653
Views
6
CrossRef citations to date
0
Altmetric
Review Articles

Recent advances in the biosynthesis, bioavailability, toxicology, pharmacology, and controlled release of citrus neohesperidin

, , , ORCID Icon & ORCID Icon

References

  • Aiello, P., S. Consalvi, G. Poce, A. Raguzzini, E. Toti, M. Palmery, M. Biava, M. Bernardi, M. A. Kamal, G. Perry, et al. 2021. Dietary flavonoids: Nano delivery and nanoparticles for cancer therapy. Seminars in Cancer Biology 69:150–65. doi: 10.1016/j.semcancer.2019.08.029.
  • Ajmo, J. M., X. Liang, C. Q. Rogers, B. Pennock, and M. You. 2008. Resveratrol alleviates alcoholic fatty liver in mice. American Journal of Physiology-Gastrointestinal and Liver Physiology 295 (4):G833–G842.
  • Bai, Y.-f., S.-w. Wang, X.-x. Wang, Y.-y. Weng, X.-y. Fan, H. Sheng, X.-t. Zhu, L.-j. Lou, and F. Zhang. 2019. The flavonoid-rich Quzhou Fructus Aurantii extract modulates gut microbiota and prevents obesity in high-fat diet-fed mice. Nutrition & Diabetes 9 (1):1–11. doi: 10.1038/s41387-019-0097-6.
  • Banjerdpongchai, R., B. Wudtiwai, P. Khaw-On, W. Rachakhom, N. Duangnil, and P. Kongtawelert. 2016. Hesperidin from Citrus seed induces human hepatocellular carcinoma HepG2 cell apoptosis via both mitochondrial and death receptor pathways. Tumour Biology 37 (1):227–37. doi: 10.1007/s13277-015-3774-7.
  • Banu, N., N. Alam, M. Nazmul Islam, S. Islam, S. A. Sakib, N. B. Hanif, M. R. Chowdhury, A. M. Tareq, K. Hasan Chowdhury, S. Jahan, et al. 2020. Insightful valorization of the biological activities of pani heloch leaves through experimental and computer-aided mechanisms. Molecules 25 (21):5153. doi: 10.3390/molecules25215153.
  • Barreca, D., E. Bellocco, C. Caristi, U. Leuzzi, and G. Gattuso. 2011. Distribution of C-and O-glycosyl flavonoids,(3-hydroxy-3-methylglutaryl) glycosyl flavanones and furocoumarins in Citrus aurantium L. juice. Food Chemistry 124 (2):576–82. doi: 10.1016/j.foodchem.2010.06.076.
  • Barreca, D., G. Gattuso, E. Bellocco, A. Calderaro, D. Trombetta, A. Smeriglio, G. Laganà, M. Daglia, S. Meneghini, and S. M. Nabavi. 2017. Flavanones: Citrus phytochemical with health‐promoting properties. BioFactors 43 (4):495–506. doi: 10.1002/biof.1363.
  • Bellocco, E., D. Barreca, G. Laganà, U. Leuzzi, E. Tellone, S. Ficarra, A. Kotyk, and A. Galtieri. 2009. Influence of L-rhamnosyl-D-glucosyl derivatives on properties and biological interaction of flavonoids. Molecular and Cellular Biochemistry 321 (1-2):165–71. doi: 10.1007/s11010-008-9930-2.
  • Benavente-Garcia, O., and J. Castillo. 2008. Update on uses and properties of citrus flavonoids: New findings in anticancer, cardiovascular, and anti-inflammatory activity. Journal of Agricultural and Food Chemistry 56 (15):6185–205.
  • Bigoniya, P., and K. Singh. 2014. Ulcer protective potential of standardized hesperidin, a citrus flavonoid isolated from Citrus sinensis. Revista Brasileira de Farmacognosia 24 (3):330–40. doi: 10.1016/j.bjp.2014.07.011.
  • Bilia, A. R., B. Isacchi, C. Righeschi, C. Guccione, and M. C. Bergonzi. 2014. Flavonoids loaded in nanocarriers: An opportunity to increase oral bioavailability and bioefficacy. Journal of Food and Nutrition Sciences 5 (13):1–16.
  • Cao, H., B. H. Chen, B. S. Inbaraj, L. Chen, G. Alvarez-Rivera, A. Cifuentes, N. Zhang, D. J. Yang, J. Simal-Gandara, M. Wang, et al. 2020. Preventive potential and mechanism of dietary polyphenols on the formation of heterocyclic aromatic amines. Food Frontiers 1 (2):134–51. doi: 10.1002/fft2.30.
  • Castillo, J., O. Benavente, and A. José. 1992. Naringin and neohesperidin levels during development of leaves, flower buds, and fruits of Citrus aurantium. Plant Physiology 99 (1):67–73.
  • Catalkaya, G., K. Venema, L. Lucini, G. Rocchetti, D. Delmas, M. Daglia, A. D. Filippis, H. Xiao, J. L. Quiles, J. Xiao, et al. 2020. Interaction of dietary polyphenols and gut microbiota: Microbial metabolism of polyphenols, influence on the gut microbiota, and implications on host health. Food Frontiers 1 (2):109–33. doi: 10.1002/fft2.25.
  • Chakraborty, S., J. Rakshit, J. Bandyopadhyay, and S. Basu. 2018. Multi-functional neuroprotective activity of neohesperidin dihydrochalcone: A novel scaffold for Alzheimer’s disease therapeutics identified via drug repurposing screening. New Journal of Chemistry 42 (14):11755–69. doi: 10.1039/C8NJ00853A.
  • Chakraborty, S., J. Rakshit, J. Bandyopadhyay, and S. Basu. 2021. Multi-target inhibition ability of neohesperidin dictates its neuroprotective activity: Implication in Alzheimer’s disease therapeutics. International Journal of Biological Macromolecules 176:315–24. doi: 10.1016/j.ijbiomac.2021.02.073.
  • Chang, R. C.-C,. and Y.-S. Ho. 2019. Introductory chapter: Concept of neuroprotection-a new perspective. In Neuroprotection, ed. R. C.-C. Chang and Y.-S. Ho, 1–9. London: IntechOpen.
  • Chaudhary, P. R., H. Bang, G. K. Jayaprakasha, and B. S. Patil. 2016. Variation in key flavonoid biosynthetic enzymes and phytochemicals in ‘rio red’grapefruit (Citrus paradisi macf.) during fruit development. Journal of Agricultural and Food Chemistry 64 (47):9022–32. doi: 10.1021/acs.jafc.6b02975.
  • Chebil, L., C. Humeau, A. Falcimaigne, J.-M. Engasser, and M. Ghoul. 2006. Enzymatic acylation of flavonoids. Process Biochemistry 41 (11):2237–51. doi: 10.1016/j.procbio.2006.05.027.
