6,838
Views
20
CrossRef citations to date
0
Altmetric
Review Articles

Sonoprocessing: mechanisms and recent applications of power ultrasound in food

ORCID Icon, , , ORCID Icon, , , , , , , , & show all

References

  • Aadil, R. M., X. A. Zeng, M. S. Wang, Z. W. Liu, Z. Han, Z. H. Zhang, J. Hong, and S. Jabbar. 2015. A potential of ultrasound on minerals, micro-organisms, phenolic compounds and colouring pigments of grapefruit juice. International Journal of Food Science & Technology 50 (5):1144–50. doi: 10.1111/ijfs.12767.
  • Abesinghe, A M. N. L., J. K. Vidanarachchi, N. Islam, S. Prakash, K. F. S. T. Silva, B. Bhandari, and M. A. Karim. 2020. Effects of ultrasonication on the physicochemical properties of milk fat globules of Bubalus bubalis (water buffalo) under processing conditions: A comparison with shear-homogenization. Innovative Food Science & Emerging Technologies 59:102237. doi: 10.1016/j.ifset.2019.102237.
  • Abid, M., S. Jabbar, B. Hu, M. M. Hashim, T. Wu, S. Lei, M. A. Khan, and X. Zeng. 2014. Thermosonication as a potential quality enhancement technique of apple juice. Ultrasonics Sonochemistry 21 (3):984–90. doi: 10.1016/j.ultsonch.2013.12.003.
  • Adebo, O. A., T. Molelekoa, R. Makhuvele, J. A. Adebiyi, A. B. Oyedeji, S. Gbashi, M. A. Adefisoye, O. M. Ogundele, and P. B. Njobeh. 2021. A review on novel non-thermal food processing techniques for mycotoxin reduction. International Journal of Food Science & Technology 56 (1):13–27. doi: 10.1111/ijfs.14734.
  • Agarwal, A., W. Jern Ng, and Y. Liu. 2014. Removal of biofilms by intermittent low-intensity ultrasonication triggered bursting of microbubbles. Biofouling 30 (3):359–65. doi: 10.1080/08927014.2013.876624.
  • Agarwal, S., I. Tyagi, V. K. Gupta, M. H. Dehghani, A. Bagheri, K. Yetilmezsoy, A. Amrane, B. Heibati, and S. Rodriguez-Couto. 2016. Degradation of azinphos-methyl and chlorpyrifos from aqueous solutions by ultrasound treatment. Journal of Molecular Liquids 221:1237–42. doi: 10.1016/j.molliq.2016.04.076.
  • Aguiló-Aguayo, I., J. Walton, I. Viñas, and B. K. Tiwari. 2017. Ultrasound assisted extraction of polysaccharides from mushroom by-products. LWT 77:92–9. doi: 10.1016/j.lwt.2016.11.043.
  • Ahmadi, Z., S. M. A. Razavi, and M. Varidi. 2017. Sequential ultrasound and transglutaminase treatments improve functional, rheological, and textural properties of whey protein concentrate. Innovative Food Science & Emerging Technologies 43:207–15. doi: 10.1016/j.ifset.2017.08.013.
  • Akdeniz, V., and A. S. Akalın. 2019. New approach for yoghurt and ice cream production: High-intensity ultrasound. Trends in Food Science & Technology 86:392–8. doi: 10.1016/j.tifs.2019.02.046.
  • Alenyorege, E. A., H. Ma, I. Ayim, J. H. Aheto, C. Hong, and C. Zhou. 2019. Reduction of Listeria innocua in fresh-cut Chinese cabbage by a combined washing treatment of sweeping frequency ultrasound and sodium hypochlorite. LWT 101:410–8. doi: 10.1016/j.lwt.2018.11.048.
  • Alexopoulos, A., S. Plessas, Y. Kourkoutas, C. Stefanis, S. Vavias, C. Voidarou, I. Mantzourani, and E. Bezirtzoglou. 2017. Experimental effect of ozone upon the microbial flora of commercially produced dairy fermented products. International Journal of Food Microbiology 246:5–11. doi: 10.1016/j.ijfoodmicro.2017.01.018.
  • Ali, A., S. Wei, Z. Liu, X. Fan, Q. Sun, Q. Xia, S. Liu, J. Hao, and C. Deng. 2021. Non-thermal processing technologies for the recovery of bioactive compounds from marine by-products. LWT 147:111549. doi: 10.1016/j.lwt.2021.111549.
