307
Views
2
CrossRef citations to date
0
Altmetric
Review Articles

Microfluidic assessment of nutritional biomarkers: Concepts, approaches and advances

, ORCID Icon, ORCID Icon & ORCID Icon

References

  • Ahrberg, C. D., A. Manz, and B. G. Chung. 2016. Polymerase chain reaction in microfluidic devices. Lab on a Chip 16 (20):3866–84. doi: 10.1039/c6lc00984k.
  • Almeida, M. I. G., B. Manori Jayawardane, S. D. Kolev, and I. D. McKelvie. 2018. Developments of microfluidic paper-based analytical devices (ΜPADs) for water analysis: A review. Talanta 177 (July 2017):176–90. doi: 10.1016/j.talanta.2017.08.072.
  • Anusha, T., K. S. Bhavani, J. V. Shanmukha Kumar, P. K. Brahman, and R. Y. A. Hassan. 2022. Fabrication of electrochemical immunosensor based on GCN-β-CD/Au nanocomposite for the monitoring of vitamin D deficiency. Bioelectrochemistry (Amsterdam, Netherlands) 143:107935. doi: 10.1016/j.bioelechem.2021.107935.
  • Ardalan, S., M. Hosseinifard, M. Vosough, and H. Golmohammadi. 2020. Biosensors and bioelectronics towards smart personalized perspiration analysis: An IoT-integrated cellulose-based microfluidic wearable patch for smartphone fluorimetric multi-sensing of sweat biomarkers. Biosensors & Bioelectronics 168 (June):112450. doi: 10.1016/j.bios.2020.112450.
  • Beauchamp, M. J., A. V. Nielsen, H. Gong, G. P. Nordin, and A. T. Woolley. 2019. 3D printed microfluidic devices for microchip electrophoresis of preterm birth biomarkers. Research-article. Analytical Chemistry 91 (11):7418–25. doi: 10.1021/acs.analchem.9b01395.
  • Bhaiyya, M., P. Kumar Pattnaik, and S. Goel. 2021a. Simultaneous detection of vitamin B12 and vitamin C from real samples using miniaturized laser-induced graphene based electrochemiluminescence device with closed bipolar electrode. Sensors and Actuators A: Physical 331:112831. doi: 10.1016/j.sna.2021.112831.
  • Bhaiyya, M., P. Kumar Pattnaik, and S. Goel. 2021b. Electrochemiluminescence sensing of vitamin B12 using laser-induced graphene based bipolar and single electrodes in a 3D-printed portable system. Microfluidics and Nanofluidics 25 (5):1–8. doi: 10.1007/s10404-021-02442-x.
  • Bi, H., C. M. Duarte, M. Brito, V. Vilas-Boas, S. Cardoso, and P. Freitas. 2016. Performance enhanced UV/Vis spectroscopic microfluidic sensor for ascorbic acid quantification in human blood. Biosensors & Bioelectronics 85:568–72. doi: 10.1016/j.bios.2016.05.054.
  • Bolat, G., E. De la Paz, N. F. Azeredo, M. Kartolo, J. Kim, A. N. de Loyola E Silva, R. Rueda, C. Brown, L. Angnes, J. Wang, et al. 2022. Wearable soft electrochemical microfluidic device integrated with iontophoresis for sweat biosensing. Analytical and Bioanalytical Chemistry 414 (18):5411–21. doi: 10.1007/s00216-021-03865-9.
  • Calder, P. C., N. Ahluwalia, R. Albers, N. Bosco, R. Bourdet-Sicard, D. Haller, S. T. Holgate, L. S. Jönsson, M. E. Latulippe, A. Marcos, et al. 2013. A consideration of biomarkers to be used for evaluation of inflammation in human nutritional studies. British Journal of Nutrition 109 (S1):S1–S34. doi: 10.1017/S0007114512005119.
  • Chen, J. S., P. F. Chen, H. T. H. Lin, and N. T. Huang. 2020. A localized surface plasmon resonance (LSPR) sensor integrated automated microfluidic system for multiplex inflammatory biomarker detection. The Analyst 145 (23):7654–61. doi: 10.1039/d0an01201g.