  • Chebrolu, K. K., J. Jifon, and B. S. Patil. 2016. Modulation of flavanone and furocoumarin levels in grapefruits (Citrus paradisi Macfad.) by production and storage conditions. Food Chemistry 196:374–80.
  • Cheng, L., Y. Ren, D. Lin, S. Peng, B. Zhong, and Z. Ma. 2017. The anti-inflammatory properties of citrus wilsonii tanaka extract in LPS-induced RAW 264.7 and primary mouse bone marrow-derived dendritic cells. Molecules 22 (7):1213. doi: 10.3390/molecules22071213.
  • Chen, J. C., L. J. Li, S. M. Wen, Y. C. He, H. X. Liu, and Q. S. Zheng. 2011. Quantitative analysis and simulation of anti-inflammatory effects from the active components of Paino Powder () in rats. Chinese Journal of Integrative Medicine 8:1–6. doi: 10.1007/s11655-011-0882-0.
  • Chen, W., J. Zhuang, Y. Li, Y. Shen, and X. Zheng. 2013. Myricitrin protects against peroxynitrite-mediated DNA damage and cytotoxicity in astrocytes. Food Chemistry 141 (2):927–33. doi: 10.1016/j.foodchem.2013.04.033.
  • Choi, J.-M., B.-S. Yoon, S.-K. Lee, J.-K. Hwang, and R. Ryang. 2007. Antioxidant properties of neohesperidin dihydrochalcone: Inhibition of hypochlorous acid-induced DNA strand breakage, protein degradation, and cell death. Biological & Pharmaceutical Bulletin 30 (2):324–30. doi: 10.1248/bpb.30.324.
  • Choi, S., S. Yu, J. Lee, and W. Kim. 2021. Effects of neohesperidin dihydrochalcone (NHDC) on oxidative phosphorylation, cytokine production, and lipid deposition. Foods 10 (6):1408. doi: 10.3390/foods10061408.
  • Chowdhury, N. N., M. N. Islam, R. Jafrin, A. Rauf, A. A. Khalil, T. B. Emran, A. S. M. Aljohani, F. A. Alhumaydhi, J. M. Lorenzo, M. A. Shariati, et al. 2022. Natural plant products as effective alternatives to synthetic chemicals for postharvest fruit storage management. Critical Reviews in Food Science and Nutrition 1–19. doi: 10.1080/10408398.2022.2079112.
  • Cirmi, S., N. Ferlazzo, G. E. Lombardo, A. Maugeri, G. Calapai, S. Gangemi, and M. Navarra. 2016. Chemopreventive agents and inhibitors of cancer hallmarks: May citrus offer new perspectives? Nutrients 8 (11):698. doi: 10.3390/nu8110698.
  • Cirmi, S., N. Ferlazzo, G. E. Lombardo, E. Ventura-Spagnolo, S. Gangemi, G. Calapai, and M. Navarra. 2016. Neurodegenerative diseases: Might citrus flavonoids play a protective role? Molecules 21 (10):1312. doi: 10.3390/molecules21101312.
  • Cushnie, T. T., and A. J. Lamb. 2005. Antimicrobial activity of flavonoids. International Journal of Antimicrobial Agents 26 (5):343–56.
  • Di Majo, D., M. Giammanco, M. La Guardia, E. Tripoli, S. Giammanco, and E. Finotti. 2005. Flavanones in Citrus fruit: Structure–antioxidant activity relationships. Food Research International 38 (10):1161–6. doi: 10.1016/j.foodres.2005.05.001.
  • Ding, J., S. Mei, L. Gao, Q. Wang, H. Ma, and X. Chen. 2022. Tea processing steps affect chemical compositions, enzyme activities, and antioxidant and anti‐inflammatory activities of coffee leaves. Food Frontiers 3 (3):505–16. doi: 10.1002/fft2.136.
  • Dirimanov, S., and P. Högger. 2020. Fluorescence interference of polyphenols in assays screening for dipeptidyl peptidase IV inhibitory activity. Food Frontiers 1 (4):484–92. doi: 10.1002/fft2.51.
  • Dong, Q., Y. Wang, J. Wen, M. Huang, E. Yuan, and J. Zheng. 2017. Inclusion complex of neohesperidin dihydrochalcone and glucosyl-β-cyclodextrin: Synthesis, characterization, and bitter masking properties in aqueous solutions. Journal of Molecular Liquids 241:926–33. doi: 10.1016/j.molliq.2017.05.090.
  • Du, L., Z. Jiang, L. Xu, N. Zhou, J. Shen, Z. Dong, L. Shen, H. Wang, and X. Luo. 2018. Microfluidic reactor for lipase-catalyzed regioselective synthesis of neohesperidin ester derivatives and their antimicrobial activity research. Carbohydrate Research 455:32–8. doi: 10.1016/j.carres.2017.11.008.
  • Dutta, M., A. M. Tareq, A. Rakib, S. Mahmud, S. A. Sami, J. Mallick, M. N. Islam, M. Majumder, M. Z. Uddin, A. Alsubaie, et al. 2021. Phytochemicals from leucas zeylanica targeting main protease of SARS-CoV-2: Chemical profiles, molecular docking, and molecular dynamics simulations. Biology 10 (8):789. doi: 10.3390/biology10080789.
  • Edeoga, H. O., D. E. Okwu, and B. O. Mbaebie. 2005. Phytochemical constituents of some Nigerian medicinal plants. African Journal of Biotechnology 4 (7):685–8. doi: 10.5897/AJB2005.000-3127.
  • El-Readi, M. Z., D. Hamdan, N. Farrag, A. El-Shazly, and M. Wink. 2010. Inhibition of P-glycoprotein activity by limonin and other secondary metabolites from Citrus species in human colon and leukaemia cell lines. European Journal of Pharmacology 626 (2-3):139–45.
  • Fahad, F. I., N. Barua, M. S. Islam, S. A. J. Sayem, K. Barua, M. J. Uddin, M. N. U. Chy, M. Adnan, M. N. Islam, M. A. Sayeed, et al. 2021. Investigation of the pharmacological properties of lepidagathis hyalina nees through experimental approaches. Life 11 (3):180. doi: 10.3390/life11030180.
  • Ferrero‐Miliani, L., O. H. Nielsen, P. S. Andersen, and S. E. Girardin. 2007. Chronic inflammation: Importance of NOD2 and NALP3 in interleukin‐1β generation. Clinical and Experimental Immunology 147 (2):227–35. doi: 10.1111/j.1365-2249.2006.03261.x.
  • Frydman, A., R. Liberman, D. V. Huhman, M. Carmeli-Weissberg, M. Sapir-Mir, R. Ophir, L. W Sumner, and Y. Eyal. 2013. The molecular and enzymatic basis of bitter/non‐bitter flavor of citrus fruit: Evolution of branch‐forming rhamnosyltransferases under domestication. The Plant Journal 73 (1):166–78. doi: 10.1111/tpj.12030.