  • Ali, G., A. R. Russly, B. Jamilah, O. Azizah, and B. Mandana. 2011. Effect of heat and thermosonication on kinetics of peroxidase inactivation and vitamin C degradation in seedless guava (Psidium guajava L.). International Food Research Journal 18:1289–1294.
  • Al Daccache, M., M. Koubaa, D. Salameh, R. G. Maroun, N. Louka, and E. Vorobiev. 2020. Ultrasound-assisted fermentation for cider production from Lebanese apples. Ultrasonics Sonochemistry 63:104952. doi: 10.1016/J.ULTSONCH.2019.104952.
  • Al-Juboori, R. A., O. Naji, L. Bowtell, A. Alpatova, S. Soukane, and N. Ghaffour. 2021. Power effect of ultrasonically vibrated spacers in air gap membrane distillation: Theoretical and experimental investigations. Separation and Purification Technology 262:118319. doi: 10.1016/j.seppur.2021.118319.
  • Al-Taher, F., Y. Chen, P. Wylie, and J. Cappozzo. 2013. Reduction of pesticide residues in tomatoes and other produce. Journal of Food Protection 76 (3):510–5. doi: 10.4315/0362-028X.JFP-12-240.
  • Alves, L., M. Stefanello da Silva, D. R. Martins Flores, D. Rodrigues Athayde, A. Roggia Ruviaro, D. da Silva Brum, V. S. Fagundes Batista, R. de Oliveira Mello, C. Ragagnin de Menezes, P. C. Bastianello Campagnol, et al. 2018. Effect of ultrasound on the physicochemical and microbiological characteristics of Italian salami. Food Research International 106:363–73. doi: 10.1016/j.foodres.2017.12.074.
  • Alzate, P., L. Gerschenson, and S. Flores. 2020. Ultrasound application for production of nano-structured particles from esterified starches to retain potassium sorbate. Carbohydrate Polymers 247:116759. doi: 10.1016/J.CARBPOL.2020.116759.
  • Amiri, A., P. Sharifian, and N. Soltanizadeh. 2018. Application of ultrasound treatment for improving the physicochemical, functional and rheological properties of myo fi brillar proteins. International Journal of Biological Macromolecules 111:139–47. doi: 10.1016/j.ijbiomac.2017.12.167.
  • Amiri, A., P. Sharifian, and N. Soltanizadeh. 2018. Application of ultrasound treatment for improving the physicochemical, functional and rheological properties of myofibrillar proteins. International Journal of Biological Macromolecules 111:139–47. doi: 10.1016/j.ijbiomac.2017.12.167.
  • Anwar, M., G. Babu, and A. E. D. Bekhit. 2021. Utilization of ultrasound and pulse electric field for the extraction of water-soluble non-starch polysaccharide from taro (Colocasia esculenta) peel. Innovative Food Science & Emerging Technologies 70:102691. doi: 10.1016/j.ifset.2021.102691.
  • Arzeni, C., K. Martínez, P. Zema, A. Arias, O. E. Pérez, and A. M. R. Pilosof. 2012. Comparative study of high intensity ultrasound effects on food proteins functionality. Journal of Food Engineering 108 (3):463–72. doi: 10.1016/j.jfoodeng.2011.08.018.
  • Ashokkumar, M. 2011. The characterization of acoustic cavitation bubbles – An overview. Ultrasonics Sonochemistry 18 (4):864–72. doi: 10.1016/j.ultsonch.2010.11.016.
  • Ashokkumar, M. 2015. Applications of ultrasound in food and bioprocessing. Ultrasonics Sonochemistry 25:17–23. doi: 10.1016/j.ultsonch.2014.08.012.
  • Ashokkumar, M. 2016. Advantages, disadvantages and challenges of ultrasonic technology. In Ultrasonic synthesis of functional materials, 41–2. Springer, Cham. doi: 10.1007/978-3-319-28974-8_3.
  • Astráin-Redín, L., S. Ciudad-Hidalgo, J. Raso, S. Condón, G. Cebrián, and I. Álvarez. 2020. Application of high-power ultrasound in the food industry. In Sonochemical reactions, ed. S. Karakuş, 103–26. London, UK: IntechOpen. doi: 10.5772/intechopen.90444.
