1,237
Views
3
CrossRef citations to date
0
Altmetric
Review Articles

Anti-aging effects of dietary phytochemicals: From Caenorhabditis elegans, Drosophila melanogaster, rodents to clinical studies

, & ORCID Icon

References

  • Alasalvar, C., and B. W. Bolling. 2015. Review of nut phytochemicals, fat-soluble bioactives, antioxidant components and health effects. British Journal of Nutrition 113 (S2):S68–S78. doi: 10.1017/S0007114514003729.
  • Andargie, M., M. Vinas, A. Rathgeb, E. Moller, and P. Karlovsky. 2021. Lignans of sesame (Sesamum indicum L.): A comprehensive review. Molecules 26 (4):883. doi: 10.3390/molecules26040883.
  • Andreux, P. A., W. Blanco-Bose, D. Ryu, F. Burdet, M. Ibberson, P. Aebischer, J. Auwerx, A. Singh, and C. Rinsch. 2019. The mitophagy activator urolithin A is safe and induces a molecular signature of improved mitochondrial and cellular health in humans. Nature Metabolism 1 (6):595–603. doi: 10.1038/s42255-019-0073-4.
  • Ashraf, K., and S. Sultan. 2017. A comprehensive review on Curcuma longa Linn.: Phytochemical, pharmacological, and molecular study. International Journal of Green Pharmacy 11 (4):681.
  • Ayuda-Duran, B., S. Gonzalez-Manzano, A. Miranda-Vizuete, M. Duenas, C. Santos-Buelga, and A. M. Gonzalez-Paramas. 2019. Epicatechin modulates stress-resistance in C. elegans via insulin/IGF-1 signaling pathway. PloS One 14 (1):e0199483. doi: 10.1371/journal.pone.0199483.
  • Bahadorani, S., and A. J. Hilliker. 2008. Cocoa confers life span extension in Drosophila melanogaster. Nutrition Research (New York, NY) 28 (6):377–82. doi: 10.1016/j.nutres.2008.03.018.
  • Bahrami, A., F. Montecucco, F. Carbone, and A. Sahebkar. 2021. Effects of curcumin on aging: Molecular mechanisms and experimental evidence. BioMed Research International 2021:8972074. doi: 10.1155/2021/8972074.
  • Barbieri, M., M. Bonafè, C. Franceschi, and G. Paolisso. 2003. Insulin/IGF-I-signaling pathway: An evolutionarily conserved mechanism of longevity from yeast to humans. American Journal of Physiology. Endocrinology and Metabolism 285 (5):E1064–E1071. doi: 10.1152/ajpendo.00296.2003.
  • Bartke, A. 2005. Minireview: Role of the growth hormone/insulin-like growth factor system in mammalian aging. Endocrinology 146 (9):3718–23. doi: 10.1210/en.2005-0411.
  • Bauer, J. H., S. Goupil, G. B. Garber, and S. L. Helfand. 2004. An accelerated assay for the identification of lifespan-extending interventions in Drosophila melanogaster. Proceedings of the National Academy of Sciences of the United States of America 101 (35):12980–5. doi: 10.1073/pnas.0403493101.
  • Bensalem, J., S. Dudonne, D. Gaudout, L. Servant, F. Calon, Y. Desjardins, S. Laye, P. Lafenetre, and V. Pallet. 2018. Polyphenol-rich extract from grape and blueberry attenuates cognitive decline and improves neuronal function in aged mice. Journal of Nutritional Science 7:e19. doi: 10.1017/jns.2018.10.
  • Bheemreddy, R. M., and E. H. Jeffery. 2007. The metabolic fate of purified glucoraphanin in F344 Rats. Journal of Agricultural and Food Chemistry 55 (8):2861–6. doi: 10.1021/jf0633544.
  • Bisson, J. F., A. Nejdi, P. Rozan, S. Hidalgo, R. Lalonde, and M. Messaoudi. 2008. Effects of long-term administration of a cocoa polyphenolic extract (Acticoa powder) on cognitive performances in aged rats. The British Journal of Nutrition 100 (1):94–101. doi: 10.1017/S0007114507886375.
  • Bjedov, I., J. M. Toivonen, F. Kerr, C. Slack, J. Jacobson, A. Foley, and L. Partridge. 2010. Mechanisms of life span extension by rapamycin in the fruit fly Drosophila melanogaster. Cell Metabolism 11 (1):35–46. doi: 10.1016/j.cmet.2009.11.010.
  • Bo, S., G. Ciccone, A. Castiglione, R. Gambino, F. De Michieli, P. Villois, M. Durazzo, P. Cavallo-Perin, and M. Cassader. 2013. Anti-inflammatory and antioxidant effects of resveratrol in healthy smokers a randomized, double-blind, placebo-controlled, cross-over trial. Current Medicinal Chemistry 20 (10):1323–31. doi: 10.2174/0929867311320100009.
  • Brenner, S. 1974. The genetics of Caenorhabditis elegans. Genetics 77 (1):71–94. doi: 10.1093/genetics/77.1.71.
  • Brown, M. K., J. L. Evans, and Y. Luo. 2006. Beneficial effects of natural antioxidants EGCG and α-lipoic acid on life span and age-dependent behavioral declines in Caenorhabditis elegans. Pharmacology, Biochemistry, and Behavior 85 (3):620–8. doi: 10.1016/j.pbb.2006.10.017.
  • Cassidy, A., and A. M. Minihane. 2017. The role of metabolism (and the microbiome) in defining the clinical efficacy of dietary flavonoids. The American Journal of Clinical Nutrition 105 (1):10–22. doi: 10.3945/ajcn.116.136051.
  • Cesari, M., F. Landi, R. Calvani, A. Cherubini, M. D. Bari, P. Kortebein, S. D. Signore, R. L. Lain, B. Vellas, M. Pahor, SPRINTT Consortium, et al. 2017. Rationale for a preliminary operational definition of physical frailty and sarcopenia in the SPRINTT trial. Aging Clinical and Experimental Research 29 (1):81–8. doi: 10.1007/s40520-016-0716-1.
  • Cheang, W. S., W. T. Wong, L. Wang, C. K. Cheng, C. W. Lau, R. C. W. Ma, A. Xu, N. Wang, Y. Huang, and X. Y. Tian. 2019. Resveratrol ameliorates endothelial dysfunction in diabetic and obese mice through sirtuin 1 and peroxisome proliferator-activated receptor δ. Pharmacological Research 139:384–94. doi: 10.1016/j.phrs.2018.11.041.
  • Cheng, J., H. Wang, M. Bartlett, D. Stevenson, Y. Pan, M. S. Ho, and Y. Ren. 2021. Antioxidant blend of curcumin and broccoli seed extract exhibits protective effect on neurodegeneration and promotes Drosophila lifespan. ASN Neuro 13:17590914211015033. doi: 10.1177/17590914211015033.