  • Frydman, A., O. Weisshaus, D. V. Huhman, L. W. Sumner, M. Bar-Peled, E. Lewinsohn, R. Fluhr, J. Gressel, and Y. Eyal. 2005. Metabolic engineering of plant cells for biotransformation of hesperedin into neohesperidin, a substrate for production of the low-calorie sweetener and flavor enhancer NHDC. Journal of Agricultural and Food Chemistry 53 (25):9708–12. doi: 10.1021/jf051509m.
  • Fujita, T., A. Kawase, T. Niwa, N. Tomohiro, M. Masuda, H. Matsuda, and M. Iwaki. 2008. Comparative evaluation of 12 immature citrus fruit extracts for the inhibition of cytochrome P450 isoform activities. Biological & Pharmaceutical Bulletin 31 (5):925–30.
  • Galluzzo, P., P. Ascenzi, P. Bulzomi, and M. Marino. 2008. The nutritional flavanone naringenin triggers antiestrogenic effects by regulating estrogen receptor α-palmitoylation. Endocrinology 149 (5):2567–75. doi: 10.1210/en.2007-1173.
  • Gandhi, G. R., A. B. S. Vasconcelos, D.-T. Wu, H.-B. Li, P. J. Antony, H. Li, F. Geng, R. Q. Gurgel, N. Narain, and R.-Y. Gan. 2020. Citrus flavonoids as promising phytochemicals targeting diabetes and related complications: A systematic review of in vitro and in vivo studies. Nutrients 12 (10):2907. doi: 10.3390/nu12102907.
  • García-Domenech, R., R. Zanni, M. Galvez-Llompart, and J. Vicente de Julian-Ortiz. 2013. Modeling anti-allergic natural compounds by molecular topology. Combinatorial Chemistry & High Throughput Screening 16 (8):628–35. doi: 10.2174/1386207311316080005.
  • Gong, Y., R. Dong, X. Gao, J. Li, L. Jiang, J. Zheng, S. Cui, M. Ying, B. Yang, J. Cao, et al. 2019. Neohesperidin prevents colorectal tumorigenesis by altering the gut microbiota. Pharmacological Research 148:104460. doi: 10.1016/j.phrs.2019.104460.
  • Gong, N., B. Zhang, D. Yang, Z. Gao, G. Du, and Y. Lu. 2015. Development of new reference material neohesperidin for quality control of dietary supplements. Journal of the Science of Food and Agriculture 95 (9):1885–91. doi: 10.1002/jsfa.6893.
  • González-Castejón, M., and A. Rodriguez-Casado. 2011. Dietary phytochemicals and their potential effects on obesity: A review. Pharmacological Research 64 (5):438–55. doi: 10.1016/j.phrs.2011.07.004.
  • Graziano, A. C., V. Cardile, L. Crascì, S. Caggia, P. Dugo, F. Bonina, and A. Panico. 2012. Protective effects of an extract from Citrus bergamia against inflammatory injury in interferon-gamma and histamine exposed human keratinocytes. Life Sciences 90 (25–26):968–74.
  • Gu, Y., Y. Li, D. Ren, L. Sun, Y. Zhuang, L. Yi, and S. Wang. 2022. Recent advances in nanomaterial‐assisted electrochemical sensors for food safety analysis. Food Frontiers 3 (3):453–79. doi: 10.1002/fft2.143.
  • Guo, J., Y. Fang, F. Jiang, L. Li, H. Zhou, X. Xu, and W. Ning. 2019. Neohesperidin inhibits TGF-β1/Smad3 signaling and alleviates bleomycin-induced pulmonary fibrosis in mice. European Journal of Pharmacology 864:172712. doi: 10.1016/j.ejphar.2019.172712.
  • Guo, C., H. Zhang, X. Guan, and Z. Zhou. 2019. The anti-aging potential of neohesperidin and its synergistic effects with other citrus flavonoids in extending chronological lifespan of saccharomyces cerevisiae BY4742. Molecules 24 (22):4093. doi: 10.3390/molecules24224093.
  • Hamdan, D., M. Z. El-Readi, A. Tahrani, F. Herrmann, D. Kaufmann, N. Farrag, A. El-Shazly, and M. Wink. 2011a. Chemical composition and biological activity of Citrus jambhiri Lush. Food Chemistry 127 (2):394–403. doi: 10.1016/j.foodchem.2010.12.129.
  • Hamdan, D., M. Z. El-Readi, A. Tahrani, F. Herrmann, D. Kaufmann, N. Farrag, A. El-Shazly, and M. Wink. 2011b. Secondary metabolites of ponderosa lemon (Citrus pyriformis) and their antioxidant, anti-inflammatory, and cytotoxic activities. Zeitschrift Fur Naturforschung. C, Journal of Biosciences 66 (7–8):385–93. doi: 10.1515/znc-2011-7-810.
  • Hamdan, D. I., M. F. Mahmoud, M. Wink, and A. M. El-Shazly. 2014. Effect of hesperidin and neohesperidin from bittersweet orange (Citrus aurantium var. bigaradia) peel on indomethacin-induced peptic ulcers in rats. Environmental Toxicology and Pharmacology 37 (3):907–15. doi: 10.1016/j.etap.2014.03.006.
  • Han, G., H.-T. Kang, S. Chung, C. Lim, J. Linton, J.-H. Lee, W. Kim, S.-H. Kim, and J. Lee. 2018. Novel neohesperidin dihydrochalcone analogue inhibits adipogenic differentiation of human adipose-derived stem cells through the Nrf2 pathway. International Journal of Molecular Sciences 19 (8):2215. doi: 10.3390/ijms19082215.
  • Heim, K. E., A. R. Tagliaferro, and D. J. Bobilya. 2002. Flavonoid antioxidants: Chemistry, metabolism and structure-activity relationships. The Journal of Nutritional Biochemistry 13 (10):572–84. doi: 10.1016/s0955-2863(02)00208-5.
  • Hernández, A., S. Ruiz-Moyano, A. I. Galván, A. V. Merchán, F. Pérez Nevado, E. Aranda, M. J. Serradilla, M. d G. Córdoba, and A. Martín. 2020. Anti-fungal activity of phenolic sweet orange peel extract for controlling fungi responsible for post-harvest fruit decay. Fungal Biology 125 (2):143–52. doi: 10.1016/j.funbio.2020.05.005.
  • Ho, S.-L., C.-Y. Poon, C. Lin, T. Yan, D. W.-J. Kwong, K. K.-L. Yung, M. S. Wong, Z. Bian, and H.-W. Li. 2015. Inhibition of β-amyloid aggregation by albiflorin, aloeemodin and neohesperidin and their neuroprotective effect on primary hippocampal cells against β-amyloid induced toxicity. Current Alzheimer Research 12 (5):424–33. doi: 10.2174/1567205012666150504144919.