  • Avhad, D. N., and V. K. Rathod. 2014. Ultrasound stimulated production of a fibrinolytic enzyme. Ultrasonics Sonochemistry 21 (1):182–8. doi: 10.1016/J.ULTSONCH.2013.05.013.
  • Awad, T. S., H. A. Moharram, O. E. Shaltout, D. Asker, and M. M. Youssef. 2012. Applications of ultrasound in analysis, processing and quality control of food: A review. Food Research International 48 (2):410–27. doi: 10.1016/j.foodres.2012.05.004.
  • Azam, S. M. R., H. Ma, B. Xu, S. Devi, M. A. B. Siddique, S. L. Stanley, B. Bhandari, and J. Zhu. 2020. Efficacy of ultrasound treatment in the and removal of pesticide residues from fresh vegetables: A review. Trends in Food Science & Technology 97:417–32. doi: 10.1016/j.tifs.2020.01.028.
  • Bang, H. J., S. Y. Park, S. E. Kim, M. Md Furkanur Rahaman, and S. D. Ha. 2017. Synergistic effects of combined ultrasound and peroxyacetic acid treatments against Cronobacter sakazakii biofilms on fresh cucumber. LWT 84:91–8. doi: 10.1016/j.lwt.2017.05.037.
  • Bangar, S. P., O. J. Esua, N. Sharma, and R. Thirumdas. 2022. Ultrasound-assisted modification of gelation properties of proteins: A review. Journal of Texture Studies 53 (6):763–74. doi: 10.1111/jtxs.12674.
  • Barbera, A. C., C. Maucieri, V. Cavallaro, A. Ioppolo, and G. Spagna. 2013. Effects of spreading olive mill wastewater on soil properties and crops, a review. Agricultural Water Management 119:43–53. doi: 10.1016/j.agwat.2012.12.009.
  • Barekat, S., and N. Soltanizadeh. 2017a. Effects of ultrasound on microstructure and enzyme penetration in beef Longissimus lumborum muscle. Food and Bioprocess Technology 11:680–93.
  • Barekat, S., and N. Soltanizadeh. 2017b. Improvement of meat tenderness by simultaneous application of high-intensity ultrasonic radiation and papain treatment. Innovative Food Science & Emerging Technologies 39:223–9. doi: 10.1016/j.ifset.2016.12.009.
  • Beckett, S. 2008. The science of chocolate. London, UK: The Royal Society of Chemistry. doi: 10.1039/9781847558053.
  • Beckett, S. T. 2009. Non-conventional machines and processes, 4th Ed. Page Industrial Chocolate Manufacture and Use. Boston, MA: Springer. doi: 10.1002/9781444301588.ch17.
  • Belca, L. M., A. Ručigaj, D. Teslič, and M. Krajnc. 2019. The use of ultrasound in the crystallization process of an active pharmaceutical ingredient. Ultrasonics Sonochemistry 58:104642. doi: 10.1016/J.ULTSONCH.2019.104642.
  • Bhargava, N., R. S. Mor, K. Kumar, and V. S. Sharanagat. 2021. Advances in application of ultrasound in food processing: A review. Ultrasonics Sonochemistry 70:105293. doi: 10.1016/j.ultsonch.2020.105293.
  • Bi, W., W. Ge, X. Li, L. Du, G. Zhao, H. Wang, and X. Qu. 2017. Effects of ultrasonic pretreatment and glycosylation on functional properties of casein grafted with glucose. Journal of Food Processing and Preservation 41 (5):e13177. doi: 10.1111/jfpp.13177.
  • Bi, X., X. Wang, Y. Chen, L. Chen, Y. Xing, and Z. Che. 2020. Effects of combination treatments of lysozyme and high power ultrasound on the Salmonella typhimurium inactivation and quality of liquid whole egg. Ultrasonics Sonochemistry 60:104763. doi: 10.1016/j.ultsonch.2019.104763.
  • Bimakr, M., R. A. Rahman, F. Saleena Taip, N. M. Adzahan, and Z. Islam Sarker. 2013. Ultrasound-assisted extraction of valuable compounds from winter melon (Benincasa hispida) seeds. International Food Research Journal 20:331–338.
  • Bjarnsholt, T., K. Buhlin, Y. F. Dufrêne, M. Gomelsky, A. Moroni, M. Ramstedt, K. P. Rumbaugh, T. Schulte, L. Sun, B. Åkerlund, et al. 2018. Biofilm formation – What we can learn from recent developments. Journal of Internal Medicine 284 (4):332–45. doi: 10.1111/joim.12782.