  • Chen, L., C. Yang, Y. Xiao, X. Yan, L. Hu, M. Eggersdorfer, D. Chen, D. A. Weitz, and F. Ye. 2021. Millifluidics, microfluidics, and nanofluidics: Manipulating fluids at varying length scales. Materials Today Nano 16:100136. doi: 10.1016/j.mtnano.2021.
  • Chen, R., X. Du, Y. Cui, X. Zhang, Q. Ge, J. Dong, and X. Zhao. 2020. Vertical flow assay for inflammatory biomarkers based on nanofluidic channel array and SERS nanotags. Small 16 (32):2070180–13. doi: 10.1002/smll.202002801.
  • Cui, F., M. Rhee, A. Singh, and A. Tripathi. 2015. Microfluidic sample preparation for medical diagnostics. Annual Review of Biomedical Engineering 17:267–86. doi: 10.1146/annurev-bioeng-071114-040538.
  • de Castro, L. F., S. V. de Freitas, L. C. Duarte, J. A. C. de Souza, T. R. Paixão, and W. K. Coltro. 2019. Salivary diagnostics on paper microfluidic devices and their use as wearable sensors for glucose monitoring. Analytical and Bioanalytical Chemistry 411 (19):4919–28. doi: 10.1007/s00216-019-01788-0.
  • Dong, X., L. Liu, Y. Tu, J. Zhang, G. Miao, L. Zhang, S. Ge, N. Xia, D. Yu, and X. Qiu. 2021. Rapid PCR powered by microfluidics: A quick review under the background of COVID-19 pandemic. Trends in Analytical Chemistry: TRAC 143:116377. doi: 10.1016/j.trac.2021.116377.
  • Dortez, S., A. G. Crevillen, and A. Escarpa. 2022. Integrated calibration and serum iron in situ analysis into an array microfluidic paper-based analytical device with smartphone readout. Talanta 253 (September 2022):123914. doi: 10.1016/j.talanta.2022.123914.
  • Fallahi, H., J. Zhang, H. P. Phan, and N. T. Nguyen. 2019. Flexible microfluidics: Fundamentals, recent developments, and applications. Micromachines 10 (12):830. doi:3390/mi10120830. doi: 10.3390/mi10120830.
  • Felder, S., N. Braun, Z. Stanga, P. Kulkarni, L. Faessler, A. Kutz, D. Steiner, S. Laukemann, S. Haubitz, A. Huber, et al. 2016. Unraveling the link between malnutrition and adverse clinical outcomes: Association of acute and chronic malnutrition measures with blood biomarkers from different pathophysiological states. Annals of Nutrition & Metabolism 68 (3):164–72. doi: 10.1159/000444096.
  • Feng, D., T. Xu, H. Li, X. Shi, and G. Xu. 2020. Single-cell metabolomics analysis by microfluidics and mass spectrometry: Recent new advances. Journal of Analysis and Testing 4 (3):198–209. doi: 10.1007/s41664-020-00138-9.
  • Fernandes, A. C., K. V. Gernaey, and U. Krühne. 2018. Connecting worlds – a view on microfluidics for a wider application. Biotechnology Advances 36 (4):1341–66. doi: 10.1016/j.biotechadv.2018.05.001.
  • Ferreira, F. T., K. A. Catalão, R. B. Mesquita, and A. O. Rangel. 2021. New microfluidic paper-based analytical device for iron determination in urine samples. Analytical and Bioanalytical Chemistry 413 (30):7463–72. doi: 10.1007/s00216-021-03706-9.
  • Garg, M., M. G. Christensen, A. Iles, A. L. Sharma, S. Singh, and N. Pamme. 2020. Microfluidic-based electrochemical immunosensing of ferritin. Biosensors 10 (8):91. doi: 10.3390/bios10080091.
  • Gerhardt, R. F., A. J. Peretzki, S. K. Piendl, and D. Belder. 2017. Seamless combination of high-pressure chip-HPLC and droplet microfluidics on an integrated microfluidic glass chip. Analytical Chemistry 89 (23):13030–7. doi: 10.1021/acs.analchem.7b04331.
  • Ghosh, S., A. V. Kurpad, H. S. Sachdev, and T. Thomas. 2021. Inflammation correction in micronutrient deficiency with censored inflammatory biomarkers. The American Journal of Clinical Nutrition 113 (1):47–54. doi: 10.1093/ajcn/nqaa285.