  • Hu, L., L. Li, D. Xu, X. Xia, R. Pi, D. Xu, W. Wang, H. Du, E. Song, and Y. Song. 2014. Protective effects of neohesperidin dihydrochalcone against carbon tetrachloride-induced oxidative damage in vivo and in vitro. Chemico-Biological Interactions 213:51–9. doi: 10.1016/j.cbi.2014.02.003.
  • Huzio, N. M., A. R. Grytsyk, L. I. Budniak, and I. R. Bekus. 2020. Determination of flavonoids and hydroxycinnamic acids in the herb of common agrimony by HPLC method. The Pharma Innovation Journal 9 (1): 43–46.
  • Hwang, S.-L., P.-H. Shih, and G.-C. Yen. 2012. Neuroprotective effects of citrus flavonoids. Journal of Agricultural and Food Chemistry 60 (4):877–85. doi: 10.1021/jf204452y.
  • Hwang, S.-L., and G.-C. Yen. 2008. Neuroprotective effects of the citrus flavanones against H2O2-induced cytotoxicity in PC12 cells. Journal of Agricultural and Food Chemistry 56 (3):859–64. doi: 10.1021/jf072826r.
  • Islam, M. N., A. Rauf, F. I. Fahad, T. B. Emran, S. Mitra, A. Olatunde, M. A. Shariati, M. Rebezov, K. R. R. Rengasamy, and M. S. Mubarak. 2022. Superoxide dismutase: An updated review on its health benefits and industrial applications. Critical Reviews in Food Science and Nutrition 62 (26):7282–300. doi: 10.1080/10408398.2021.1913400.
  • Ito, T., S. Fujimoto, F. Suito, M. Shimosaka, and G. Taguchi. 2017. C‐Glycosyltransferases catalyzing the formation of di‐C‐glucosyl flavonoids in citrus plants. The Plant Journal 91 (2):187–98. doi: 10.1111/tpj.13555.
  • Itoh, K., M. Masuda, S. Naruto, K. Murata, and H. Matsuda. 2009. Antiallergic activity of unripe Citrus hassaku fruits extract and its flavanone glycosides on chemical substance-induced dermatitis in mice. Journal of Natural Medicines 63 (4):443–50. doi: 10.1007/s11418-009-0349-1.
  • Jagtiani, E. 2022. Advancements in nanotechnology for food science and industry. Food Frontiers 3 (1):56–82. doi: 10.1002/fft2.104.
  • Jia, S., Y. Hu, W. Zhang, X. Zhao, Y. Chen, C. Sun, X. Li, and K. Chen. 2015. Hypoglycemic and hypolipidemic effects of neohesperidin derived from Citrus aurantium L. in diabetic KK-A y mice. Food & Function 6 (3):878–86.
  • Jiang, J., L. Shan, Z. Chen, H. Xu, J. Wang, Y. Liu, and Y. Xiong. 2014. Evaluation of antioxidant-associated efficacy of flavonoid extracts from a traditional Chinese medicine Hua Ju Hong (peels of Citrus grandis (L.) Osbeck). Journal of Ethnopharmacology 158:325–30. doi: 10.1016/j.jep.2014.10.039.
  • Jiang, J., L. Yan, Z. Shi, L. Wang, L. Shan, and T. Efferth. 2019. Hepatoprotective and anti-inflammatory effects of total flavonoids of Qu Zhi Ke (peel of Citrus changshan-huyou) on non-alcoholic fatty liver disease in rats via modulation of NF-κB and MAPKs. Phytomedicine 64:153082. doi: 10.1016/j.phymed.2019.153082.
  • Ju, Y, and K. Y. Tam. 2022. Pathological mechanisms and therapeutic strategies for Alzheimer’s disease. Neural Regeneration Research 17 (3):543–9. doi: 10.4103/1673-5374.320970.
  • Karim, N., Z. Jia, X. Zheng, S. Cui, and W. Chen. 2018. A recent review of citrus flavanone naringenin on metabolic diseases and its potential sources for high yield-production. Trends in Food Science & Technology 79:35–54. doi: 10.1016/j.tifs.2018.06.012.
  • Karim, N., M. R. I. Shishir, and W. Chen. 2020. Surface decoration of neohesperidin-loaded nanoliposome using chitosan and pectin for improving stability and controlled release. International Journal of Biological Macromolecules 164:2903–14. doi: 10.1016/j.ijbiomac.2020.08.174.
  • Khan, M. K., and Dangles, O. 2014. A comprehensive review on flavanones, the major citrus polyphenols. Journal of Food Composition and Analysis 33 (1):85–104. doi: 10.1016/j.jfca.2013.11.004.
  • Khan, J., S. A. Sakib, S. Mahmud, Z. Khan, M. N. Islam, M. A. Sakib, T. B. Emran, and J. Simal-Gandara. 2021. Identification of potential phytochemicals from Citrus limon against main protease of SARS-CoV-2: Molecular docking, molecular dynamic simulations and quantum computations. Journal of Biomolecular Structure and Dynamics 1–12. doi: 10.1080/07391102.2021.1947893.
  • Khan, H., H. Ullah, R. Tundis, T. Belwal, H. P. Devkota, M. Daglia, Z. Cetin, E. I. Saygili, M. d G. Campos, E. Capanoglu, et al. 2020. Dietary flavonoids in the management of Huntington’s disease: Mechanism and clinical perspective. Efood, 1 (1):38–52. doi: 10.2991/efood.k.200203.001.
  • Kim, Y.-H., and Y. Tabata. 2015. Dual-controlled release system of drugs for bone regeneration. Advanced Drug Delivery Reviews 94:28–40. doi: 10.1016/j.addr.2015.06.003.
  • Kubo, M. 2004. Seasonal variation on anti-allergic activity of citrus fruits and flavanone glycoside content. Nature Medicine. 58:284–94.
  • Kubo, M., H. Matsuda, N. Tomohiro, and S. Harima. 2005. Historical and pharmalogical study of Citrus hassaku. Yakushigaku Zasshi 40 (1):47–51.
  • Kwon, M., Y. Kim, J. Lee, J. A. Manthey, Y. Kim, and Y. Kim. 2022. Neohesperidin dihydrochalcone and neohesperidin dihydrochalcone-O-glycoside attenuate subcutaneous fat and lipid accumulation by regulating PI3K/AKT/mTOR pathway in vivo and in vitro. Nutrients 14 (5):1087. doi: 10.3390/nu14051087.
  • Ladanyia, M., and M. Ladaniya. 2010. Citrus fruit: Biology, technology and evaluation. Atlanta, GA: Academic Press.
