hoo, M. Konishi, N. Itoh, Y. Wang, S. R. Bornstein, A. Xu, et al. 2013. Adiponectin mediates the metabolic effects of FGF21 on glucose homeostasis and insulin sensitivity in mice. Cell Metabolism 17 (5):779–89. doi: 10.1016/j.cmet.2013.04.005.
  • Liou, C. J., Y. K. Lee, N. C. Ting, Y. L. Chen, S. C. Shen, S. J. Wu, and W. C. Huang. 2019. Protective effects of licochalcone A ameliorates obesity and non-alcoholic fatty liver disease via promotion of the Sirt-1/AMPK pathway in mice fed a high-fat diet. Cells 8 (5):447. doi: 10.3390/cells8050447.
  • Li, Y., J. Roberts, Z. Akhavanaghdam, and N. Hao. 2017. Mitogen-activated protein kinase (MAPK) dynamics determine cell fate in the yeast mating response. The Journal of Biological Chemistry 292 (50):20354–61. doi: 10.1074/jbc.AC117.000548.
  • Littler, D. R., J. R. Walker, T. Davis, L. E. Wybenga-Groot, P. J. Finerty, E. Newman, F. Mackenzie, and S. Dhe-Paganon. 2010. A conserved mechanism of autoinhibition for the AMPK kinase domain: ATP-binding site and catalytic loop refolding as a means of regulation. Acta Crystallographica. Section F, Structural Biology and Crystallization Communications 66 (Pt 2):143–51. doi: 10.1107/S1744309109052543.
  • Liu, F., M. Feng, J. Xing, and X. X. Zhou. 2021. Timosaponin alleviates oxidative stress in rats with high fat diet-induced obesity via activating Nrf2/HO-1 and inhibiting the NF-κB pathway. European Journal of Pharmacology 909:174377. 10.1016/j.ejphar.
  • Liu, R., J. Meng, and D. Lou. 2021. Adiponectin inhibits D-gal-induced cardiomyocyte senescence via AdipoR1/APPL1. Molecular Medicine Reports 24 (4):719. doi: 10.3892/mmr.2021.12358.
  • Liu, G. H., J. Qu, and X. Shen. 2008. NF-kappaB/p65 antagonizes Nrf2-ARE pathway by depriving CBP from Nrf2 and facilitating recruitment of HDAC3 to MafK. Biochimica et Biophysica Acta 1783 (5):713–27. doi: 10.1016/j.bbamcr.2008.01.002.
  • Liu, T. Y., C. X. Shi, R. Gao, H. J. Sun, X. Q. Xiong, L. Ding, Q. Chen, Y. H. Li, J. J. Wang, Y. M. Kang, et al. 2015. Irisin inhibits hepatic gluconeogenesis and increases glycogen synthesis via the PI3K/Akt pathway in type 2 diabetic mice and hepatocytes. Clinical Science (London, England: 1979) 129 (10):839–50. doi: 10.1042/CS20150009.
  • Liu, Y., D. Vertommen, M. H. Rider, and Y. C. Lai. 2013. Mammalian target of rapamycin-independent S6K1 and 4E-BP1 phosphorylation during contraction in rat skeletal muscle. Cellular Signalling 25 (9):1877–86. doi: 10.1016/j.cellsig.2013.05.005.
  • Li, C., H. Wu, S. Wang, and J. Zhu. 2016. Expression and correlation of NRF2, KEAP1, NQO-1 and HO-1 in advanced squamous cell carcinoma of the larynx and their association with clinicopathologic features. Molecular Medicine Reports 14 (6):5171–9. doi: 10.3892/mmr.2016.5913.
  • López, M, and M. Tena-Sempere. 2017. Estradiol effects on hypothalamic AMPK and BAT thermogenesis: A gateway for obesity treatment? Pharmacology & Therapeutics 178:109–22. doi: 10.1016/j.pharmthera.2017.03.014.
  • Lu, Y. C., W. C. Yeh, and P. S. Ohashi. 2008. LPS/TLR4 signal transduction pathway. Cytokine 42 (2):145–51. doi: 10.1016/j.cyto.2008.01.006.