  • Granado-Lorencio, F., C. Herrero-Barbudo, I. Blanco-Navarro, and B. Pérez-Sacristán. 2010. Suitability of ultra-high performance liquid chromatography for the determination of fat-soluble nutritional status (Vitamins A, E, D, and individual carotenoids). Analytical and Bioanalytical Chemistry 397 (3):1389–93. doi: 10.1007/s00216-010-3655-2.
  • Hall, A. G., J. C. King, and C. M. McDonald. 2022. Comparison of serum, plasma, and liver zinc measurements by AAS, ICP-OES, and ICP-MS in diverse laboratory settings. Biological Trace Element Research 200 (6):2606–13. doi: 10.1007/s12011-021-02883-z.
  • Han, Y., H. Wu, F. Liu, G. Cheng, and J. Zhe. 2014. Label-free biomarker assay in a microresistive pulse sensor via immunoaggregation. Analytical Chemistry 86 (19):9717–22. doi: 10.1021/ac502270n.
  • Hedrick, V. E., A. M. Dietrich, P. A. Estabrooks, J. Savla, E. Serrano, and B. M. Davy. 2012. Dietary biomarkers: Advances, limitations and future directions. Nutrition Journal 11 (1):1–14. doi: 10.1186/1475-2891-11-109.
  • Heinemann, J., B. Noon, D. Willems, K. Budeski, and B. Bothner. 2017. Analysis of raw biofluids by mass spectrometry using ­microfluidic diffusion-based separation. Analytical Methods: Advancing Methods and Applications 9 (3):385–92. doi: 10.1039/c6ay02827f.
  • Hoegger, D., P. Morier, C. Vollet, D. Heini, F. Reymond, and J. S. Rossier. 2007. Disposable microfluidic ELISA for the rapid determination of folic acid content in food products. Analytical and Bioanalytical Chemistry 387 (1):267–75. doi: 10.1007/s00216-006-0948-6.
  • Ibrahim, N. H., M. N. Salimi, M. N. Uda, N. A. Parmin, U. Hashim, and M. N. Afnan Uda. 2020. New development quantification methods for salt iodine and urinary iodine using microfluidics based nanotechnology. IOP Conference Series: Materials Science and Engineering 743 (1):012018. doi: 10.1088/1757-899X/743/1/012018.
  • Jahn, I. J., O. Žukovskaja, X. S. Zheng, K. Weber, T. W. Bocklitz, D. Cialla-May, and J. Popp. 2017. Surface-enhanced raman spectroscopy and microfluidic platforms: Challenges, solutions and potential applications. The Analyst 142 (7):1022–47. doi: 10.1039/c7an00118e.
  • Jothimuthu, P., R. A. Wilson, J. Herren, X. Pei, W. Kang, R. Daniels, H. Wong, F. Beyette, W. R. Heineman, and I. Papautsky. 2013. Zinc detection in serum by anodic stripping voltammetry on microfabricated bismuth electrodes. Electroanalysis 25 (2):401–7. doi: 10.1002/elan.201200530.
  • Kamruzzaman, M., A. M. Alam, K. M. Kim, S. H. Lee, Y. Ho Kim, A. N. Hamidul Kabir, G. M. Kim, and T. D. Dang. 2013. Chemiluminescence microfluidic system of gold nanoparticles enhanced luminol-silver nitrate for the determination of vitamin B12. Biomedical Microdevices 15 (1):195–202. doi: 10.1007/s10544-012-9716-x.
  • Kamruzzaman, M., A. M. Alam, S. H. Lee, and T. D. Dang. 2013. Chemiluminescence microfluidic system on a chip to determine vitamin B1 using platinum nanoparticles triggered luminol-AgNO3 reaction. Sensors and Actuators B: Chemical 185:301–8. doi: 10.1016/j.snb.2013.04.029.
  • Kim, J., A. S. Campbell, B. E. Fernández de Ávila, and J. Wang. 2019. Wearable biosensors for healthcare monitoring. Nature Biotechnology 37 (4):389–406. doi: 10.1038/s41587-019-0045-y.