  • Lee, J., S. Lee, Y. S. Kim, and C. S. Jeong. 2009. Protective effects of neohesperidin and poncirin isolated from the fruits of Poncirus trifoliata on potential gastric disease. Phytotherapy Research 23 (12):1748–53. doi: 10.1002/ptr.2840.
  • Li, X., H. Xiao, X. Liang, D. Shi, and J. Liu. 2004. LC–MS/MS determination of naringin, hesperidin and neohesperidin in rat serum after orally administrating the decoction of Bulpleurum falcatum L. and Fractus aurantii. Journal of Pharmaceutical and Biomedical Analysis 34 (1):159–66. doi: 10.1016/j.japna.2003.08.002.
  • Liu, C., W. Hou, S. Li, and R. Tsao. 2020. Extraction and isolation of acetylcholinesterase inhibitors from Citrus limon peel using an in vitro method. Journal of Separation Science 43 (8):1531–43. doi: 10.1002/jssc.201901252.
  • Liu, T., Y. Ma, R. Zhang, H. Zhong, L. Wang, J. Zhao, L. Yang, and X. Fan. 2019. Resveratrol ameliorates estrogen deficiency-induced depression- and anxiety-like behaviors and hippocampal inflammation in mice. Psychopharmacology 236 (4):1385–99. doi: 10.1007/s00213-018-5148-5.
  • Liu, L., L. Zhang, L. Ren, and Y. Xie. 2020. Advances in structures required of polyphenols for xanthine oxidase inhibition. Food Frontiers 1 (2):152–67. doi: 10.1002/fft2.27.
  • Liu, Y., H. Zhang, H. Yu, S. Guo, and D. Chen. 2019. Deep eutectic solvent as a green solvent for enhanced extraction of narirutin, naringin, hesperidin and neohesperidin from Aurantii Fructus. Phytochemical Analysis 30 (2):156–63. doi: 10.1002/pca.2801.
  • Lu, Y., C. Zhang, P. Bucheli, and D. Wei. 2006. Citrus flavonoids in fruit and traditional Chinese medicinal food ingredients in China. Plant Foods for Human Nutrition 61 (2):55–63. doi: 10.1007/s11130-006-0014-8.
  • Lu, J. F., M. Q. Zhu, H. Zhang, H. Liu, B. Xia, Y. L. Wang, X. Shi, L. Peng, and J. W. Wu. 2020. Neohesperidin attenuates obesity by altering the composition of the gut microbiota in high‐fat diet‐fed mice. FASEB Journal 34 (9):12053–71. doi: 10.1096/fj.201903102RR.
  • Mallampalli, V. K. 2009. Expression and biochemical function of putative flavonoid GT Clones from grapefruit and identification of New Clones using the harvEST Database.
  • Mellitus, D. 2005. Diagnosis and classification of diabetes mellitus. Diabetes Care 28 (S37):S5–S10.
  • Miastkowska, M., and E. Sikora. 2018. Anti-aging properties of plant stem cell extracts. Cosmetics 5 (4):55. doi: 10.3390/cosmetics5040055.
  • Miceli, N., M. R. Mondello, M. T. Monforte, V. Sdrafkakis, P. Dugo, M. L. Crupi, M. F. Taviano, R. De Pasquale, and A. Trovato. 2007. Hypolipidemic effects of Citrus bergamia Risso et Poiteau juice in rats fed a hypercholesterolemic diet. Journal of Agricultural and Food Chemistry 55 (26):10671–7. doi: 10.1021/jf071772i.
  • Miean, K. H, and S. Mohamed. 2001. Flavonoid (myricetin, quercetin, kaempferol, luteolin, and apigenin) content of edible tropical plants. Journal of Agricultural and Food Chemistry 49 (6):3106–12.
  • Miller, E. G., J. J. Peacock, T. C. Bourland, S. E. Taylor, J. M. Wright, B. S. Patil, and E. G. Miller. 2007. Inhibition of oral carcinogenesis by citrus flavonoids. Nutrition and Cancer 60 (1):69–74. doi: 10.1080/01635580701616163.
  • Nasrin, S., M. N. Islam, M. A. Tayab, M. S. Nasrin, M. A. B. Siddique, T. B. Emran, and A. A. Reza. 2022. Chemical profiles and pharmacological insights of Anisomeles indica Kuntze: An experimental chemico-biological interaction. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie 149:112842. doi: 10.1016/j.biopha.2022.112842.
  • Nogata, Y., K. Sakamoto, H. Shiratsuchi, T. Ishii, M. Yano, and H. Ohta. 2006. Flavonoid composition of fruit tissues of citrus species. Bioscience, Biotechnology, and Biochemistry 70 (1):178–92. doi: 10.1271/bbb.70.178.
  • Nseir, W., F. Nassar, and N. Assy. 2010. Soft drinks consumption and nonalcoholic fatty liver disease. World Journal of Gastroenterology 16 (21):2579–88. doi: 10.3748/wjg.v16.i21.2579.
  • Ortiz, A. d C., S. O. M. Fideles, C. H. B. Reis, M. Z. Bellini, E. d S. B. M. Pereira, J. P. G. Pilon, M. Â. de Marchi, C. R. P. Detregiachi, U. A. P. Flato, B. F. d M. Trazzi, et al. 2022. Therapeutic effects of citrus flavonoids neohesperidin, hesperidin and its aglycone, hesperetin on bone health. Biomolecules 12 (5):626. doi: 10.3390/biom12050626.
  • Papoutsis, K., Q. V. Vuong, L. Tesoriero, P. Pristijono, C. E. Stathopoulos, S. Gkountina, F. Lidbetter, M. C. Bowyer, C. J. Scarlett, and J. B. Golding. 2018. Microwave irradiation enhances the in vitro antifungal activity of citrus by‐product aqueous extracts against Alternaria alternata. International Journal of Food Science & Technology 53 (6):1510–7. doi: 10.1111/ijfs.13732.
  • Patel, D. K., R. Kumar, S. K. Prasad, and S. Hemalatha. 2011. Pharmacologically screened aphrodisiac plant-A review of current scientific literature. Asian Pacific Journal of Tropical Biomedicine 1 (1):S131–S138. doi: 10.1016/S2221-1691(11)60140-8.
  • Patel, D. K., D. Laloo, R. Kumar, and S. Hemalatha. 2011. Pedalium murex Linn.: An overview of its phytopharmacological aspects. Asian Pacific Journal of Tropical Medicine 4 (9):748–55. doi: 10.1016/S1995-7645(11)60186-7.
  • Patil, J. R., K. N. Chidambara Murthy, G. K. Jayaprakasha, M. B. Chetti, and B. S. Patil. 2009. Bioactive compounds from Mexican lime (Citrus aurantifolia) juice induce apoptosis in human pancreatic cells. Journal of Agricultural and Food Chemistry 57 (22):10933–42.