  • Luo, K., X. Wang, and G. Zhang. 2019. Starch and β-glucan in a whole-grain-like structural form improve hepatic insulin sensitivity in diet-induced obese mice. Food & Function 10 (8):5091–101. doi: 10.1039/c9fo00798a.
  • Luu, W., L. J. Sharpe, J. Stevenson, and A. J. Brown. 2012. Akt acutely activates the cholesterogenic transcription factor SREBP-2. Biochimica et Biophysica Acta 1823 (2):458–64. doi: 10.1016/j.bbamcr.2011.09.017.
  • Lv, N., M. Y. Song, E. K. Kim, J. W. Park, K. B. Kwon, and B. H. Park. 2008. Guggulsterone, a plant sterol, inhibits NF-kappaB activation and protects pancreatic beta cells from cytokine toxicity. Molecular and Cellular Endocrinology 289 (1-2):49–59. doi: 10.1016/j.mce.2008.02.001.
  • Ma, Q. 2013. Role of Nrf2 in oxidative stress and toxicity. Annual Review of Pharmacology and Toxicology 53 (1):401–26. doi: 10.1146/annurev-pharmtox-011112-140320.
  • Madduma Hewage, S., K. K. W. Au-Yeung, S. Prashar, C. U. B. Wijerathne, K. O, and Y. L. Siow. 2022. Lingonberry improves hepatic lipid metabolism by targeting Notch1 signaling. Antioxidants 11 (3):472. doi: 10.3390/antiox11030472.
  • Magesh, S., Y. Chen, and L. Hu. 2012. Small molecule modulators of Keap1-Nrf2-ARE pathway as potential preventive and therapeutic agents. Medicinal Research Reviews 32 (4):687–726. doi: 10.1002/med.21257.
  • Mairet-Coello, G., J. Courchet, S. Pieraut, V. Courchet, A. Maximov, and F. Polleux. 2013. The CAMKK2-AMPK kinase pathway mediates the synaptotoxic effects of Aβ oligomers through Tau phosphorylation. Neuron 78 (1):94–108. doi: 10.1016/j.neuron.2013.02.003.
  • Malik, S., K. Suchal, S. I. Khan, J. Bhatia, K. Kishore, A. K. Dinda, and D. S. Arya. 2017. Apigenin ameliorates streptozotocin-induced diabetic nephropathy in rats via MAPK-NF-κB-TNF-α and TGF-β1-MAPK-fibronectin pathways. American Journal of Physiology. Renal Physiology 313 (2):F414–F422. doi: 10.1152/ajprenal.00393.2016.
  • Mao, D., X. Y. Tian, D. Mao, S. W. Hung, C. C. Wang, C. B. S. Lau, H. M. Lee, C. K. Wong, E. Chow, X. Ming, et al. 2020. A polysaccharide extract from the medicinal plant Maidong inhibits the IKK-NF-κB pathway and IL-1β-induced islet inflammation and increases insulin secretion. The Journal of Biological Chemistry 295 (36):12573–87. doi: 10.1074/jbc.RA120.014357.
  • Marsin, A. S., C. Bouzin, L. Bertrand, and L. Hue. 2002. The stimulation of glycolysis by hypoxia in activated monocytes is mediated by AMP-activated protein kinase and inducible 6-phosphofructo-2-kinase. The Journal of Biological Chemistry 277 (34):30778–83. doi: 10.1074/jbc.M205213200.
  • Masuda, Y., N. D. Vaziri, S. Li, A. Le, M. Hajighasemi-Ossareh, L. Robles, C. E. Foster, M. J. Stamos, I. Al-Abodullah, C. Ricordi, et al. 2015. The effect of Nrf2 pathway activation on human pancreatic islet cells. PloS One 10 (6):e0131012. doi: 10.1371/journal.pone.0131012.