  • Clokey, G. V., and L. A. Jacobson. 1986. The autofluorescent “lipofuscin granules” in the intestinal cells of Caenorhabditis elegans are secondary lysosomes. Mechanisms of Ageing and Development 35 (1):79–94. doi: 10.1016/0047-6374(86)90068-0.
  • Cohen, A. A. 2018. Aging across the tree of life: The importance of a comparative perspective for the use of animal models in aging. Biochimica et Biophysica Acta. Molecular Basis of Disease 1864 (9 Pt A):2680–9. doi: 10.1016/j.bbadis.2017.05.028.
  • Connolly, E. L., M. Sim, N. Travica, W. Marx, G. Beasy, G. S. Lynch, C. P. Bondonno, J. R. Lewis, J. M. Hodgson, and L. C. Blekkenhorst. 2021. Glucosinolates from cruciferous vegetables and their potential role in chronic disease: Investigating the preclinical and clinical evidence. Frontiers in Pharmacology 12 (2964):767975. doi: 10.3389/fphar.2021.767975.
  • Cruz-Jentoft, A. J., J. P. Baeyens, J. M. Bauer, Y. Boirie, T. Cederholm, F. Landi, F. C. Martin, J. Michel, Y. Rolland, S. M. Schneider, et al. 2010. Sarcopenia: European consensus on definition and diagnosis: Report of the European Working Group on sarcopenia in older people. Age and Ageing 39 (4):412–23. doi: 10.1093/ageing/afq034.
  • Davinelli, S., G. Corbi, and G. Scapagnini. 2021. Frailty syndrome: A target for functional nutrients? Mechanisms of Ageing and Development 195:111441. doi: 10.1016/j.mad.2021.111441.
  • de Castro, E., S. Hegi de Castro, and T. E. Johnson. 2004. Isolation of long-lived mutants in Caenorhabditis elegans using selection for resistance to juglone. Free Radical Biology & Medicine 37 (2):139–45. doi: 10.1016/j.freeradbiomed.2004.04.021.
  • Demczar, C., C. Behrens, L. Baltz, V. P. Georgescu, D. Arminavage, J. M. Brown, D. Fussell, T. C. Trate, S. R. McAnulty, L. S. McAnulty, et al. 2017. Six weeks of daily blueberry consumption does not alter aged skeletal muscle inflammation profile or inflammatory response to eccentric-exercise. Journal of Aging Research and Lifestyle 6:1–9. doi: 10.14283/jarcp.2017.31.
  • Devaraj, R. D., S. P. K. Jeepipalli, and B. Xu. 2020. Phytochemistry and health promoting effects of Job’s tears (Coix lacryma-jobi) - A critical review. Food Bioscience 34:100537. doi: 10.1016/j.fbio.2020.100537.
  • Di Meo, F., S. Margarucci, U. Galderisi, S. Crispi, and G. Peluso. 2019. Curcumin, gut microbiota, and neuroprotection. Nutrients 11 (10):2426. doi: 10.3390/nu11102426.
  • Eisenberg, T., H. Knauer, A. Schauer, S. Buttner, C. Ruckenstuhl, D. Carmona-Gutierrez, J. Ring, S. Schroeder, C. Magnes, L. Antonacci, et al. 2009. Induction of autophagy by spermidine promotes longevity. Nature Cell Biology 11 (11):1305–14. doi: 10.1038/ncb1975.
  • Eisenberg, T., M. Abdellatif, S. Schroeder, U. Primessnig, S. Stekovic, T. Pendl, A. Harger, J. Schipke, A. Zimmermann, A. Schmidt, et al. 2016. Cardioprotection and lifespan extension by the natural polyamine spermidine. Nature Medicine 22 (12):1428–38. doi: 10.1038/nm.4222.
  • Fabian, D. K., M. Fuentealba, H. M. Dönertaş, L. Partridge, and J. M. Thornton. 2021. Functional conservation in genes and pathways linking ageing and immunity. Immunity & Ageing: I & A 18 (1):23. doi: 10.1186/s12979-021-00232-1.
  • Fan, J., X. Yang, J. Li, Z. Shu, J. Dai, X. Liu, B. Li, S. Jia, X. Kou, Y. Yang, et al. 2017. Spermidine coupled with exercise rescues skeletal muscle atrophy from D-gal-induced aging rats through enhanced autophagy and reduced apoptosis via AMPK-FOXO3a signal pathway. Oncotarget 8 (11):17475–90. doi: 10.18632/oncotarget.15728.
  • Filfan, M., A. Olaru, I. Udristoiu, C. Margaritescu, E. Petcu, D. M. Hermann, and A. Popa-Wagner. 2020. Long-term treatment with spermidine increases health span of middle-aged Sprague-Dawley male rats. GeroScience 42 (3):937–49. doi: 10.1007/s11357-020-00173-5.
  • Flatt, T. 2012. A new definition of aging? Frontiers in Genetics 3:148. doi: 10.3389/fgene.2012.00148.
  • Fried, L. P., C. M. Tangen, J. Walston, A. B. Newman, C. Hirsch, J. Gottdiener, T. Seeman, R. Tracy, W. J. Kop, G. Burke, Cardiovascular Health Study Collaborative Research Group, et al. 2001. Frailty in older adults: Evidence for a phenotype. The Journals of Gerontology. Series A, Biological Sciences and Medical Sciences 56 (3):M146–M156. doi: 10.1093/gerona/56.3.m146.
  • Fulop, T., A. Larbi, J. M. Witkowski, J. McElhaney, M. Loeb, A. Mitnitski, and G. Pawelec. 2010. Aging, frailty and age-related diseases. Biogerontology 11 (5):547–63. doi: 10.1007/s10522-010-9287-2.
  • Gaffney, C. J., A. Pollard, T. F. Barratt, D. Constantin-Teodosiu, P. L. Greenhaff, and N. J. Szewczyk. 2018. Greater loss of mitochondrial function with ageing is associated with earlier onset of sarcopenia in C. elegans. Aging 10 (11):3382–96. doi: 10.18632/aging.101654.
  • Geng, L., Z. Liu, S. Wang, S. Sun, S. Ma, X. Liu, P. Chan, L. Sun, M. Song, W. Zhang, et al. 2019. Low-dose quercetin positively regulates mouse healthspan. Protein & Cell 10 (10):770–5. doi: 10.1007/s13238-019-0646-8.
  • Ghanim, H., C. L. Sia, S. Abuaysheh, K. Korzeniewski, P. Patnaik, A. Marumganti, A. Chaudhuri, and P. Dandona. 2010. An antiinflammatory and reactive oxygen species suppressive effects of an extract of Polygonum cuspidatum containing resveratrol. The Journal of Clinical Endocrinology and Metabolism 95 (9):E1–E8. doi: 10.1210/jc.2010-0482.
  • Giacomello, E., and L. Toniolo. 2021. The potential of calorie restriction and calorie restriction mimetics in delaying aging: Focus on experimental models. Nutrients 13 (7):2346. doi: 10.3390/nu13072346.