  • Boateng, E. F., and M. M. Nasiru. 2019. Applications of ultrasound in meat processing technology: A review. Food Science and Technology 7 (2):11–5. doi: 10.13189/fst.2019.070201.
  • Cai, L., W. Zhang, A. Cao, M. Cao, and J. Li. 2019. Effects of ultrasonics combined with far infrared or microwave thawing on protein denaturation and moisture migration of Sciaenops ocellatus (red drum). Ultrasonics – Sonochemistry 55:96–104. doi: 10.1016/j.ultsonch.2019.03.017.
  • Camara, H W. D., H. Doan, and A. Lohi. 2020. In-situ ultrasound-assisted control of polymeric membrane fouling. Ultrasonics 108:106206. doi: 10.1016/j.ultras.2020.106206.
  • Cao, X., C. Cai, Y. Wang, and X. Zheng. 2018. The inactivation kinetics of polyphenol oxidase and peroxidase in bayberry juice during thermal and ultrasound treatments. Innovative Food Science & Emerging Technologies 45:169–78. doi: 10.1016/j.ifset.2017.09.018.
  • Cappelletti, M., G. Ferrentino, and S. Spilimbergo. 2014. Supercritical carbon dioxide combined with high power ultrasound: An effective method for the pasteurization of coconut water. The Journal of Supercritical Fluids 92:257–63. doi: 10.1016/j.supflu.2014.06.010.
  • Caraveo, O., A. D. Alarcon-Rojo, A. Renteria, E. Santellano, and L. Paniwnyk. 2015. Physicochemical and microbiological characteristics of beef treated with high-intensity ultrasound and stored at 4 °C. Journal of the Science of Food and Agriculture 95 (12):2487–93. doi: 10.1002/jsfa.6979.
  • Cengiz, M. F., M. Başlar, O. Basançelebi, and M. Kılıçlı. 2018. Reduction of pesticide residues from tomatoes by low intensity electrical current and ultrasound applications. Food Chemistry 267:60–6. doi: 10.1016/j.foodchem.2017.08.031.
  • Cervantes-Elizarrarás, A., J. Piloni-Martini, E. Ramírez-Moreno, E. Alanís-García, N. Güemes-Vera, C. A. Gómez-Aldapa, Q. Y. Zafra-Rojas, and N. D. S. Cruz-Cansino. 2017. Enzymatic inactivation and antioxidant properties of blackberry juice after thermoultrasound: Optimization using response surface methodology. Ultrasonics Sonochemistry 34:371–9. doi: 10.1016/j.ultsonch.2016.06.009.
  • Chandrapala, J., C. Oliver, S. Kentish, and M. Ashokkumar. 2012. Ultrasonics in food processing. Ultrasonics Sonochemistry 19 (5):975–83. doi: 10.1016/j.ultsonch.2012.01.010.
  • Chandrapala, J., B. Zisu, M. Palmer, S. Kentish, and M. Ashokkumar. 2011. Effects of ultrasound on the thermal and structural characteristics of proteins in reconstituted whey protein concentrate. Ultrasonics Sonochemistry 18 (5):951–7. doi: 10.1016/j.ultsonch.2010.12.016.
  • Chang, H. J., Q. Wang, C. H. Tang, and G. H. Zhou. 2015. Effects of ultrasound treatment on connective tissue collagen and meat quality of beef semitendinosus muscle. Journal of Food Quality 38 (4):256–67. doi: 10.1111/jfq.12141.
  • Chang, R., H. Lu, X. Bian, Y. Tian, and Z. Jin. 2021. Ultrasound assisted annealing production of resistant starches type 3 from fractionated debranched starch: Structural characterization and in-vitro digestibility. Food Hydrocolloids 110:106141. doi: 10.1016/j.foodhyd.2020.106141.
  • Chavan, P., P. Sharma, S. R. Sharma, T. C. Mittal, and A. K. Jaiswal. 2022. Application of high-intensity ultrasound to improve food processing efficiency: A review. Foods 11 (1):122. doi: 10.3390/foods11010122.
  • Chemat, F., and M. K. Khan, Zill-e-Huma. 2011. Applications of ultrasound in food technology: Processing, preservation and extraction. Ultrasonics Sonochemistry 18 (4):813–35. doi: 10.1016/j.ultsonch.2010.11.023.