  • Matz-Soja, M., C. Rennert, K. Schönefeld, S. Aleithe, J. Boettger, W. Schmidt-Heck, T. S. Weiss, A. Hovhannisyan, S. Zellmer, N. Klöting, et al. 2016. Hedgehog signaling is a potent regulator of liver lipid metabolism and reveals a GLI-code associated with steatosis. eLife 5:e13308. doi: 10.7554/eLife.13308.
  • McCubrey, J. A., D. Rakus, A. Gizak, L. S. Steelman, S. L. Abrams, K. Lertpiriyapong, T. L. Fitzgerald, L. V. Yang, G. Montalto, M. Cervello, et al. 2016. Effects of mutations in Wnt/β-catenin, hedgehog, Notch and PI3K pathways on GSK-3 activity-Diverse effects on cell growth, metabolism and cancer. Biochimica et Biophysica Acta 1863 (12):2942–76. doi: 10.1016/j.bbamcr.2016.09.004.
  • Melo, A. M., P. Bittencourt, F. S. Nakutis, A. P. Silva, J. Cursino, G. A. Santos, N. G. Ashino, L. A. Velloso, A. S. Torsoni, and M. A. Torsoni. 2011. Solidago chilensis Meyen hydroalcoholic extract reduces JNK/IκB pathway activation and ameliorates insulin resistance in diet-induced obesity mice. Experimental Biology and Medicine (Maywood, N.J.) 236 (10):1147–55. doi: 10.1258/ebm.2011.011105.
  • Meng, Q., X. Qi, Y. Fu, Q. Chen, P. Cheng, X. Yu, X. Sun, J. Wu, W. Li, Q. Zhang, et al. 2020. Flavonoids extracted from mulberry (Morus alba L.) leaf improve skeletal muscle mitochondrial function by activating AMPK in type 2 diabetes. Journal of Ethnopharmacology 248:112326. doi: 10.1016/j.jep.2019.112326.
  • Monteiro, R, and I. Azevedo. 2010. Chronic inflammation in obesity and the metabolic syndrome. Mediators of Inflammation 2010:1–10. doi: 10.1155/2010/289645.
  • Myers, M. G., R. L. Leibel, R. J. Seeley, and M. W. Schwartz. 2010. Obesity and leptin resistance: Distinguishing cause from effect. Trends in Endocrinology and Metabolism: TEM 21 (11):643–51. doi: 10.1016/j.tem.2010.08.002.
  • Nishimura, T., Y. Nakatake, M. Konishi, and N. Itoh. 2000. Identification of a novel FGF, FGF-21, preferentially expressed in the liver. Biochimica et Biophysica Acta 1492 (1):203–6. doi: 10.1016/S0167-4781(00)00067-1.
  • Nunes, C., N. Teixeira, D. Serra, V. Freitas, L. Almeida, and J. Laranjinha. 2016. Red wine polyphenol extract efficiently protects intestinal epithelial cells from inflammation via opposite modulation of JAK/STAT and Nrf2 pathways. Toxicology Research 5 (1):53–65. doi: 10.1039/c5tx00214a.
  • Nusse, R, and H. E. Varmus. 1982. Many tumors induced by the mouse mammary tumor virus contain a provirus integrated in the same region of the host genome. Cell 31 (1):99–109. doi: 10.1016/0092-8674(82)90409-3.
  • Pajvani, U. B., L. Qiang, T. Kangsamaksin, J. Kitajewski, H. N. Ginsberg, and D. Accili. 2013. Inhibition of Notch uncouples Akt activation from hepatic lipid accumulation by decreasing mTorc1 stability. Nature Medicine 19 (8):1054–60. doi: 10.1038/nm.3259.
  • Panchal, S. K., H. Poudyal, and L. Brown. 2012. Quercetin ameliorates cardiovascular, hepatic, and metabolic changes in diet-induced metabolic syndrome in rats. The Journal of Nutrition 142 (6):1026–32. doi: 10.3945/jn.111.157263.