  • Golden, T. R., and S. Melov. 2007. Gene expression changes associated with aging in C. elegans. WormBook: The Online Review of C. elegans Biology [Internet]. doi: 10.1895/wormbook.1.127.2.
  • Gruber, J., S. Y. Tang, and B. Halliwell. 2007. Evidence for a trade-Off between survival and fitness caused by resveratrol treatment of Caenorhabditis elegans. Annals of the New York Academy of Sciences 1100 (1):530–42. doi: 10.1196/annals.1395.059.
  • Grünwald, S., J. Stellzig, I. V. Adam, K. Weber, S. Binger, M. Boll, E. Knorr, R. M. Twyman, A. Vilcinskas, and U. Wenzel. 2013. Longevity in the red flour beetle Tribolium castaneum is enhanced by broccoli and depends on nrf-2, jnk-1 and foxo-1 homologous genes. Genes & Nutrition 8 (5):439–48. doi: 10.1007/s12263-012-0330-6.
  • Grynkiewicz, G., and O. M. Demchuk. 2019. New perspectives for fisetin. Frontiers in Chemistry 7 (697):697. doi: 10.3389/fchem.2019.00697.
  • Harman, D. 1956. Aging: A theory based on free radicals and radiation chemistry. Journal of Gerontology 11 (3):298–300. doi: 10.1093/geronj/11.3.298.
  • Harman, D. 1992. Free radical theory of aging. Mutation Research/DNAging 275 (3–6):257–66. doi: 10.1016/0921-8734(92)90030-S.
  • Higdon, J., and V. J. Drake. 2012. Evidence-based approach to phytochemicals and other dietary factors. 2nd. Stuttgart, Germany: Thieme.
  • Hodgkin, J., and T. M. Barnes. 1991. More is not better: Brood size and population growth in a self-fertilizing nematode. Proceedings: Biological Sciences 246 (1315):19–24.
  • Howitz, K. T., K. J. Bitterman, H. Y. Cohen, D. W. Lamming, S. Lavu, J. G. Wood, R. E. Zipkin, P. Chung, A. Kisielewski, L.-L. Zhang, et al. 2003. Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan. Nature 425 (6954):191–6. doi: 10.1038/nature01960.
  • Huang, D. W., C. H. Wu, C. K. Shih, C. Y. Liu, P. H. Shih, T. M. Shieh, C. I. Lin, W. Chiang, and S. M. Hsia. 2014. Application of the solvent extraction technique to investigation of the anti-inflammatory activity of adlay bran. Food Chemistry 145:445–53. doi: 10.1016/j.foodchem.2013.08.071.
  • Iqbal, S., O. Ostojic, K. Singh, A. M. Joseph, and D. A. Hood. 2013. Expression of mitochondrial fission and fusion regulatory proteins in skeletal muscle during chronic use and disuse. Muscle & Nerve 48 (6):963–70. doi: 10.1002/mus.23838.
  • Iside, C., M. Scafuro, A. Nebbioso, and L. Altucci. 2020. SIRT1 activation by natural phytochemicals: An overview. Frontiers in Pharmacology 11:1225. doi: 10.3389/fphar.2020.01225.
  • Jeong, J. W., H. J. Cha, M. H. Han, S. J. Hwang, D. S. Lee, J. S. Yoo, I. W. Choi, S. Kim, H. S. Kim, G. Y. Kim, et al. 2018. Spermidine protects against oxidative stress in inflammation models using macrophages and zebrafish. Biomolecules & Therapeutics 26 (2):146–56. doi: 10.4062/biomolther.2016.272.
  • Kaletta, T., and M. O. Hengartner. 2006. Finding function in novel targets: C. elegans as a model organism. Nature Reviews. Drug Discovery 5 (5):387–98. doi: 10.1038/nrd2031.
  • Kampkotter, A., C. G. Nkwonkam, R. F. Zurawski, C. Timpel, Y. Chovolou, W. Watjen, and R. Kahl. 2007. Effects of the flavonoids kaempferol and fisetin on thermotolerance, oxidative stress and FoxO transcription factor DAF-16 in the model organism Caenorhabditis elegans. Archives of Toxicology 81 (12):849–58. doi: 10.1007/s00204-007-0215-4.
  • Kampkötter, A., C. Timpel, R. F. Zurawski, S. Ruhl, Y. Chovolou, P. Proksch, and W. Wätjen. 2008. Increase of stress resistance and lifespan of Caenorhabditis elegans by quercetin. Comparative Biochemistry and Physiology. Part B, Biochemistry & Molecular Biology 149 (2):314–23. doi: 10.1016/j.cbpb.2007.10.004.
  • Kauffman, A., L. Parsons, G. Stein, A. Wills, R. Kaletsky, and C. Murphy. 2011. C. elegans positive butanone learning, short-term, and long-term associative memory assays. Journal of Visualized Experiments (49):e2490. doi:10.3791/2490.
  • Kennedy, B. K., S. L. Berger, A. Brunet, J. Campisi, A. M. Cuervo, E. S. Epel, C. Franceschi, G. J. Lithgow, R. I. Morimoto, J. E. Pessin, et al. 2014. Geroscience: Linking aging to chronic disease. Cell 159 (4):709–13. doi: 10.1016/j.cell.2014.10.039.
  • Kenyon, C., J. Chang, E. Gensch, A. Rudner, and R. Tabtiang. 1993. A C. elegans mutant that lives twice as long as wild type. Nature 366 (6454):461–4. doi: 10.1038/366461a0.
  • Keowkase, R., N. Shoomarom, W. Bunargin, W. Sitthithaworn, and N. Weerapreeyakul. 2018. Sesamin and sesamolin reduce amyloid-β toxicity in a transgenic Caenorhabditis elegans. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie 107:656–64. doi: 10.1016/j.biopha.2018.08.037.
  • Kiechl, S., R. Pechlaner, P. Willeit, M. Notdurfter, B. Paulweber, K. Willeit, P. Werner, C. Ruckenstuhl, B. Iglseder, S. Weger, et al. 2018. Higher spermidine intake is linked to lower mortality: A prospective population-based study. The American Journal of Clinical Nutrition 108 (2):371–80. doi: 10.1093/ajcn/nqy102.
  • Kishimoto, A., A. Imaizumi, H. Wada, H. Yamakage, N. Satoh-Asahara, T. Hashimoto, and K. Hasegawa. 2021. Newly developed highly bioavailable curcumin formulation, curcuRougeTM, reduces neutrophil/lymphocyte ratio in the elderly: A double-blind, placebo-controlled clinical trial. Journal of Nutritional Science and Vitaminology 67 (4):249–52. doi: 10.3177/jnsv.67.249.
  • Kossler, S., C. Nofziger, M. Jakab, S. Dossena, and M. Paulmichl. 2012. Curcumin affects cell survival and cell volume regulation in human renal and intestinal cells. Toxicology 292 (2–3):123–35. doi: 10.1016/j.tox.2011.12.002.