  • Chen, J., Y. Wang, J. Liu, and X. Xu. 2020. Preparation, characterization, physicochemical property and potential application of porous starch: A review. International Journal of Biological Macromolecules 148:1169–81. doi: 10.1016/J.IJBIOMAC.2020.02.055.
  • Chen, W., X. Ma, W. Wang, R. Lv, M. Guo, T. Ding, X. Ye, S. Miao, and D. Liu. 2019. Preparation of modified whey protein isolate with gum acacia by ultrasound maillard reaction. Food Hydrocolloids. 95:298–307. doi: 10.1016/j.foodhyd.2018.10.030.
  • Cheng, X. F., M. Zhang, and B. Adhikari. 2013. The inactivation kinetics of polyphenol oxidase in mushroom (Agaricus bisporus) during thermal and thermosonic treatments. Ultrasonics Sonochemistry 20 (2):674–9. doi: 10.1016/j.ultsonch.2012.09.012.
  • Cheng, X. F., M. Zhang, B. Adhikari, M. N. Islam, and B. G. Xu. 2014. Effect of ultrasound irradiation on some freezing parameters of ultrasound-assisted immersion freezing of strawberries. International Journal of Refrigeration 44:49–55. doi: 10.1016/j.ijrefrig.2014.04.017.
  • Cheng, X., M. Zhang, and B. Adhikari. 2014. Effects of ultrasound-assisted thawing on the quality of edamames [Glycine max (L.) Merrill]. Food Science and Biotechnology 23 (4):1095–102. doi: 10.1007/s10068-014-0150-0.
  • Chia, S. R., K. W. Chew, P. L. Show, M. Sivakumar, T. C. Ling, and Y. Tao. 2019. Isolation of protein from Chlorella sorokiniana CY1 using liquid biphasic flotation assisted with sonication through sugaring-out effect. Journal of Oceanology and Limnology 37 (3):898–908. doi: 10.1007/s00343-019-8246-2.
  • Chisti, Y. 2003. Sonobioreactors: Using ultrasound for enhanced microbial productivity. Trends in Biotechnology 21 (2):89–93. doi: 10.1016/S0167-7799(02)00033-1.
  • Ciggin, A. S., E. S. Sarica, S. Doğruel, and D. Orhon. 2021. Impact of ultrasonic pretreatment on Fenton-based oxidation of olive mill wastewater – Towards a sustainable treatment scheme. Journal of Cleaner Production 313:127948. doi: 10.1016/j.jclepro.2021.127948.
  • Comandini, P., G. Blanda, M. C. Soto-Caballero, V. Sala, U. Tylewicz, H. Mujica-Paz, A. Valdez Fragoso, and T. Gallina Toschi. 2013. Effects of power ultrasound on immersion freezing parameters of potatoes. Innovative Food Science & Emerging Technologies 18:120–5. doi: 10.1016/j.ifset.2013.01.009.
  • Condón, S., P. Mañas, and G. Cebrián. 2011. Manothermosonication for microbial inactivation. In Food engineering series, 287–319. doi: 10.1007/978-1-4419-7472-3_11.
  • Contreras, M., J. Benedito, and J. Bon. 2017. Intensification of heat transfer during mild thermal treatment of dry-cured ham by using airborne ultrasound. Ultrasonics – Sonochemistry 41:206–212. 10.1016/j.ultsonch.2017.09.019.
  • Contreras-Lopez, G., A. Carnero-Hernandez, M. Huerta-Jimenez, A. D. Alarcon-Rojo, I. Garcia-Galicia, and L. M. Carrillo-López. 2020. High-intensity ultrasound applied on cured pork: Sensory and physicochemical characteristics. Food Science & Nutrition 8 (2):786–95. doi: 10.1002/FSN3.1321.
  • Costa, M. G. M., T. V. Fonteles, A. L. T. de Jesus, F. D. L. Almeida, M. R. A. de Miranda, F A. N. Fernandes, and S. Rodrigues. 2013. High-intensity ultrasound processing of pineapple juice. Food and Bioprocess Technology 6 (4):997–1006. doi: 10.1007/s11947-011-0746-9.