  • Papaiahgari, S., S. R. Kleeberger, H. Y. Cho, D. V. Kalvakolanu, and S. P. Reddy. 2004. NADPH oxidase and ERK signaling regulates hyperoxia-induced Nrf2-ARE transcriptional response in pulmonary epithelial cells. The Journal of Biological Chemistry 279 (40):42302–12. doi: 10.1074/jbc.M408275200.
  • Park, B., S. Chang, G. J. Lee, B. Kang, J. K. Kim, and H. Park. 2019. Wnt3a disrupts GR-TEAD4-PPARγ2 positive circuits and cytoskeletal rearrangement in a β-catenin-dependent manner during early adipogenesis. Cell Death & Disease 10 (1):16. doi: 10.1038/s41419-018-1249-7.
  • Prusty, D., B.-H. Park, K. E. Davis, and S. R. Farmer. 2002. Activation of MEK/ERK signaling promotes adipogenesis by enhancing peroxisome proliferator-activated receptor gamma (PPARgamma) and C/EBPalpha gene expression during the differentiation of 3T3-L1 preadipocytes. The Journal of Biological Chemistry 277 (48):46226–32. doi: 10.1074/jbc.M207776200.
  • Pu, P., X. A. Wang, M. Salim, L. H. Zhu, L. Wang, K. J. Chen, J. F. Xiao, W. Deng, H. W. Shi, H. Jiang, et al. 2012. Baicalein, a natural product, selectively activating AMPKα(2) and ameliorates metabolic disorder in diet-induced mice. Molecular and Cellular Endocrinology 362 (1-2):128–38. doi: 10.1016/j.mce.2012.06.002.
  • Qin, Y., M. Chen, Y. Yang, X.-R. Zhou, S.-Y. Shao, D.-W. Wang, and G. Yuan. 2018. Liraglutide improves hepatic insulin resistance via the canonical Wnt signaling pathway. Molecular Medicine Reports 17 (5):7372–80. doi: 10.3892/mmr.2018.8737.
  • Qiu, S., J. Chen, J. T. Kim, Y. Zhou, J. H. Moon, S. B. Lee, H. J. Park, and H. J. Lee. 2022. Suppression of adipogenesis and fat accumulation by vitexin through activation of hedgehog signaling in 3T3-L1 adipocytes. Journal of Medicinal Food 25 (3):313–23. doi: 10.1089/jmf.2021.K.0163.
  • Qiu, S., J. S. Cho, J. T. Kim, J. H. Moon, Y. Zhou, S. B. Lee, H. J. Park, and H. J. Lee. 2021. Caudatin suppresses adipogenesis in 3T3-L1 adipocytes and reduces body weight gain in high-fat diet-fed mice through activation of hedgehog signaling. Phytomedicine: International Journal of Phytotherapy and Phytopharmacology 92:153715. doi: 10.1016/j.phymed.2021.153715.
  • Rajpal, A., L. Rahimi, and F. Ismail-Beigi. 2020. Factors leading to high morbidity and mortality of COVID-19 in patients with type 2 diabetes. Journal of Diabetes 12 (12):895–908. doi: 10.1111/1753-0407.13085.
  • Rebollo-Hernanz, M., Q. Zhang, Y. Aguilera, M. A. Martín-Cabrejas, and E. Gonzalez de Mejia. 2019. Phenolic compounds from coffee by-products modulate adipogenesis-related inflammation, mitochondrial dysfunction, and insulin resistance in adipocytes, via insulin/PI3K/AKT signaling pathways. Food and Chemical Toxicology: An International Journal Published for the British Industrial Biological Research Association 132:110672. doi: 10.1016/j.fct.2019.110672.
  • Ren, L., X. Zhou, X. Huang, C. Wang, and Y. Li. 2019. The IRS/PI3K/Akt signaling pathway mediates olanzapine-induced hepatic insulin resistance in male rats. Life Sciences 217:229–36. doi: 10.1016/j.lfs.2018.12.015.
  • Richard, A. J, and J. M. Stephens. 2014. The role of JAK-STAT signaling in adipose tissue function. Biochimica et Biophysica Acta 1842 (3):431–9. doi: 10.1016/j.bbadis.2013.05.030.