  • Peterson, J. J., J. T. Dwyer, G. R. Beecher, S. A. Bhagwat, S. E. Gebhardt, D. B. Haytowitz, and J. M. Holden. 2006. Flavanones in oranges, tangerines (mandarins), tangors, and tangelos: A compilation and review of the data from the analytical literature. Journal of Food Composition and Analysis 19:S66–S73. doi: 10.1016/j.jfca.2005.12.006.
  • Prasain, J. K., and S. Barnes. 2020. Cranberry polyphenols-gut microbiota interactions and potential health benefits: An updated review. Food Frontiers 1 (4):459–64. doi: 10.1002/fft2.56.
  • Prescott, S., and A. Nowak-Węgrzyn. 2011. Strategies to prevent or reduce allergic disease. Annals of Nutrition and Metabolism 59 (Suppl. 1):28–42. doi: 10.1159/000334150.
  • Rahman, J., A. M. Tareq, M. M. Hossain, S. A. Sakib, M. N. Islam, M. H. Ali, A. B. M. N. Uddin, M. Hoque, M. S. Nasrin, T. B. Emran, et al. 2020. Biological evaluation, DFT calculations and molecular docking studies on the antidepressant and cytotoxicity activities of Cycas pectinata Buch.-Ham. compounds. Pharmaceuticals 13 (9):232. doi: 10.3390/ph13090232.
  • Rambaran, T. F., and A. Nordström. 2021. Medical and pharmacokinetic effects of nanopolyphenols: A systematic review of clinical trials. Food Frontiers 2 (2):140–52. doi: 10.1002/fft2.72.
  • Rauf, A., M. Akram, H. Anwar, M. Daniyal, N. Munir, S. Bawazeer, S. Bawazeer, M. Rebezov, A. Bouyahya, M. A. Shariati, et al. 2022. Therapeutic potential of herbal medicine for the management of hyperlipidemia: Latest updates. Environmental Science and Pollution Research 29 (27):40281–301. doi: 10.1007/s11356-022-19733-7.
  • Ren, J. Y. 2021. Bringing to fore the role of peptides, polyphenols, and polysaccharides in health: The research profile of Jiaoyan Ren. Food Frontiers 2 (1):29–31. doi: 10.1002/fft2.62.
  • Reshef, N., Y. Hayari, C. Goren, M. Boaz, Z. Madar, and H. Knobler. 2005. Antihypertensive effect of sweetie fruit in patients with stage I hypertension. American Journal of Hypertension 18 (10):1360–3. doi: 10.1016/j.amjhyper.2005.05.021.
  • Rosa-Falero, C., S. Torres-Rodríguez, C. Jordán, R. Licier, Y. Santiago, Z. Toledo, M. Santiago, K. Serrano, J. Sosa, and J. G. Ortiz. 2015. Citrus aurantium increases seizure latency to PTZ induced seizures in zebrafish thru NMDA and mGluR’s I and II. Frontiers in Pharmacology 5:284. doi: 10.3389/fphar.2014.00284.
  • Rouseff, R. L., S. F. Martin, and C. O. Youtsey. 1987. Quantitative survey of narirutin, naringin, hesperidin, and neohesperidin in citrus. Journal of Agricultural and Food Chemistry 35 (6):1027–30. doi: 10.1021/jf00078a040.
  • Sahoo, M., S. Vishwakarma, C. Panigrahi, and J. Kumar. 2021. Nanotechnology: Current applications and future scope in food. Food Frontiers 2 (1):3–22. doi: 10.1002/fft2.58.
  • Sakib, S. A., A. M. Tareq, A. Islam, A. Rakib, M. N. Islam, M. A. Uddin, M. M. Rahman, V. Seidel, and T. B. Emran. 2021. Anti-inflammatory, thrombolytic and hair-growth promoting activity of the n-hexane fraction of the methanol extract of Leea indica leaves. Plants 10 (6):1081. doi: 10.3390/plants10061081.
  • Salas, M. P., G. Céliz, H. Geronazzo, M. Daz, and S. L. Resnik. 2011. Antifungal activity of natural and enzymatically-modified flavonoids isolated from citrus species. Food Chemistry 124 (4):1411–5. doi: 10.1016/j.foodchem.2010.07.100.
  • Salas, M. P., C. M. Reynoso, G. Céliz, M. Daz, and S. L. Resnik. 2012. Efficacy of flavanones obtained from citrus residues to prevent patulin contamination. Food Research International 48 (2):930–4. doi: 10.1016/j.foodres.2012.02.003.
  • Sawalha, S. M., D. Arráez-Román, A. Segura-Carretero, and A. Fernández-Gutiérrez. 2009. Quantification of main phenolic compounds in sweet and bitter orange peel using CE–MS/MS. Food Chemistry 116 (2):567–74. doi: 10.1016/j.foodchem.2009.03.003.
  • Shanmugam, H., S. Ganguly, and B. Priya. 2022. Plant food bioactives and its effects on gut microbiota profile modulation for better brain health and functioning in Autism Spectrum Disorder individuals: A review. Food Frontiers 3 (1):124–41. doi: 10.1002/fft2.125.
  • Sharma, K., N. Mahato, and Y. R. Lee. 2019. Extraction, characterization and biological activity of citrus flavonoids. Reviews in Chemical Engineering 35 (2):265–84. doi: 10.1515/revce-2017-0027.
  • Shi, Q., X. Song, J. Fu, C. Su, X. Xia, E. Song, and Y. Song. 2015. Artificial sweetener neohesperidin dihydrochalcone showed antioxidative, anti-inflammatory and anti-apoptosis effects against paraquat-induced liver injury in mice. International Immunopharmacology 29 (2):722–9. doi: 10.1016/j.intimp.2015.09.003.
  • Shishir, M. R. I., N. Karim, V. Gowd, J. Xie, X. Zheng, and W. Chen. 2019. Pectin-chitosan conjugated nanoliposome as a promising delivery system for neohesperidin: Characterization, release behavior, cellular uptake, and antioxidant property. Food Hydrocolloids. 95:432–44. doi: 10.1016/j.foodhyd.2019.04.059.
  • Sinha, D., T. Satapathy, P. Jain, J. P. Chandel, D. Sahu, B. Sahu, A. Verma, S. Singh, K. Verma, and R. Rathore. 2019. In vitro antidiabetic effect of neohesperidin. Journal of Drug Delivery and Therapeutics 9 (6):102–9. doi: 10.22270/jddt.v9i6.3633.