  • Lai, R.-H., M. J. Miller, and E. Jeffery. 2010. Glucoraphanin hydrolysis by microbiota in the rat cecum results in sulforaphane absorption. Food & Function 1 (2):161–6. doi: 10.1039/c0fo00110d.
  • Lambert, J. D., M. J. Kennett, S. Sang, K. R. Reuhl, J. Ju, and C. S. Yang. 2010. Hepatotoxicity of high oral dose (−)-epigallocatechin-3-gallate in mice. Food and Chemical Toxicology: An International Journal Published for the British Industrial Biological Research Association 48 (1):409–16. doi: 10.1016/j.fct.2009.10.030.
  • Le, T. D., Y. Nakahara, M. Ueda, K. Okumura, J. Hirai, Y. Sato, D. Takemoto, N. Tomimori, Y. Ono, M. Nakai, et al. 2019. Sesamin suppresses aging phenotypes in adult muscular and nervous systems and intestines in a Drosophila senescence-accelerated model. European Review for Medical and Pharmacological Sciences 23 (4):1826–39. doi: 10.26355/eurrev_201902_17146.
  • Lee, K. S., B. S. Lee, S. Semnani, A. Avanesian, C. Y. Um, H. J. Jeon, K. M. Seong, K. Yu, K. J. Min, and M. Jafari. 2010. Curcumin extends life span, improves health span, and modulates the expression of age-associated aging genes in Drosophila melanogaster. Rejuvenation Research 13 (5):561–70. doi: 10.1089/rej.2010.1031.
  • Lee, S.-H., and K.-J. Min. 2019. Drosophila melanogaster as a model system in the study of pharmacological interventions in aging. Translational Medicine of Aging 3:98–103. doi: 10.1016/j.tma.2019.09.004.
  • Lei, H., L. Cai, Y. Wang, J. Han, Q. Wang, and X. Zhang. 2012. Anti-aging effect of sesamin and its mechanism of action. Current Topics in Nutraceutical Research 10 (3–4):173–178.
  • Li, P., X. Song, D. Zhang, N. Guo, C. Wu, K. Chen, Y. Liu, L. Yuan, X. Chen, and X. Huang. 2020. Resveratrol improves left ventricular remodeling in chronic kidney disease via Sirt1-mediated regulation of FoxO1 activity and MnSOD expression. BioFactors (Oxford, England) 46 (1):168–79. doi: 10.1002/biof.1584.
  • Li, R., M. Tao, T. Xu, S. Pan, X. Xu, and T. Wu. 2022. Small berries as health-promoting ingredients: A review on anti-aging effects and mechanisms in Caenorhabditis elegans. Food & Function 13 (2):478–500. doi: 10.1039/D1FO02184B.
  • Li, Y. M., H. Y. Chan, X. Q. Yao, Y. Huang, and Z. Y. Chen. 2008. Green tea catechins and broccoli reduce fat-induced mortality in Drosophila melanogaster. The Journal of Nutritional Biochemistry 19 (6):376–83. doi: 10.1016/j.jnutbio.2007.05.009.
  • Liao, V. H., C. W. Yu, Y. J. Chu, W. H. Li, Y. C. Hsieh, and T. T. Wang. 2011. Curcumin-mediated lifespan extension in Caenorhabditis elegans. Mechanisms of Ageing and Development 132 (10):480–7. doi: 10.1016/j.mad.2011.07.008.
  • Liao, V. H.-C. 2018. Use of Caenorhabditis elegans to study the potential bioactivity of natural compounds. Journal of Agricultural and Food Chemistry 66 (8):1737–42. doi: 10.1021/acs.jafc.7b05700.
  • Lithgow, G. J., and G. A. Walker. 2002. Stress resistance as a determinate of C. elegans lifespan. Mechanisms of Ageing and Development 123 (7):765–71. doi: 10.1016/S0047-6374(01)00422-5.
  • Lithgow, G. J., T. M. White, S. Melov, and T. E. Johnson. 1995. Thermotolerance and extended life-span conferred by single-gene mutations and induced by thermal stress. Proceedings of the National Academy of Sciences of the United States of America 92 (16):7540–4. doi: 10.1073/pnas.92.16.7540.
  • Liu, L., P. Guo, P. Wang, S. Zheng, Z. Qu, and N. Liu. 2021. The review of anti-aging mechanism of polyphenols on Caenorhabditis elegans. Frontiers in Bioengineering and Biotechnology 9:635768– doi: 10.3389/fbioe.2021.635768.
  • Liu, S., D. D’Amico, E. Shankland, S. Bhayana, J. M. Garcia, P. Aebischer, C. Rinsch, A. Singh, and D. J. Marcinek. 2022. Effect of urolithin A supplementation on muscle endurance and mitochondrial health in older adults: A randomized clinical trial. JAMA Network Open 5 (1):e2144279-e2144279. doi: 10.1001/jamanetworkopen.2021.44279.
  • Lutchman, V., Y. Medkour, E. Samson, A. Arlia-Ciommo, P. Dakik, B. Cortes, R. Feldman, S. Mohtashami, M. McAuley, M. Chancharoen, et al. 2016. Discovery of plant extracts that greatly delay yeast chronological aging and have different effects on longevity-defining cellular processes. Oncotarget 7 (13):16542–66. doi: 10.18632/oncotarget.7665.
  • Madeo, F., M. A. Bauer, D. Carmona-Gutierrez, and G. Kroemer. 2019. Spermidine: A physiological autophagy inducer acting as an anti-aging vitamin in humans? Autophagy 15 (1):165–8. doi: 10.1080/15548627.2018.1530929.
  • Martel, J., C. Y. Wu, H. H. Peng, Y. F. Ko, H. C. Yang, J. D. Young, and D. M. Ojcius. 2020. Plant and fungal products that extend lifespan in Caenorhabditis elegans. Microbial Cell (Graz, Austria) 7 (10):255–69. doi: 10.15698/mic2020.10.731.
  • Mattson, M. P. 2008. Hormesis defined. Ageing Research Reviews 7 (1):1–7. doi: 10.1016/j.arr.2007.08.007.
  • Mayo Clinic and National Institute on Aging. 2022. COVID-FIS: Pilot in COVID-19 (SARS-CoV-2) of fisetin in older adults in nursing homes. https://clinicaltrials.gov/ct2/show/NCT04537299
  • McMillan, I., M. Fitz-Earle, L. Butler, and D. S. Robson. 1970. Quantitative genetics of fertility II. Lifetime egg production of Drosophila melanogaster—experimental. Genetics 65 (2):355–69. doi: 10.1093/genetics/65.2.355.
  • Meador, B. M., K. A. Mirza, M. Tian, M. B. Skelding, L. A. Reaves, N. K. Edens, M. J. Tisdale, and S. L. Pereira. 2015. The green tea polyphenol epigallocatechin-3-gallate (EGCG) attenuates skeletal muscle atrophy in a rat model of sarcopenia. The Journal of Frailty & Aging 4 (4):209–15. doi: 10.14283/jfa.2015.58.