  • Coussios, C. C., C. H. Farny, G. ter Haar, and R. A. Roy. 2007. Role of acoustic cavitation in the delivery and monitoring of cancer treatment by high-intensity focused ultrasound (HIFU). International Journal of Hyperthermia: The Official Journal of European Society for Hyperthermic Oncology, North American Hyperthermia Group 23 (2):105–20. doi: 10.1080/02656730701194131.
  • Cruz, R. M. S., M. C. Vieira, and C. L. M. Silva. 2006. Effect of heat and thermosonication treatments on peroxidase inactivation kinetics in watercress (Nasturtium officinale). Journal of Food Engineering 72 (1):8–15. doi: 10.1016/j.jfoodeng.2004.11.007.
  • Cui, R., and F. Zhu. 2021. Ultrasound modified polysaccharides: A review of structure, physicochemical properties, biological activities and food applications. Trends in Food Science & Technology 107:491–508. doi: 10.1016/j.tifs.2020.11.018.
  • Dabbour, M., R. He, B. Mintah, J. Xiang, and H. Ma. 2019. Changes in functionalities, conformational characteristics and antioxidative capacities of sunflower protein by controlled enzymolysis and ultrasonication action. Ultrasonics Sonochemistry 58:104625. doi: 10.1016/j.ultsonch.2019.104625.
  • Dalvi-Isfahan, M., N. Hamdami, E. Xanthakis, and A. Le-Bail. 2017. Review on the control of ice nucleation by ultrasound waves, electric and magnetic fields. Journal of Food Engineering 195:222–34. doi: 10.1016/j.jfoodeng.2016.10.001.
  • Debabrata, P., and M. Sivakumar. 2018. Sonochemical degradation of endocrine-disrupting organochlorine pesticide Dicofol: Investigations on the transformation pathways of dechlorination and the influencing operating parameters. Chemosphere 204:101–8. doi: 10.1016/j.chemosphere.2018.04.014.
  • Deeth, H. C., and C. H. Fitz-Gerald. 2009. Lipolytic enzymes and hydrolytic rancidity. In Advanced dairy chemistry, eds. P. F Fox and P. L. H. McSweeney, 481–556. Boston: Springer. doi: 10.1007/0-387-28813-9_15.
  • Delgado, A. E., L. Zheng, and D. Sun. 2009. Influence of ultrasound on freezing rate of immersion-frozen apples, 263–70. doi: 10.1007/s11947-008-0111-9.
  • Delgado-Povedano, M. M., and M. D. Luque de Castro. 2015. A review on enzyme and ultrasound: A controversial but fruitful relationship. Analytica Chimica Acta 889:1–21. doi: 10.1016/j.aca.2015.05.004.
  • Deora, N. S., N. N. Misra, A. Deswal, H. N. Mishra, P. J. Cullen, and B. K. Tiwari. 2013. Ultrasound for improved crystallisation in food processing. Food Engineering Reviews 5 (1):36–44. doi: 10.1007/s12393-012-9061-0.
  • Dong, Y., Y. Xu, P. Li, C. Wang, Y. Cao, and J. Yu. 2017. Antibiofilm effect of ultrasound combined with microbubbles against Staphylococcus epidermidis biofilm. International Journal of Medical Microbiology: IJMM 307 (6):321–8. doi: 10.1016/j.ijmm.2017.06.001.
  • Du, X., H. Li, M. Nuerjiang, S. Shi, B. Kong, Q. Liu, and X. Xia. 2021. Application of ultrasound treatment in chicken gizzards tenderization: Effects on muscle fiber and connective tissue. Ultrasonics Sonochemistry 79:105786. doi: 10.1016/J.ULTSONCH.2021.105786.
  • Falsafi, S. R., Y. Maghsoudlou, H. Rostamabadi, M. M. Rostamabadi, H. Hamedi, and S. M. H. Hosseini. 2019. Preparation of physically modified oat starch with different sonication treatments. Food Hydrocolloids 89:311–20. doi: 10.1016/j.foodhyd.2018.10.046.
  • Fan, D., L. Huang, B. Li, J. Huang, J. Zhao, B. Yan, W. Zhou, W. Zhang, and H. Zhang. 2016. Acoustic intensity in ultrasound field and ultrasound-assisted gelling of surimi. LWT 75:497–504. doi: 10.1016/j.lwt.2016.08.002.