  • Richter, L. R., Q. Wan, D. Wen, Y. Zhang, J. Yu, J. K. Kang, C. Zhu, E. L. McKinnon, Z. Gu, L. Qiang, et al. 2020. Targeted delivery of notch inhibitor attenuates obesity-induced glucose intolerance and liver fibrosis. ACS Nano 14 (6):6878–86. doi: 10.1021/acsnano.0c01007.
  • Riobó, N. A., K. Lu, X. Ai, G. M. Haines, and C. P. Emerson. 2006. Phosphoinositide 3-kinase and Akt are essential for Sonic Hedgehog signaling. Proceedings of the National Academy of Sciences of the United States of America 103 (12):4505–10. doi: 10.1073/pnas.0504337103.
  • Roglic, G. 2016. WHO Global report on diabetes: A summary. International Journal of Noncommunicable Diseases 1 (1):3. doi: 10.4103/2468-8827.184853.
  • Romero, C. J., Y. Ng, R. M. Luque, R. D. Kineman, L. Koch, J. C. Bruning, and S. Radovick. 2010. Targeted deletion of somatotroph insulin-like growth factor-I signaling in a cell-specific knockout mouse model. Molecular Endocrinology (Baltimore, MD) 24 (5):1077–89. doi: 10.1210/me.2009-0393.
  • Routledge, D, and S. Scholpp. 2019. Mechanisms of intercellular Wnt transport. Development 146 (10):dev176073. doi: 10.1242/dev.176073.
  • Rubey, M., N. F. Chhabra, D. Gradinger, A. Sanz-Moreno, H. Lickert, G. K. H. Przemeck, and M. Hrabě de Angelis. 2020. DLL1- and DLL4-mediated notch signaling is essential for adult pancreatic islet homeostasis. Diabetes 69 (5):915–26. doi: 10.2337/db19-0795.
  • Schreck, K. C., P. Taylor, L. Marchionni, V. Gopalakrishnan, E. E. Bar, N. Gaiano, and C. G. Eberhart. 2010. The Notch target Hes1 directly modulates Gli1 expression and Hedgehog signaling: A potential mechanism of therapeutic resistance. Clinical Cancer Research: An Official Journal of the American Association for Cancer Research 16 (24):6060–70. doi: 10.1158/1078-0432.CCR-10-1624.
  • Shi, Y, and F. Long. 2017. Hedgehog signaling via Gli2 prevents obesity induced by high-fat diet in adult mice. eLife 6:e31649. doi: 10.7554/eLife.31649.
  • Shoelson, S. E., J. Lee, and M. Yuan. 2003. Inflammation and the IKK beta/I kappa B/NF-kappa B axis in obesity- and diet-induced insulin resistance. International Journal of Obesity 27 (S3):S49–S52. doi: 10.1038/sj.ijo.0802501.
  • Singh, R. K., P. Kumar, and K. Mahalingam. 2017. Molecular genetics of human obesity: A comprehensive review. Comptes Rendus Biologies 340 (2):87–108. doi: 10.1016/j.crvi.2016.11.007.
  • Sittipo, P., S. Lobionda, Y. K. Lee, and C. L. Maynard. 2018. Intestinal microbiota and the immune system in metabolic diseases. Journal of Microbiology (Seoul, Korea) 56 (3):154–62. doi: 10.1007/s12275-018-7548-y.
  • Sobhkhez, M., A. Skjesol, E. Thomassen, L. G. Tollersrud, D. B. Iliev, B. Sun, B. Robertsen, and J. B. Jørgensen. 2014. Structural and functional characterization of salmon STAT1, STAT2 and IRF9 homologs sheds light on interferon signaling in teleosts. FEBS Open Bio 4 (1):858–71. doi: 10.1016/j.fob.2014.09.007.
  • Song, C., B. Liu, H. Li, Y. Tang, X. Ge, B. Liu, and P. Xu. 2022. Protective effects of emodin on oxidized fish oil-induced metabolic disorder and oxidative stress through notch-Nrf2 crosstalk in the liver of teleost Megalobrama amblycephala. Antioxidants 11 (6):1179. doi: 10.3390/antiox11061179.