  • Moghaddam, N. S. A., M. N. Oskouie, A. E. Butler, P. X. Petit, G. E. Barreto, and A. Sahebkar. 2019. Hormetic effects of curcumin: What is the evidence? Journal of Cellular Physiology 234 (7):10060–71. doi: 10.1002/jcp.27880.
  • Moreno-Ulloa, A., L. Nogueira, A. Rodriguez, J. Barboza, M. C. Hogan, G. Ceballos, F. Villarreal, and I. Ramirez-Sanchez. 2015. Recovery of indicators of mitochondrial biogenesis, oxidative stress, and aging with (-)-epicatechin in senile mice. The Journals of Gerontology. Series A, Biological Sciences and Medical Sciences 70 (11):1370–8. doi: 10.1093/gerona/glu131.
  • Munasinghe, M., A. Almotayri, J. Thomas, D. Heydarian, M. Weerasinghe, and M. Jois. 2021. Cocoa improves age-associated health and extends lifespan in C. elegans. Nutrition and Healthy Aging 6 (1):73–86. doi: 10.3233/NHA-200100.
  • Munguia, L., I. Rubio-Gayosso, I. Ramirez-Sanchez, A. Ortiz, I. Hidalgo, C. Gonzalez, E. Meaney, F. Villarreal, N. Najera, and G. Ceballos. 2019. High flavonoid cocoa supplement ameliorates plasma oxidative stress and inflammation levels while improving mobility and quality of life in older subjects: A double-blind randomized clinical trial. The Journals of Gerontology. Series A, Biological Sciences and Medical Sciences 74 (10):1620–7. doi: 10.1093/gerona/glz107.
  • Murashima, M., S. Watanabe, X.-G. Zhuo, M. Uehara, and A. Kurashige. 2004. Phase 1 study of multiple biomarkers for metabolism and oxidative stress after one-week intake of broccoli sprouts. BioFactors (Oxford, England) 22 (1-4):271–5. doi: 10.1002/biof.5520220154.
  • Ni, Y.-Q., and Y.-S. Liu. 2021. New insights into the roles and mechanisms of spermidine in aging and age-related diseases. Aging and Disease 12 (8):1948–63. doi: 10.14336/AD.2021.0603.
  • Niu, Y., L. Na, R. Feng, L. Gong, Y. Zhao, Q. Li, Y. Li, and C. Sun. 2013. The phytochemical, EGCG, extends lifespan by reducing liver and kidney function damage and improving age‐associated inflammation and oxidative stress in healthy rats. Aging Cell 12 (6):1041–9. doi: 10.1111/acel.12133.
  • Okulicz, M., and I. Hertig. 2016. Acute sulforaphane action exhibits hormonal and metabolic activities in the rat: In vivo and in vitro studies. Czech Journal of Animal Science 61 (1):22–31. doi: 10.17221/8665-CJAS.
  • Okulicz, M., I. Hertig, and J. Chichlowska. 2010. In vivo metabolic and antioxidative effects of sulphoraphane derived from broccoli in water-and ethanol drinking rats. Polish Journal of Food and Nutrition Sciences 60 (3):289–294.
  • Pansarasa, O., C. Pistono, A. Davin, M. Bordoni, M. C. Mimmi, A. Guaita, and C. Cereda. 2019. Altered immune system in frailty: Genetics and diet may influence inflammation. Ageing Research Reviews 54:100935. doi: 10.1016/j.arr.2019.100935.
  • Partridge, L., M. Fuentealba, and B. K. Kennedy. 2020. The quest to slow ageing through drug discovery. Nature Reviews. Drug Discovery 19 (8):513–32. doi: 10.1038/s41573-020-0067-7.
  • Patel, P. B., V. R. Thakkar, and J. S. Patel. 2015. Cellular effect of curcumin and citral combination on breast cancer cells: Induction of apoptosis and cell cycle arrest. Journal of Breast Cancer 18 (3):225–34. doi: 10.4048/jbc.2015.18.3.225.
  • Pearson, K. J., J. A. Baur, K. N. Lewis, L. Peshkin, N. L. Price, N. Labinskyy, W. R. Swindell, D. K. R. K. Minor, E. Perez, H. A. Jamieson, et al. 2008. Resveratrol delays age-related deterioration and mimics transcriptional aspects of dietary restriction without extending life span. Cell Metabolism 8 (2):157–68. doi: 10.1016/j.cmet.2008.06.011.
  • Peng, C., Y. Zuo, K. M. Kwan, Y. Liang, K. Y. Ma, H. Y. Chan, Y. Huang, H. Yu, and Z. Y. Chen. 2012. Blueberry extract prolongs lifespan of Drosophila melanogaster. Experimental Gerontology 47 (2):170–8. doi: 10.1016/j.exger.2011.12.001.
  • Pietsch, K., N. Saul, R. Menzel, S. R. Sturzenbaum, and C. E. Steinberg. 2009. Quercetin mediated lifespan extension in Caenorhabditis elegans is modulated by age-1, daf-2, sek-1 and unc-43. Biogerontology 10 (5):565–78. doi: 10.1007/s10522-008-9199-6.
  • Proshkina, E., E. Lashmanova, E. Dobrovolskaya, N. Zemskaya, A. Kudryavtseva, M. Shaposhnikov, and A. Moskalev. 2016. Geroprotective and radioprotective Activity of quercetin, (-)-epicatechin, and ibuprofen in Drosophila melanogaster. Frontiers in Pharmacology 7:505. doi: 10.3389/fphar.2016.00505.
  • Qi, Z., H. Ji, M. Le, H. Li, A. Wieland, S. Bauer, L. Liu, M. Wink, and I. Herr. 2021. Sulforaphane promotes C. elegans longevity and healthspan via DAF-16 DAF-2 insulin IGF-1 signaling. Aging 13 (2):1649–70. doi: 10.18632/aging.202512.
  • Rabassa, M., R. Zamora-Ros, M. Urpi-Sarda, S. Bandinelli, L. Ferrucci, C. Andres-Lacueva, and A. Cherubini. 2015. Association of habitual dietary resveratrol exposure with the development of frailty in older age: The Invecchiare in Chianti study. The American Journal of Clinical Nutrition 102 (6):1534–42. doi: 10.3945/ajcn.115.118976.
  • Rankin, C. H., C. D. O. Beck, and C. M. Chiba. 1990. Caenorhabditis elegans: A new model system for the study of learning and memory. Behavioural Brain Research 37 (1):89–92. doi: 10.1016/0166-4328(90)90074-O.
  • Regmi, S. G., S. G. Rolland, and B. Conradt. 2014. Age-dependent changes in mitochondrial morphology and volume are not predictors of lifespan. Aging 6 (2):118–30. doi: 10.18632/aging.100639.
  • Ren, J., and Y. Zhang. 2018. Targeting autophagy in aging and aging-related cardiovascular diseases. Trends in Pharmacological Sciences 39 (12):1064–76. doi: 10.1016/j.tips.2018.10.005.