  • Kim, J., Y. Wu, H. Luan, D. S. Yang, D. Cho, S. S. Kwak, S. Liu, H. Ryu, R. Ghaffari, and J. A. Rogers. 2022. A skin-interfaced, miniaturized microfluidic analysis and delivery system for colorimetric measurements of nutrients in sweat and supply of vitamins through the skin. Advanced Science 9 (2):2103331–11. doi: 10.1002/advs.202103331.
  • King, J. C., K. H. Brown, R. S. Gibson, N. F. Krebs, N. M. Lowe, J. H. Siekmann, and D. J. Raiten. 2016. Biomarkers of nutrition for development (BOND)-zinc review. The Journal of Nutrition 146 (4):1–28. doi: 10.3945/jn.115.220079.
  • Koh, A., D. Kang, Y. Xue, S. Sugama, K. Sekiyama, T. Kodama, and Y. Takamatsu. 2017. A soft, wearable microfluidic device for the capture, storage, and colorimetric sensing of sweat ahyeon. Science Translational Medicine 26 (4):39–46. http://stm.sciencemag.org/.
  • Kovarik, M. L., and S. C. Jacobson. 2009. Nanofluidics in lab-on-a-chip devices. Analytical Chemistry 81 (17):7133–40. doi: 10.1021/ac900614k.
  • Laiwattanapaisal, W., T. Songjaroen, T. Maturos, T. Lomas, A. Sappat, and A. Tuantranont. 2009. On-chip immunoassay for determination of urinary albumin. Sensors (Basel, Switzerland) 9 (12):10066–79. doi: 10.3390/s91210066.
  • Lee, S., A. J. Aranyosi, M. D. Wong, J. H. Hong, J. Lowe, C. Chan, D. Garlock, S. Shaw, P. D. Beattie, Z. Kratochvil, et al. 2016. Flexible opto-electronics enabled microfluidics systems with cloud connectivity for point-of-care micronutrient analysis. Biosensors & Bioelectronics 78:290–9. doi: 10.1016/j.bios.2015.11.060.
  • Li, X., and T. Tian. 2018. Recent advances in an organ-on-a-chip: Biomarker analysis and applications. Analytical Methods 10 (26):3122–30. doi: 10.1039/C8AY00970H.
  • Liao, Z., Y. Zhang, Y. Li, Y. Miao, S. Gao, F. Lin, Y. Deng, and L. Geng. 2019. Microfluidic chip coupled with optical biosensors for simultaneous detection of multiple analytes: A review. Biosensors & Bioelectronics 126:697–706. doi: 10.1016/j.bios.2018.11.032.
  • Lin, C. C., C. C. Tseng, C. J. Huang, J. H. Wang, and G. B. Lee. 2010. An integrated microfluidic chip for non-immunological determination of urinary albumin. Biomedical Microdevices 12 (5):887–96. doi: 10.1007/s10544-010-9443-0.
  • Lin, Y., J. H. Chen, R. He, B. Tang, L. Jiang, and X. Zhang. 2020. A fully validated high-throughput liquid chromatography tandem mass spectrometry method for automatic extraction and quantitative determination of endogenous nutritional biomarkers in dried blood spot samples. Journal of Chromatography. A 1622:461092. doi: 10.1016/j.chroma.2020.
  • Liu, D., L. Zhou, L. Huang, Z. Zuo, V. Ho, L. Jin, Y. Lu, X. Chen, J. Zhao, D. Qian, et al. 2021. Microfluidic integrated capacitive biosensor for C-reactive protein label-free and real-time detection. The Analyst 146 (17):5380–8. doi: 10.1039/d1an00464f.
  • Liu, S., W. Su, and X. Ding. 2016. A review on microfluidic paper-based analytical devices for glucose detection. Sensors 16 (12):2086. doi: 10.3390/s1612:2086.
  • Logan, D., S. M. Wallace, J. V. Woodside, and G. McKenna. 2021. The potential of salivary biomarkers of nutritional status and dietary intake: A systematic review. Journal of Dentistry 115 (October):103840. doi: 10.1016/j.jdent.2021.103840.
  • Logesh, D., M. S. Vallikkadan, M. M. Leena, J. A. Moses, and C. Anandharamakrishnan. 2021. Advances in microfluidic systems for the delivery of nutraceutical ingredients. Trends in Food Science\& Technology 116:501–524.