  • Suh, J. M., X. Gao, J. Mckay, R. Mckay, Z. Salo, and J. M. Graff. 2006. Hedgehog signaling plays a conserved role in inhibiting fat formation. Cell Metabolism 3 (1):25–34. doi: 10.1016/j.cmet.2005.11.012.
  • Sun, J., F. Zhao, W. Zhang, J. Lv, J. Lv, and A. Yin. 2018. BMSCs and miR-124a ameliorated diabetic nephropathy via inhibiting notch signalling pathway. Journal of Cellular and Molecular Medicine 22 (10):4840–55. doi: 10.1111/jcmm.13747.
  • Suzuki, M., Y. Uehara, K. Motomura-Matsuzaka, J. Oki, Y. Koyama, M. Kimura, M. Asada, A. Komi-Kuramochi, S. Oka, and T. Imamura. 2008. BetaKlotho is required for fibroblast growth factor (FGF) 21 signaling through FGF receptor (FGFR) 1c and FGFR3c. Molecular Endocrinology (Baltimore, Md.) 22 (4):1006–14. doi: 10.1210/me.2007-0313.
  • Takada, I., M. Mihara, M. Suzawa, F. Ohtake, S. Kobayashi, M. Igarashi, M.-Y. Youn, K-i Takeyama, T. Nakamura, Y. Mezaki, et al. 2007. A histone lysine methyltransferase activated by non-canonical Wnt signalling suppresses PPAR-gamma transactivation. Nature Cell Biology 9 (11):1273–85. doi: 10.1038/ncb1647.
  • Tamrakar, P., B. A. Ibrahim, A. D. Gujar, and K. P. Briski. 2015. Estrogen regulates energy metabolic pathway and upstream adenosine 5’-monophosphate-activated protein kinase and phosphatase enzyme expression in dorsal vagal complex metabolosensory neurons during glucostasis and hypoglycemia. Journal of Neuroscience Research 93 (2):321–32. doi: 10.1002/jnr.23481.
  • Tamura, Y., S. Tomiya, J. Takegaki, K. Kouzaki, A. Tsutaki, and K. Nakazato. 2020. Apple polyphenols induce browning of white adipose tissue. The Journal of Nutritional Biochemistry 77:108299. doi: 10.1016/j.jnutbio.2019.108299.
  • Teperino, R., S. Amann, M. Bayer, S. L. McGee, A. Loipetzberger, T. Connor, C. Jaeger, B. Kammerer, L. Winter, G. Wiche, et al. 2012. Hedgehog partial agonism drives warburg-like metabolism in muscle and brown fat. Cell 151 (2):414–26. doi: 10.1016/j.cell.2012.09.021.
  • Tian, S., Y. Wang, X. Li, J. Liu, J. Wang, and Y. Lu. 2021. Sulforaphane regulates glucose and lipid metabolisms in obese mice by restraining JNK and activating insulin and FGF21 signal pathways. Journal of Agricultural and Food Chemistry 69 (44):13066–79. doi: 10.1021/acs.jafc.1c04933.
  • Valenti, L., R. M. Mendoza, R. Rametta, M. Maggioni, C. Kitajewski, C. J. Shawber, and U. B. Pajvani. 2013. Hepatic notch signaling correlates with insulin resistance and nonalcoholic fatty liver disease. Diabetes 62 (12):4052–62. doi: 10.2337/db13-0769.
  • Vamecq, J., B. Papegay, V. Nuyens, J. Boogaerts, O. Leo, and V. Kruys. 2020. Mitochondrial dysfunction, AMPK activation and peroxisomal metabolism: A coherent scenario for non-canonical 3-methylglutaconic acidurias. Biochimie 168:53–82. doi: 10.1016/j.biochi.2019.10.004.