  • Tan, Z., J. Cheng, Q. Liu, L. Zhou, J. Kenny, T. Wang, X. Lin, J. Yuan, J. M. W. Quinn, J. Tickner, et al. 2017. Neohesperidin suppresses osteoclast differentiation, bone resorption and ovariectomised-induced osteoporosis in mice. Molecular and Cellular Endocrinology 439:369–78. doi: 10.1016/j.mce.2016.09.026.
  • Tayab, M. A., K. A. A. Chowdhury, M. Jabed, S. Mohammed Tareq, A. T. M. M. Kamal, M. N. Islam, A. M. K. Uddin, M. A. Hossain, T. B. Emran, and J. Simal-Gandara. 2021. Antioxidant-rich woodfordia fruticosa leaf extract alleviates depressive-like behaviors and impede hyperglycemia. Plants 10 (2):287. doi: 10.3390/plants10020287.
  • Tayab, M. A., M. N. Islam, K. A. A. Chowdhury, and F. M. Tasnim. 2022. Targeting neuroinflammation by polyphenols: A promising therapeutic approach against inflammation-associated depression. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie 147:112668. doi: 10.1016/j.biopha.2022.112668.
  • Teng, H., and L. Chen. 2019. Polyphenols and bioavailability: An update. Critical Reviews in Food Science and Nutrition 59 (13):2040–51. doi: 10.1080/10408398.2018.1437023.
  • Teng, H., H. T. Deng, Y. J. He, Q. Y. Lv, and L. Chen. 2021. The role of dietary flavonoids for modulation of ATP binding cassette transporter mediated multidrug resistance. eFood 2 (5):234–46. doi: 10.53365/efood.k/144604.
  • Tong, L., D. Zhou, J. Gao, Y. Zhu, H. Sun, and K. Bi. 2012. Simultaneous determination of naringin, hesperidin, neohesperidin, naringenin and hesperetin of Fractus aurantii extract in rat plasma by liquid chromatography tandem mass spectrometry. Journal of Pharmaceutical and Biomedical Analysis 58:58–64. doi: 10.1016/j.jpba.2011.05.001.
  • Tsuchiya, H. 2010. Structure-dependent membrane interaction of flavonoids associated with their bioactivity. Food Chemistry 120 (4):1089–96. doi: 10.1016/j.foodchem.2009.11.057.
  • Ufuk, K. O. C. A. 2007. Elevation of the flavonoid content in grapefruit by introducing chalcone isomerase gene via biotechnological methods. Turk J. Pharm. Sci 4 (3):115–24.
  • Van Der Watt, E., and J. C. Pretorius. 2001. Purification and identification of active antibacterial components in Carpobrotus edulis L. Journal of Ethnopharmacology 76 (1):87–91.
  • Waalkens-Berendsen, D. H., M. E. M. Kuilman-Wahls, and A. Bär. 2004. Embryotoxicity and teratogenicity study with neohesperidin dihydrochalcone in rats. Regulatory Toxicology and Pharmacology 40 (1):74–9.
  • Wang, X., Z. Chen, H. Feng, X. Chen, and L. Wei. 2019. Genetic variants of the oppA gene are involved in metabolic regulation of surfactin in Bacillus subtilis. Microbial Cell Factories 18 (1):141. doi: 10.1186/s12934-019-1176-z.
  • Wang, J.-J., and P. Cui. 2013. Neohesperidin attenuates cerebral ischemia–reperfusion injury via inhibiting the apoptotic pathway and activating the Akt/Nrf2/HO-1 pathway. Journal of Asian Natural Products Research 15 (9):1023–37. doi: 10.1080/10286020.2013.827176.
  • Wang, S.-w., H. Sheng, Y.-f. Bai, Y.-y. Weng, X.-y. Fan, L.-j. Lou, and F. Zhang. 2020. Neohesperidin enhances PGC-1α-mediated mitochondrial biogenesis and alleviates hepatic steatosis in high fat diet fed mice. Nutrition & Diabetes 10 (1):1–11. doi: 10.1038/s41387-020-00130-3.
  • Wang, J., Y. Yuan, P. Zhang, H. Zhang, X. Liu, and Y. Zhang. 2018. Neohesperidin prevents Aβ 25–35-induced apoptosis in primary cultured hippocampal neurons by blocking the S-nitrosylation of protein-disulphide isomerase. Neurochemical Research 43 (9):1736–44. doi: 10.1007/s11064-018-2589-5.
  • Wu, H., Y. Liu, X. Chen, D. Zhu, J. Ma, Y. Yan, M. Si, X. Li, C. Sun, B. Yang, et al. 2017. Neohesperidin exerts lipid-regulating effects in vitro and in vivo via fibroblast growth factor 21 and AMP-activated protein Kinase/Sirtuin Type 1/Peroxisome Proliferator-activated receptor gamma coactivator 1α signaling axis. Pharmacology 100 (3-4):115–26. doi: 10.1159/000452492.
  • Wu, M., H. Zhang, C. Zhou, H. Jia, Z. Ma, and Z. Zou. 2015. Identification of the chemical constituents in aqueous extract of Zhi-Qiao and evaluation of its antidepressant effect. Molecules (Basel, Switzerland) 20 (4):6925–40. doi: 10.3390/molecules20046925.
  • Xiao, J. 2022. Recent advances on the stability of dietary polyphenols. eFood 3 (3):e21. doi: 10.1002/efd2.21.
  • Xiao, Y., D. Su, X. Hu, G. Yang, and Y. Shan. 2022. Neohesperidin dihydrochalcone ameliorates high-fat diet-induced glycolipid metabolism disorder in rats. Journal of Agricultural and Food Chemistry 70 (30):9421–31. doi: 10.1021/acs.jafc.2c03574.
  • Xia, N., C. Wang, and S. Zhu. 2022. Interaction between pH-shifted ovalbumin and insoluble neohesperidin: Experimental and binding mechanism studies. Food Chemistry 390:133104. doi: 10.1016/j.foodchem.2022.133104.
  • Xia, N., W. Wan, S. Zhu, and Q. Liu. 2020. Synthesis of hydrophobic propionyl neohesperidin ester using an immobilied enzyme and description of its anti-proliferative and pro-apoptotic effects on MCF-7 human breast cancer cells. Frontiers in Bioengineering and Biotechnology 8:1025. doi: 10.3389/fbioe.2020.01025.
  • Xu, Z.-r., C.-h. Jiang, S.-y. Fan, R.-j. Yan, N. Xie, and C.-z. Wu. 2019. Comparative pharmacokinetics of naringin and neohesperidin after oral administration of flavonoid glycosides from Aurantii Fructus Immaturus in normal and gastrointestinal motility disorders mice. Chinese Herbal Medicines 11 (3):314–20. doi: 10.1016/j.chmed.2019.03.011.
  • Xu, Y.-x., H.-b. Qu, and Y.-y. Cheng. 1994. Isolation and purification of neohesperidin reference substance from Fructus Aurantii. Chinese Traditional and Herbal Drugs 4.