  • Maeki, M. 2018. Microfluidics for pharmaceutical applications. In Microfluidics for pharmaceutical applications: From nano/micro systems fabrication to controlled drug delivery 101–19. Amsterdam: Elsevier Inc. doi: 10.1016/B978-0-12-812659-2.00004-1.
  • Mani, V., T. Beduk, W. Khushaim, A. E. Ceylan, S. Timur, O. S. Wolfbeis, and K. N. Salama. 2021. Electrochemical sensors targeting salivary biomarkers: A comprehensive review. TrAC Trends in Analytical Chemistry 135:116164. doi: 10.1016/j.trac.2020.116164.
  • Meyer, S., M. Markova, G. Pohl, T. A. Marschall, O. Pivovarova, A. F. Pfeiffer, and T. Schwerdtle. 2018. Development, validation and application of an ICP-MS/MS method to quantify minerals and (ultra-)trace elements in human serum. Journal of Trace Elements in Medicine and Biology: Organ of the Society for Minerals and Trace Elements (GMS) 49:157–63. doi: 10.1016/j.jtemb.2018.05.012.
  • Münger, L. H., A. Trimigno, G. Picone, C. Freiburghaus, G. Pimentel, K. J. Burton, F. P. Pralong, N. Vionnet, F. Capozzi, R. Badertscher, et al. 2017. Identification of urinary food intake biomarkers for milk, cheese, and soy-based drink by untargeted GC-MS and NMR in healthy humans. Journal of Proteome Research 16 (9):3321–35. doi: 10.1021/acs.jproteome.7b00319.
  • Naderi, A., N. Bhattacharjee, and A. Folch. 2019. Digital manufacturing for microfluidics. Annual Review of Biomedical Engineering 21:325–64. doi: 10.1146/annurev-bioeng-092618-020341.
  • Ochoa, A., E. Álvarez-Bohórquez, E. Castillero, and L. F. Olguin. 2017. Detection of enzyme inhibitors in crude natural extracts using droplet-based microfluidics coupled to HPLC. Analytical Chemistry 89 (9):4889–4896. doi: 10.1021/acs.analchem.6b04988.
  • Oddo, A., B. Peng, Z. Tong, Y. Wei, W. Y. Tong, H. Thissen, and N. H. Voelcker. 2019. Advances in microfluidic blood–brain barrier (BBB) models. Trends in Biotechnology 37 (12):1295–314. doi: 10.1016/j.tibtech.2019.04.006.
  • Odriozola, L., and F. J. Corrales. 2015. Discovery of nutritional biomarkers: future directions based on omics technologies. International Journal of Food Sciences and Nutrition 66 (sup1):S31–S40. doi: 10.3109/09637486.2015.1038224.
  • Oshin, O., D. Kireev, H. Hlukhova, F. Idachaba, D. Akinwande, and A. Atayero. 2020. Graphene-based biosensor for early detection of iron deficiency. Sensors 20 (13).3688. doi: 10.3390/s2013:.
  • Pagaduan, J. V., V. Sahore, and A. T. Woolley. 2015. Applications of microfluidics and microchip electrophoresis for potential clinical biomarker analysis. Analytical and Bioanalytical Chemistry 407 (23):6911–22. doi: 10.1007/s00216-015-8622-5.
  • Phokharatkul, D., C. Karuwan, T. Lomas, D. Nacapricha, A. Wisitsoraat, and A. Tuantranont. 2011. AAO-CNTs electrode on microfluidic flow injection system for rapid iodide sensing. Talanta 84 (5):1390–5. doi: 10.1016/j.talanta.2011.03.071.
  • Picó, C., F. Serra, A. M. Rodríguez, J. Keijer, and A. Palou. 2019. Biomarkers of nutrition and health: New tools for new approaches. Nutrients 11 (5):1092–30. doi: 10.3390/nu1105.
  • Plevniak, K., M. Campbell, T. Myers, A. Hodges, M. He, K. Plevniak, M. Campbell, T. Myers, and A. Hodges. 2016. 3D printed auto-mixing chip enables rapid smartphone diagnosis of anemia 3D printed auto-mixing chip enables rapid smartphone diagnosis of anemia. Biomicrofluidics 10 (5):054113. doi: 10.1063/1.4964499.