  • Wang, Z., S. O. Ka, Y. Lee, B. H. Park, and E. J. Bae. 2017. Butein induction of HO-1 by p38 MAPK/Nrf2 pathway in adipocytes attenuates high-fat diet induced adipose hypertrophy in mice. European Journal of Pharmacology 799:201–10. doi: 10.1016/j.ejphar.2017.02.021.
  • Wang, Q., S. Liu, A. Zhai, B. Zhang, and G. Tian. 2018. AMPK-mediated regulation of lipid metabolism by phosphorylation. Biological & Pharmaceutical Bulletin 41 (7):985–93. doi: 10.1248/bpb.b17-00724.
  • Wang, H., R. Zhang, X. Wu, Y. Chen, W. Ji, J. Wang, Y. Zhang, Y. Xia, Y. Tang, and J. Yuan. 2021. The Wnt signaling pathway in diabetic nephropathy. Frontiers in Cell and Developmental Biology 9:701547. doi: 10.3389/fcell.2021.701547.
  • Wang, T., L. Zheng, T. Zhao, Q. Zhang, Z. Liu, X. Liu, and M. Zhao. 2020. Anti-diabetic effects of sea cucumber (Holothuria nobilis) hydrolysates in streptozotocin and high-fat-diet induced diabetic rats via activating the PI3K/Akt pathway. Journal of Functional Foods 75:104224. doi: 10.1016/j.jff.2020.104224.
  • Welles, J. E., M. D. Dennis, L. S. Jefferson, and S. R. Kimball. 2020. Glucagon-dependent suppression of mTORC1 is associated with upregulation of hepatic FGF21 mRNA translation. American Journal of Physiology-Endocrinology and Metabolism 319 (1):E26–E33. doi: 10.1152/ajpendo.00555.2019.
  • West, K. M, and J. M. Kalbfleisch. 1966. Glucose tolerance, nutrition, and diabetes in Uruguay, Venezuela, Malaya, and East Pakistan. Diabetes 15 (1):9–18. doi: 10.2337/diab.15.1.9.
  • Winder, W. W, and D. G. Hardie. 1996. Inactivation of acetyl-CoA carboxylase and activation of AMP-activated protein kinase in muscle during exercise. The American Journal of Physiology 270 (2 Pt 1):E299–304. doi: 10.1152/ajpendo.1996.270.2.E299.
  • World Health Organization. 2011. Obesity and overweight. New York: Springer. doi: 10.1007/978-1-4419-1695-2_447.
  • Wunderlich, C. M., N. Hövelmeyer, and F. T. Wunderlich. 2013. Mechanisms of chronic JAK-STAT3-SOCS3 signaling in obesity. JAK-STAT 2 (2):e23878. doi: 10.4161/jkst.23878.
  • Xiu, Z., X. Y. Zeng, W. Hao, S. Li, E. Jo, C. Xue, M. Tan, J. C. Molero, and J. M. Ye. 2014. Changes in phosphorylation and acetylation of FoxO1 and the gene expression of PEPCK and G6Pase in the liver. Plos One. 11:10. doi: 10.1371/journal.pone.0107231.g001.
  • Xu, L., D. Li, Y. Zhu, S. Cai, X. Liang, Y. Tang, S. Jin, and C. Ding. 2021. Swertiamarin supplementation prevents obesity-related chronic inflammation and insulin resistance in mice fed a high-fat diet. Adipocyte 10 (1):160–73. doi: 10.1080/21623945.2021.1906510.
  • Yang, J., L. Craddock, S. Hong, and Z. M. Liu. 2009. AMP-activated protein kinase suppresses LXR-dependent sterol regulatory element-binding protein-1c transcription in rat hepatoma McA-RH7777 cells. Journal of Cellular Biochemistry 106 (3):414–26. doi: 10.1002/jcb.22024.
  • Yazıcı, D, and H. Sezer. 2017. Insulin resistance, obesity and lipotoxicity. Advances in Experimental Medicine and Biology 960:277–304. doi: 10.1007/978-3-319-48382-5_12.
  • Yeung, Y. T., F. Aziz, A. Guerrero-Castilla, and S. Arguelles. 2018. Signaling pathways in inflammation and anti-inflammatory therapies. Current Pharmaceutical Design 24 (14):1449–84. doi: 10.2174/1381612824666180327165604.