  • Xu, F., J. Zang, D. Chen, T. Zhang, H. Zhan, M. Lu, and H. Zhuge. 2012. Neohesperidin induces cellular apoptosis in human breast adenocarcinoma MDA-MB-231 cells via activating the Bcl-2/Bax-mediated signaling pathway. Natural Product Communications 7 (11):1934578X1200701. 1934578X1200701116. doi: 10.1177/1934578X1200701116.
  • Yao, L. H., Y.-M. Jiang, J. Shi, F. A. Tomas-Barberan, N. Datta, R. Singanusong, and S. S. Chen. 2004. Flavonoids in food and their health benefits. Plant Foods for Human Nutrition (Dordrecht, Netherlands) 59 (3):113–22.
  • Ying, Y., H. Wan, X. Zhao, L. Yu, Y. He, and W. Jin. 2020. Pharmacokinetic-pharmacodynamic modeling of the antioxidant activity of Quzhou Fructus Aurantii decoction in a rat model of hyperlipidemia. Biomedicine & Pharmacotherapy 131:110646. doi: 10.1016/j.biopha.2020.110646.
  • Yu, E. A., G.-S. Kim, J. E. Lee, S. Park, S. Yi, S. J. Lee, J. H. Kim, J. S. Jin, A. M. Abd El-Aty, J.-H. Shim, et al. 2015. Flavonoid profiles of immature and mature fruit tissues of Citrus grandis Osbeck (Dangyuja) and overall contribution to the antioxidant effect. Biomedical Chromatography 29 (4):590–4. doi: 10.1002/bmc.3318.
  • Yuan, J., F. Wei, X. Luo, M. Zhang, R. Qiao, M. Zhong, H. Chen, and W. Yang. 2020. Multi-component comparative pharmacokinetics in rats after oral administration of fructus aurantii extract, naringin, neohesperidin, and naringin-neohesperidin. Frontiers in Pharmacology 11:933. doi: 10.3389/fphar.2020.00933.
  • Yuan, S., C. Zhang, Y. Zhu, and B. Wang. 2020. Neohesperidin ameliorates steroid-induced osteonecrosis of the femoral head by inhibiting the histone modification of lncRNA HOTAIR. Drug Design, Development and Therapy 14:5419–30. doi: 10.2147/DDDT.S255276.
  • Zhang, H. L., G. Caprioli, H. Hussain, N. P. Khoi Le, M. A. Farag, and J. B. Xiao. 2021. A multifaceted review on dihydromyricetin resources, extraction, bioavailability, biotransformation, bioactivities, and food applications with future perspectives to maximize its value. eFood 2 (4):164–84. doi: 10.53365/efood.k/143518.
  • Zhang, J. F., X. M. Chen, X. Y. Mu, M. W. Hu, J. Wang, X. J. Huang, and S. P. Nie. 2021. Protective effects of flavonoids isolated from Agrocybe aegirita on dextran sodium sulfate-induced colitis. eFood 2 (6):288–95. doi: 10.53365/efood.k/147240.
  • Zhang, J., Y. Hui, F. Liu, Q. Yang, Y. Lu, Y. Chang, Q. Liu, and Y. Ding. 2022. Neohesperidin protects angiotensin II-induced hypertension and vascular remodeling. Frontiers in Pharmacology 13:890202. doi: 10.3389/fphar.2022.890202.
  • Zhang, W., S. Jiang, D. Qian, E.-x. Shang, and J.-a. Duan. 2014. Determination of metabolism of neohesperidin by human intestinal bacteria by UPLC-Q-TOF/MS. Chromatographia 77 (5):439–45. doi: 10.1007/s10337-014-2625-9.
  • Zhang, Y., Y. Sun, W. Xi, Y. Shen, L. Qiao, L. Zhong, X. Ye, and Z. Zhou. 2014. Phenolic compositions and antioxidant capacities of Chinese wild mandarin (Citrus reticulata Blanco) fruits. Food Chemistry 145:674–80. doi: 10.1016/j.foodchem.2013.08.012.
  • Zhang, J., C. Sun, Y. Yan, Q. Chen, F. Luo, X. Zhu, X. Li, and K. Chen. 2012. Purification of naringin and neohesperidin from Huyou (Citrus changshanensis) fruit and their effects on glucose consumption in human HepG2 cells. Food Chemistry 135 (3):1471–8. doi: 10.1016/j.foodchem.2012.06.004.
  • Zhang, L., Y. Xu, Y. Li, T. Bao, V. Gowd, and W. Chen. 2017. Protective property of mulberry digest against oxidative stress–A potential approach to ameliorate dietary acrylamide-induced cytotoxicity. Food Chemistry 230:306–15. doi: 10.1016/j.foodchem.2017.03.045.
  • Zhang, J., X. Zhu, F. Luo, C. Sun, J. Huang, X. Li, and K. Chen. 2012. Separation and purification of neohesperidin from the albedo of Citrus reticulata cv. Suavissima by combination of macroporous resin and high‐speed counter‐current chromatography. Journal of Separation Science 35 (1):128–36. doi: 10.1002/jssc.201100695.
  • Zhao, T., S. Hu, P. Ma, D. Che, R. Liu, Y. Zhang, J. Wang, C. Li, Y. Ding, J. Fu, et al. 2019. Neohesperidin suppresses IgE-mediated anaphylactic reactions and mast cell activation via Lyn-PLC-Ca2+ pathway. Phytotherapy Research 33 (8):2034–43. doi: 10.1002/ptr.6385.
  • Zhao, C., X. Z. Wan, S. Zhou, and H. Cao. 2020. Natural polyphenols: A potential therapeutic approach to hypoglycemia. eFood 1 (2):107–18. doi: 10.2991/efood.k.200302.001.
  • Zhong, R., M. A. Farag, M. Chen, C. He, and J. Xiao. 2022. Recent advances in the biosynthesis, structure–activity relationships, formulations, pharmacology, and clinical trials of fisetin. eFood 3 (1–2):e3. doi: 10.1002/efd2.3.
  • Zhu, H., J. Guan, J. Shi, X. Pan, S. Chang, T. Zhang, B. Feng, and J. Gu. 2020. Simultaneous determination of eight bioactive constituents of Zhi‐Zi‐Hou‐Po decoction in rat plasma by ultra high performance liquid chromatography with tandem mass spectrometry and its application to a pharmacokinetic study. Journal of Separation Science 43 (2):406–17. doi: 10.1002/jssc.201900670.
  • Zhu, F. M., J. X. Li, Z. L. Ma, J. Li, and B. Du. 2021. Structural identification and in vitro antioxidant activities of anthocyanins in black chokeberry (Aronia melanocarpa lliot). eFood 2 (4):201–8. doi: 10.53365/efood.k/143829.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.