  • Rockwood, K., and A. Mitnitski. 2007. Frailty in relation to the accumulation of deficits. The Journals of Gerontology. Series A, Biological Sciences and Medical Sciences 62 (7):722–7. doi: 10.1093/gerona/62.7.722.
  • Romanello, V., and M. Sandri. 2015. Mitochondria quality control and muscle mass maintenance. Frontiers in Physiology 6:422. doi: 10.3389/fphys.2015.00422.
  • Russo, G. L., C. Spagnuolo, M. Russo, I. Tedesco, S. Moccia, and C. Cervellera. 2020. Mechanisms of aging and potential role of selected polyphenols in extending healthspan. Biochemical Pharmacology 173:113719. doi: 10.1016/j.bcp.2019.113719.
  • Ryu, D., L. Mouchiroud, P. A. Andreux, E. Katsyuba, N. Moullan, A. A. Nicolet-Dit-Felix, E. G. W. P. Jha, G. Lo Sasso, D. Huzard, P. Aebischer, et al. 2016. Urolithin A induces mitophagy and prolongs lifespan in C. elegans and increases muscle function in rodents. Nature Medicine 22 (8):879–88. doi: 10.1038/nm.4132.
  • Saccon, T. D., R. Nagpal, H. Yadav, M. B. Cavalcante, A. D. C. Nunes, A. Schneider, A. Gesing, B. Hughes, M. Yousefzadeh, T. Tchkonia, et al. 2021. Senolytic combination of Dasatinib and Quercetin alleviates intestinal senescence and inflammation and modulates the gut microbiome in aged mice. The Journals of Gerontology. Series A, Biological Sciences and Medical Sciences 76 (11):1895–905. doi: 10.1093/gerona/glab002.
  • Sahm, A., M. Bens, K. Szafranski, S. Holtze, M. Groth, M. Görlach, C. Calkhoven, C. Müller, M. Schwab, J. Kraus, et al. 2018. Long-lived rodents reveal signatures of positive selection in genes associated with lifespan. PLoS Genetics 14 (3):e1007272. doi: 10.1371/journal.pgen.1007272.
  • Sahm, A., M. Bens, Y. Henning, C. Vole, M. Groth, M. Schwab, S. Hoffmann, M. Platzer, K. Szafranski, and P. Dammann. 2018. Higher gene expression stability during aging in long-lived giant mole-rats than in short-lived rats. Aging 10 (12):3938–56. doi: 10.18632/aging.101683.
  • Sánchez-Sánchez, A. V., A. Leal-Tassias, N. Rodríguez-Sánchez, M. Piquer-Gil, P. Martorell, S. Genovés, C. Acosta, D. Burks, D. Ramón, and J. L. Mullor. 2018. Use of medaka fish as vertebrate model to study the effect of cocoa polyphenols in the resistance to oxidative stress and life span extension. Rejuvenation Research 21 (4):323–32. doi: 10.1089/rej.2017.1982.
  • Santin-Marquez, R., A. Alarcon-Aguilar, N. E. Lopez-Diazguerrero, N. Chondrogianni, and M. Konigsberg. 2019. Sulforaphane - role in aging and neurodegeneration. GeroScience 41 (5):655–70. doi: 10.1007/s11357-019-00061-7.
  • Scerbak, C., E. M. Vayndorf, A. Hernandez, C. McGill, and B. E. Taylor. 2016. Mechanosensory neuron aging: Differential trajectories with lifespan-extending Alaskan berry and fungal treatments in Caenorhabditis elegans. Frontiers in Aging Neuroscience 8:173. doi: 10.3389/fnagi.2016.00173.
  • Scerbak, C., E. Vayndorf, A. Hernandez, C. McGill, and B. Taylor. 2017. Corrigendum: Mechanosensory neuron aging: Differential trajectories with lifespan-extending alaskan berry and fungal treatments in Caenorhabditis elegans. Frontiers in Aging Neuroscience 9:158. doi: 10.3389/fnagi.2017.00158.
  • Schlotterer, A., G. Kukudov, F. Bozorgmehr, H. Hutter, X. Du, D. Oikonomou, Y. Ibrahim, F. Pfisterer, N. Rabbani, P. Thornalley, et al. 2009. C. elegans as model for the study of high glucose- mediated life span reduction. Diabetes 58 (11):2450–6. doi: 10.2337/db09-0567.
  • Sen, P., P. P. Shah, R. Nativio, and S. L. Berger. 2016. Epigenetic mechanisms of longevity and aging. Cell 166 (4):822–39. doi: 10.1016/j.cell.2016.07.050.
  • Seo, H., S. H. Lee, Y. Park, H. S. Lee, J. S. Hong, C. Y. Lim, D. H. Kim, S. S. Park, H. J. Suh, and K. B. Hong. 2021. (-)-Epicatechin-enriched extract from Camellia sinensis improves regulation of muscle mass and function: Results from a randomized controlled trial. Antioxidants (Basel) 10 (7):1026. doi: 10.3390/antiox10071026.
  • Shailaja, M., K. M. D. Gowda, K. Vishakh, and N. S. Kumari. 2017. Anti-aging role of curcumin by modulating the inflammatory markers in albino wistar rats. Journal of the National Medical Association 109 (1):9–13. doi: 10.1016/j.jnma.2017.01.005.
  • Shen, P., Y. Yue, and Y. Park. 2018. A living model for obesity and aging research: Caenorhabditis elegans. Critical Reviews in Food Science and Nutrition 58 (5):741–54. doi: 10.1080/10408398.2016.1220914.
  • Shen, P., Y. Yue, J. Zheng, and Y. Park. 2018. Caenorhabditis elegans: A convenient in Vivo model for assessing the impact of food bioactive compounds on obesity, aging, and Alzheimer’s disease. Annual Review of Food Science and Technology 9:1–22. doi: 10.1146/annurev-food-030117-012709.
  • Shimoyoshi, S., D. Takemoto, Y. Kishimoto, A. Amano, A. Sato, Y. Ono, T. Rogi, H. Shibata, and A. Ishigami. 2020. Sesame lignans suppress age-related disorders of the kidney in mice. European Review for Medical and Pharmacological Sciences 24 (9):5140–7. doi: 10.26355/eurrev_202005_21208.
  • Shimoyoshi, S., D. Takemoto, Y. Ono, Y. Kitagawa, H. Shibata, S. Tomono, K. Unno, and K. Wakabayashi. 2019. Sesame lignans suppress age-related cognitive decline in senescence-accelerated mice. Nutrients 11 (7):1582. doi: 10.3390/nu11071582.
  • Si, H., and D. Liu. 2014. Dietary antiaging phytochemicals and mechanisms associated with prolonged survival. The Journal of Nutritional Biochemistry 25 (6):581–91. doi: 10.1016/j.jnutbio.2014.02.001.