  • Yun, U. J., W. N. Chu, K. W. Park, and K. Y. Dong. 2021. Hexane extract of Chloranthus japonicus increases adipocyte differentiation by acting on Wnt/β-catenin signaling pathway. Life 11 (3):241. doi: 10.3390/life11030241.
  • Zang, L., Y. Shimada, H. Nakayama, H. Katsuzaki, Y. Kim, D. C. Chu, L. R. Juneja, J. Kuroyanagi, and N. Nishimura. 2021. Preventive effects of green tea extract against obesity development in zebrafish. Molecules 26 (9):2627. doi: 10.3390/molecules26092627.
  • Zhang, Y., R. Li, Y. Meng, S. Li, W. Donelan, Y. Zhao, L. Qi, M. Zhang, X. Wang, T. Cui, et al. 2014. Irisin stimulates browning of white adipocytes through mitogen-activated protein kinase p38 MAP kinase and ERK MAP kinase signaling. Diabetes 63 (2):514–25. doi: 10.2337/db13-1106.
  • Zhang, L., Y. Qu, J. Tang, D. Chen, X. Fu, M. Mao, and D. Mu. 2010. PI3K/Akt signaling pathway is required for neuroprotection of thalidomide on hypoxic-ischemic cortical neurons in vitro. Brain Research 1357:157–65. doi: 10.1016/j.brainres.2010.08.007.
  • Zhang, Z. M., C. Shen, H. Li, Q. Fan, J. Ding, F. C. Jin, and L. Sha. 2016. Leptin induces the apoptosis of chondrocytes in an in vitro model of osteoarthritis via the JAK2-STAT3 signaling pathway. Molecular Medicine Reports 13 (4):3684–90. doi: 10.3892/mmr.2016.4970.
  • Zhang, B. B., G. Zhou, and C. Li. 2009. AMPK: An emerging drug target for diabetes and the metabolic syndrome. Cell Metabolism 9 (5):407–16. doi: 10.1016/j.cmet.2009.03.012.
  • Zheng, D., M. Tao, X. Liang, Y. Li, J. Jin, and Q. He. 2020. P66Shc regulates podocyte autophagy in high glucose environment through the Notch-PTEN-PI3K/Akt/mTOR pathway. Histology and Histopathology 35 (4):405–15. doi: 10.14670/HH-18-178.
  • Zheng, T., X. Yang, D. Wu, S. Xing, F. Bian, W. Li, J. Chi, X. Bai, G. Wu, X. Chen, et al. 2015. Salidroside ameliorates insulin resistance through activation of a mitochondria-associated AMPK/PI3K/Akt/GSK3β pathway. British Journal of Pharmacology 172 (13):3284–301. doi: 10.1111/bph.13120.
  • Zhou, G., J. Cui, S. Xie, H. Wan, Y. Luo, and G. Guo. 2021. Vitexin, a fenugreek glycoside, ameliorated obesity-induced diabetic nephropathy via modulation of NF-κB/IkBα and AMPK/ACC pathways in mice. Bioscience, Biotechnology, and Biochemistry 85 (5):1183–93. doi: 10.1093/bbb/zbab012.
  • Zhou, L., S. S. Deepa, J. C. Etzler, J. Ryu, X. Mao, Q. Fang, D. D. Liu, J. M. Torres, W. Jia, J. D. Lechleiter, et al. 2009. Adiponectin activates AMP-activated protein kinase in muscle cells via APPL1/LKB1-dependent and phospholipase C/Ca2+/Ca2+/calmodulin-dependent protein kinase kinase-dependent pathways. The Journal of Biological Chemistry 284 (33):22426–35. doi: 10.1074/jbc.M109.028357.
  • Zick, Y. 2001. Insulin resistance: A phosphorylation-based uncoupling of insulin signaling. Trends in Cell Biology 11 (11):437–41. doi: 10.1016/S0962-8924(01)02129-8.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.