  • Puiggròs, F., R. Solà, C. Bladé, M. J. Salvadó, and L. Arola. 2011. Nutritional biomarkers and foodomic methodologies for qualitative and quantitative analysis of bioactive ingredients in dietary intervention studies. Journal of Chromatography. A 1218 (42):7399–414. doi: 10.1016/j.chroma.2011.08.051.
  • Putallaz, L., P. v. d. Bogaard, P. Laub, and F. Rebeaud. 2019. Nanofluidics drives point-of-care technology for on the spot protein marker analysis with rapid actionable results. Journal of Nanomedicine & Nanotechnology 10 (5):1–7. doi: 10.35248/2157-7439.19.10.536.
  • Reichenwallner, A. K., E. Vurmaz, K. Battis, L. Handl, H. Üstün, T. Mach, G. Hörnig, J. Lipfert, and L. Richter. 2021. Optical investigation of individual red blood cells for determining cell count and cellular hemoglobin concentration in a microfluidic channel. Micromachines 12 (4):358. doi: 10.3390/mi12040.358.
  • Riordon, J., D. Sovilj, S. Sanner, D. Sinton, and E. W. Young. 2019. Deep learning with microfluidics for biotechnology. Trends in Biotechnology 37 (3):310–24. doi: 10.1016/j.tibtech.2018.08.005.
  • Schroen, K., C. Berton-Carabin, D. Renard, M. Marquis, A. Boire, R. Cochereau, C. Amine, and S. Marze. 2021. Droplet microfluidics for food and nutrition applications. Micromachines 12 (8):863. doi: 10.3390/mi12080863.
  • Segerink, L. I., and J. C. Eijkel. 2014. Nanofluidics in point of care applications. Lab on a Chip 14 (17):3201–5. doi: 10.1039/c4lc00298a.
  • Sekine, Y., S. B. Kim, Y. Zhang, A. J. Bandodkar, S. Xu, J. Choi, M. Irie, T. R. Ray, P. Kohli, N. Kozai, et al. 2018. A fluorometric skin-interfaced microfluidic device and smartphone imaging module for: in situ quantitative analysis of sweat chemistry. Lab on a Chip 18 (15):2178–86. doi: 10.1039/c8lc00530c.
  • Sempionatto, J. R., L. C. Brazaca, L. García-Carmona, G. Bolat, A. S. Campbell, A. Martin, G. Tang, R. Shah, R. K. Mishra, J. Kim, et al. 2019. Eyeglasses-based tear biosensing system: Non-invasive detection of alcohol, vitamins and glucose. Biosensors & Bioelectronics 137:161–70. doi: 10.1016/j.bios.2019.04.058.
  • Shubham, K., T. Anukiruthika, S. Dutta, A. V. Kashyap, J. A. Moses, and C. Anandharamakrishnan. 2020. Iron deficiency anemia: A comprehensive review on iron absorption, bioavailability and emerging food fortification approaches. Trends in Food Science & Technology 99 (January):58–75. doi: 10.1016/j.tifs.2020.02.021.
  • Sierra, T., I. Jang, E. Noviana, A. G. Crevillen, A. Escarpa, and C. S. Henry. 2021. Pump-free microfluidic device for the electrochemical detection of Α1-acid glycoprotein. ACS Sensors 6 (8):2998–3005. doi: 10.1021/acssensors.1c00864.
  • Snyder, C. M., W. R. Alley, M. I. Campos, M. Svoboda, J. A. Goetz, J. A. Vasseur, S. C. Jacobson, and M. V. Novotny. 2016. Complementary glycomic analyses of sera derived from colorectal cancer patients by MALDI-TOF-MS and microchip electrophoresis. Analytical Chemistry 88 (19):9597–605. doi: 10.1021/acs.analchem.6b02310.
  • Špačková, B., H. Šípová-Jungová, M. Käll, J. Fritzsche, and C. Langhammer. 2021. Nanoplasmonic-nanofluidic single-molecule biosensors for ultrasmall sample volumes. ACS Sensors 7 (1):73–82. doi: 10.1021/acssensors.0c01774.
  • Štěpánová, S., and V. Kašička. 2016. Recent developments and applications of capillary and microchip electrophoresis in proteomic and peptidomic analyses. Journal of Separation Science 39 (1):198–211. doi: 10.1002/jssc.201500973.