  • Si, H., X. Wang, L. Zhang, L. D. Parnell, B. Admed, T. LeRoith, T. A. Ansah, L. Zhang, J. Li, J. M. Ordovas, et al. 2019. Dietary epicatechin improves survival and delays skeletal muscle degeneration in aged mice. FASEB Journal: Official Publication of the Federation of American Societies for Experimental Biology 33 (1):965–77. doi: 10.1096/fj.201800554RR.
  • Sieck, G. C. 2017. Physiology in perspective: Aging and underlying pathophysiology. Physiology (Bethesda, MD) 32 (1):7–8. doi: 10.1152/physiol.00035.2016.
  • Singh, A., D. D’Amico, P. A. Andreux, A. M. Fouassier, W. Blanco-Bose, M. Evans, P. Aebischer, J. Auwerx, and C. Rinsch. 2022. Urolithin A improves muscle strength, exercise performance, and biomarkers of mitochondrial health in a randomized trial in middle-aged adults. Cell Reports. Medicine 3 (5):100633. doi: 10.1016/j.xcrm.2022.100633.
  • Singh, A., P. Andreux, W. Blanco-Bose, D. Ryu, P. Aebischer, J. Auwerx, and C. Rinsch. 2017. Orally administered urolithin A is safe and modulates muscle and mitochondrial biomarkers in elderly. Innovation in Aging 1 (suppl_1):1223–4. doi: 10.1093/geroni/igx004.4446.
  • Son, H. G., O. Altintas, E. J. E. Kim, S. Kwon, and S. V. Lee. 2019. Age-dependent changes and biomarkers of aging in Caenorhabditis elegans. Aging Cell 18 (2):e12853. doi: 10.1111/acel.12853.
  • Song, B., B. Zheng, T. Li, and R. H. Liu. 2020. SKN-1 is involved in combination of apple peels and blueberry extracts synergistically protecting against oxidative stress in Caenorhabditis elegans. Food & Function 11 (6):5409–19. doi: 10.1039/D0FO00891E.
  • Song, B., H. Wang, W. Xia, B. Zheng, T. Li, and R. H. Liu. 2020. Combination of apple peel and blueberry extracts synergistically induced lifespan extension via DAF-16 in Caenorhabditis elegans. Food & Function 11 (7):6170–85. doi: 10.1039/D0FO00718H.
  • Stacchiotti, A., G. Favero, and R. Rezzani. 2018. Resveratrol and SIRT1 Activators for the treatment of aging and age-related diseases. In Resveratrol - Adding life to years, not adding years to life, ed. Farid A. Badria. London: IntechOpen.
  • Stępień, K., D. Wojdyła, K. Nowak, and M. Mołoń. 2020. Impact of curcumin on replicative and chronological aging in the Saccharomyces cerevisiae yeast. Biogerontology 21 (1):109–23. doi: 10.1007/s10522-019-09846-x.
  • Strong, R., R. A. Miller, C. M. Astle, J. A. Baur, R. de Cabo, E. Fernandez, W. Guo, M. Javors, J. L. Kirkland, J. F. Nelson, et al. 2013. Evaluation of resveratrol, green tea extract, curcumin, oxaloacetic acid, and medium-chain triglyceride oil on life span of ­genetically heterogeneous mice. The Journals of Gerontology. Series A, Biological Sciences and Medical Sciences 68 (1):6–16. doi: 10.1093/gerona/gls070.
  • Sunagawa, Y., Y. Miyazaki, M. Funamoto, K. Shimizu, S. Shimizu, S. Nurmila, Y. Katanasaka, M. Ito, T. Ogawa, H. Ozawa-Umeta, et al. 2021. A novel amorphous preparation improved curcumin bioavailability in healthy volunteers: A single-dose, double-blind, two-way crossover study. Journal of Functional Foods 81:104443. doi: 10.1016/j.jff.2021.104443.
  • Surco-Laos, F., M. Dueñas, S. González-Manzano, J. Cabello, C. Santos-Buelga, and A. M. González-Paramás. 2012. Influence of catechins and their methylated metabolites on lifespan and resistance to oxidative and thermal stress of Caenorhabditis elegans and epicatechin uptake. Food Research International 46 (2):514–21. doi: 10.1016/j.foodres.2011.10.014.
  • Ticinesi, A., F. Lauretani, C. Milani, A. Nouvenne, C. Tana, D. Del Rio, M. Maggio, M. Ventura, and T. Meschi. 2017. Aging gut microbiota at the cross-road between nutrition, physical frailty, and sarcopenia: Is there a gut-muscle axis? Nutrients 9 (12):1303. doi: 10.3390/nu9121303.
  • Tiku, V., C. Jain, Y. Raz, S. Nakamura, B. Heestand, W. Liu, M. Späth, H. E. D. Suchiman, R.-U. Müller, P. E. Slagboom, et al. 2017. Small nucleoli are a cellular hallmark of longevity. Nature Communications 8 (1):16083. doi: 10.1038/ncomms16083.
  • Valenzano, D. R., E. Terzibasi, T. Genade, A. Cattaneo, L. Domenici, and A. Cellerino. 2006. Resveratrol prolongs lifespan and retards the onset of age-related markers in a short-lived vertebrate. Current Biology: CB 16 (3):296–300. doi: 10.1016/j.cub.2005.12.038.
  • Van Raamsdonk, J. M., and S. Hekimi. 2010. Reactive oxygen species and aging in Caenorhabditis elegans: Causal or casual relationship? Antioxidants & Redox Signaling 13 (12):1911–53. doi: 10.1089/ars.2010.3215.
  • Vanhooren, V., and C. Libert. 2013. The mouse as a model organism in aging research: Usefulness, pitfalls and possibilities. Ageing Research Reviews 12 (1):8–21. doi: 10.1016/j.arr.2012.03.010.
  • Varma, K., A. Amalraj, C. Divya, and S. Gopi. 2021. The efficacy of the novel bioavailable curcumin (Cureit) in the management of sarcopenia in healthy elderly subjects: A randomized, placebo-controlled, double-blind clinical study. Journal of Medicinal Food 24 (1):40–9. doi: 10.1089/jmf.2020.4778.
  • Vazeille, E., L. Slimani, A. Claustre, H. Magne, R. Labas, D. Bechet, D. Taillandier, D. Dardevet, T. Astruc, D. Attaix, et al. 2012. Curcumin treatment prevents increased proteasome and apoptosome activities in rat skeletal muscle during reloading and improves subsequent recovery. The Journal of Nutritional Biochemistry 23 (3):245–51. doi: 10.1016/j.jnutbio.2010.11.021.
  • Verdoorn, B. P., T. K. Evans, G. J. Hanson, Y. Zhu, L. G. P. Langhi Prata, R. J. Pignolo, E. J. Atkinson, E. O. Wissler-Gerdes, G. A. Kuchel, J. B. Mannick, et al. 2021. Fisetin for COVID-19 in skilled nursing facilities: Senolytic trials in the COVID era. Journal of the American Geriatrics Society 69 (11):3023–33. doi: 10.1111/jgs.17416.