  • Sun, M., T. Xin, Z. Ran, X. Pei, C. Ma, J. Liu, M. Cao, J. Bai, and M. Zhou. 2021. A bendable biofuel cell-based fully integrated biomedical nanodevice for point-of-care diagnosis of scurvy. ACS Sensors 6 (1):275–84. doi: 10.1021/acssensors.0c02335.
  • Tian, T., Y. Bi, X. Xu, Z. Zhu, and C. Yang. 2018. Integrated paper-based microfluidic devices for point-of-care testing. Analytical Methods 10 (29):3567–81. doi: 10.1039/C8AY00864G.
  • Urasaki, Y., R. R. Fiscus, and T. T. Le. 2018. Detection of the cell cycle-regulated negative feedback phosphorylation of mitogen-activated protein kinases in breast carcinoma using nanofluidic proteomics. Scientific Reports 8 (1):1–13. doi: 10.1038/s41598-018-28335-8.
  • Vemulapati, S., E. Rey, D. O. Dell, S. Mehta, and D. Erickson. 2017. A quantitative point-of-need assay for the assessment of vitamin D 3 deficiency. Scientific Reports 7 (1):1–8. doi: 10.1038/s41598-017-13044-5.
  • Walter, J. G., L. S. Alwis, B. Roth, and K. Bremer. 2020. All-optical planar polymer waveguide-based biosensor chip designed for smartphone-assisted detection of vitamin D. Sensors 20 (23):6771. doi: 10.3390/s2023:6771.
  • Weng, C. H., H. Y. Chou, M. H. Chen, and Y. S. Lin. 2019. A portable platform for the quantification of vitamin D levels by using paper-based microfluidic. BMEiCON 2018 - 11th Biomedical Engineering International Conference. IEEE, 1–3. doi: 10.1109/BMEiCON.2018.8609988.
  • WHO. 2021. Malnutrition. https://www.who.int/news-room/fact-sheets/detail/malnutrition.
  • WHO. 2022. Anaemia. https://www.who.int/data/gho/data/indicators/indicator-details/GHO/prevalence-of-anaemia-in-women-of-reproductive-age-(-).
  • Xing, Y., L. Zhao, Z. Cheng, C. Lv, F. Yu, and F. Yu. 2021. Microfluidics-based sensing of biospecies. ACS Applied Bio Materials 4 (3):2160–91. doi: 10.1021/acsabm.0c01271.
  • Yang, R-j., C.-c. Tseng, W.-j. Ju, H.-l. Wang, and L.-m. Fu. 2018. A rapid paper-based detection system for determination of human serum albumin concentration. Chemical Engineering Journal 352:241–6. doi: 10.1016/j.cej.2018.07.022.
  • Yang, X., H. Yao, G. Zhao, G. A. Ameer, W. Sun, J. Yang, and S. Mi. 2020. Flexible, wearable microfluidic contact lens with capillary networks for tear diagnostics. Journal of Materials Science 55 (22):9551–61. doi: 10.1007/s10853-020-04688-2.
  • Yerrapragada, M. R., and H. N. Unni. 2018. Paper-based microfluidic device for diagnosis of osteoporosis markers. Bioanalysis 10 (20):1639–49. doi: 10.4155/bio-2018-0136.
  • Yin, H., and K. Killeen. 2007. The fundamental aspects and applications of agilent HPLC-chip. Journal of Separation Science 30 (10):1427–34. doi: 10.1002/jssc.200600454.
  • Yin, S., Y. Li, M. Nur Hossain, C. Sun, and H. B. Kraatz. 2021. Electrochemical detection of 25-hydroxyvitamin D3 using an oligonucleotide aptasensor. Sensors and Actuators B: Chemical 340 (March):129945. doi: 10.1016/j.snb.2021.129945.
  • Zhang, Z., M. Azizi, M. Lee, P. Davidowsku, P. Lawrence, and A. Abbaspourrad. 2019. A versatile, cost-effective, and flexible wearable biosensor for in situand ex situ sweat analysis, and personalized nutrition assessment. Lab on a Chip 19 (20):1037–43. doi: 10.1039/C9LC00734B.Volume.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.