  • Viña, J., F. J. Tarazona-Santabalbina, P. Pérez-Ros, F. M. Martínez-Arnau, C. Borras, G. Olaso-Gonzalez, A. Salvador-Pascual, and M. C. Gomez-Cabrera. 2016. Biology of frailty: Modulation of ageing genes and its importance to prevent age-associated loss of function. Molecular Aspects of Medicine 50:88–108. doi: 10.1016/j.mam.2016.04.005.
  • Wang, H., J. Liu, T. Li, and R. H. Liu. 2018. Blueberry extract promotes longevity and stress tolerance via DAF-16 in Caenorhabditis elegans. Food & Function 9 (10):5273–82. doi: 10.1039/c8fo01680a.
  • Wang, H., X. Guo, X. Hu, T. Li, X. Fu, and R. H. Liu. 2017. Comparison of phytochemical profiles, antioxidant and cellular antioxidant activities of different varieties of blueberry (Vaccinium spp.). Food Chemistry 217:773–81. doi: 10.1016/j.foodchem.2016.09.002.
  • Wang, J., and M. M. Barr. 2005. RNA Interference in Caenorhabditis elegans. In Methods in enzymology, eds. D. R. Engelke and J. J. Rossi, vol 392, 36–55. Cambridge, MA: Academic Press.
  • Wilson, M. A., B. Shukitt-Hale, W. Kalt, D. K. Ingram, J. A. Joseph, and C. A. Wolkow. 2006. Blueberry polyphenols increase lifespan and thermotolerance in Caenorhabditis elegans. Aging Cell 5 (1):59–68. doi: 10.1111/j.1474-9726.2006.00192.x.
  • Wolkow, C. A., K. D. Kimura, M.-S. Lee, and G. Ruvkun. 2000. Regulation of C. elegans life-span by Insulinlike signaling in the nervous system. Science (New York, NY) 290 (5489):147–50. doi: 10.1126/science.290.5489.147.
  • Wood, J. G., B. Rogina, S. Lavu, K. Howitz, S. L. Helfand, M. Tatar, and D. Sinclair. 2004. Sirtuin activators mimic caloric restriction and delay ageing in metazoans. Nature 430 (7000):686–9. doi: 10.1038/nature02789.
  • Xiong, L.-G., Y.-J. Chen, J.-W. Tong, Y.-S. Gong, J.-A. Huang, and Z.-H. Liu. 2018. Epigallocatechin-3-gallate promotes healthy lifespan through mitohormesis during early-to-mid adulthood in Caenorhabditis elegans. Redox Biology 14:305–15. doi: 10.1016/j.redox.2017.09.019.
  • Xu, T.-T., H. Li, Z. Dai, G. K. Lau, B.-Y. Li, W. Li Zhu, X.-Q. Liu, H.-F. Liu, W.-W. Cai, S.-Q. Huang, et al. 2020. Spermidine and spermine delay brain aging by inducing autophagy in SAMP8 mice. Aging 12 (7):6401–14. doi: 10.18632/aging.103035.
  • Yaguchi, Y., T. Komura, N. Kashima, M. Tamura, E. Kage-Nakadai, S. Saeki, K. Terao, and Y. Nishikawa. 2014. Influence of oral supplementation with sesamin on longevity of Caenorhabditis elegans and the host defense. European Journal of Nutrition 53 (8):1659–68. doi: 10.1007/s00394-014-0671-6.
  • Yahia, E. M. 2018. Fruit and vegetable phytochemicals: chemistry and human health. 2nd ed. Chichester, UK: Wiley Blackwell.
  • Yang, X., M. Zhang, Y. Dai, Y. Sun, Y. Aman, Y. Xu, P. Yu, Y. Zheng, J. Yang, and X. Zhu. 2020. Spermidine inhibits neurodegeneration and delays aging via the PINK1-PDR1-dependent mitophagy pathway in C. elegans. Aging 12 (17):16852–66. doi: 10.18632/aging.103578.
  • Ye, Y., Q. Gu, and X. Sun. 2020. Potential of Caenorhabditis elegans as an antiaging evaluation model for dietary phytochemicals: A review. Comprehensive Reviews in Food Science and Food Safety 19 (6):3084–105. doi: 10.1111/1541-4337.12654.
  • Yin, R., H.-C. Kuo, R. Hudlikar, D. Sargsyan, S. Li, L. Wang, R. Wu, and A.-N. Kong. 2019. Gut microbiota, dietary phytochemicals, and benefits to human health. Current Pharmacology Reports 5 (5):332–44. doi: 10.1007/s40495-019-00196-3.
  • Yousefzadeh, M. J., Y. Zhu, S. J. McGowan, L. Angelini, H. Fuhrmann-Stroissnigg, M. Xu, Y. Y. Ling, K. I. Melos, T. Pirtskhalava, C. L. Inman, et al. 2018. Fisetin is a senotherapeutic that extends health and lifespan. EBioMedicine 36:18–28. doi: 10.1016/j.ebiom.2018.09.015.
  • Zhang, L., G. Jie, J. Zhang, and B. Zhao. 2009. Significant longevity-extending effects of EGCG on Caenorhabditis elegans under stress. Free Radical Biology & Medicine 46 (3):414–21. doi: 10.1016/j.freeradbiomed.2008.10.041.
  • Zhang, S., F. Li, T. Zhou, G. Wang, and Z. Li. 2020. Caenorhabditis elegans as a useful model for studying aging mutations. Frontiers in Endocrinology 11:554994. doi: 10.3389/fendo.2020.554994.
  • Zhang, W., B. Zheng, N. Deng, H. Wang, T. Li, and R. H. Liu. 2020. Effects of ethyl acetate fractional extract from Portulaca oleracea L. (PO-EA) on lifespan and healthspan in Caenorhabditis elegans. Journal of Food Science 85 (12):4367–76. doi: 10.1111/1750-3841.15507.
  • Zhang, Y., A. Unnikrishnan, S. S. Deepa, Y. Liu, Y. Li, Y. Ikeno, D. Sosnowska, H. V. Remmen, and A. Richardson. 2017. A new role for oxidative stress in aging: The accelerated aging phenotype in Sod1−/− mice is correlated to increased cellular senescence. Redox Biology 11:30–7. doi: 10.1016/j.redox.2016.10.014.
  • Zhou, L., X. Lin, A. M. Abbasi, and B. Zheng. 2016. Phytochemical contents and antioxidant and antiproliferative activities of selected black and white sesame seeds. BioMed Research International 2016:8495630. doi: 10.1155/2016/8495630.
  • Zuo, Y., C. Peng, Y. Liang, K. Y. Ma, H. Y. Chan, Y. Huang, and Z. Y. Chen. 2013. Sesamin extends the mean lifespan of fruit flies. Biogerontology 14 (2):107–19. doi: 10.1007/s10522-012-9413-4.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.