  • Fan, L., F. Hou, A. I. Muhammad, L. V. Ruiling, R. B. Watharkar, M. Guo, T. Ding, and D. Liu. 2019. Synergistic inactivation and mechanism of thermal and ultrasound treatments against Bacillus subtilis spores. Food Research International (Ottawa, Ont.) 116:1094–102. doi: 10.1016/j.foodres.2018.09.052.
  • Fan, X. D., W. L. Zhang, H. Y. Xiao, T. Q. Qiu, and J. G. Jiang. 2015. Effects of ultrasound combined with ozone on the degradation of organophosphorus pesticide residues on lettuce. RSC Advances 5 (57):45622–30. doi: 10.1039/C5RA03024B.
  • Ferrentino, G., and S. Spilimbergo. 2015. High pressure carbon dioxide combined with high power ultrasound pasteurization of fresh cut carrot. Journal of Supercritical Fluids 105:1–9. doi: 10.1016/j.supflu.2014.12.014.
  • Filomena-Ambrosio, A., M. X. Quintanilla-Carvajal, I. Hernando, M. Hernández-Carrión, and I. Sotelo-Díaz, Ana-Puig. 2016. Changes of the water-holding capacity and microstructure of panga and Tilapia surimi gels using different stabilizers and processing methods. Food Science and Technology International = Ciencia y tecnologia de los alimentos internacional 22 (1):68–78., doi: 10.1177/1082013214568876.
  • Fink, R., M. Oder, E. Stražar, and S. Filip. 2017. Efficacy of cleaning methods for the removal of Bacillus cereus biofilm from polyurethane conveyor belts in bakeries. Food Control 80:267–72. doi: 10.1016/j.foodcont.2017.05.009.
  • Flores-Jiménez, N. T., J. A. Ulloa, J. E. U. Silvas, J. C. R. Ramírez, P. R. Ulloa, P. U. B. Rosales, Y. S. Carrillo, and R. G. Leyva. 2019. Effect of high-intensity ultrasound on the compositional, physicochemical, biochemical, functional and structural properties of canola (Brassica napus L.) protein isolate. Food Research International (Ottawa, Ont.) 121:947–56. doi: 10.1016/J.FOODRES.2019.01.025.
  • Fonteles, T. V., M. G. M. Costa, A. L. T. de Jesus, M. R. A. de Miranda, F A. N. Fernandes, and S. Rodrigues. 2012. Power ultrasound processing of cantaloupe melon juice: Effects on quality parameters. Food Research International 48 (1):41–8. doi: 10.1016/j.foodres.2012.02.013.
  • Gambuteanu, C., and P. Alexe. 2015. Comparison of thawing assisted by low-intensity ultrasound on technological properties of pork Longissimus dorsi muscle. Journal of Food Science and Technology 52 (4):2130–8. doi: 10.1007/s13197-013-1204-7.
  • Gao, S., Y. Hemar, M. Ashokkumar, S. Paturel, and G. D. Lewis. 2014. Inactivation of bacteria and yeast using high-frequency ultrasound treatment. Water Research 60:93–104. doi: 10.1016/j.watres.2014.04.038.
  • Gavahian, M., Y. H. Chu, and A. Mousavi Khaneghah. 2019. Recent advances in orange oil extraction: An opportunity for the valorisation of orange peel waste a review. International Journal of Food Science & Technology 54 (4):925–32. doi: 10.1111/ijfs.13987.
  • Gavahian, M., G. N. Mathad, R. Pandiselvam, J. Lin, and D.-W. Sun. 2021. Emerging technologies to obtain pectin from food processing by-products: A strategy for enhancing resource efficiency. Trends in Food Science & Technology 115:42–54. doi: 10.1016/j.tifs.2021.06.018.
  • Geng, M., Z. Wang, L. Qin, A. Taha, L. Du, X. Xu, S. Pan, and H. Hu. 2022. Effect of ultrasound and coagulant types on properties of β-carotene bulk emulsion gels stabilized by soy protein. Food Hydrocolloids 123:107146. doi: 10.1016/j.foodhyd.2021.107146.
  • Georganas, A., E. Giamouri, A. C. Pappas, G. Papadomichelakis, F. Galliou, T. Manios, E. Tsiplakou, K. Fegeros, and G. Zervas. 2020. Bioactive compounds in food waste: A review on the transformation of food waste to animal feed. Foods 9 (3):291–18. doi: 10.3390/foods9030291.
  • Gera, N., and S. Doores. 2011. Kinetics and mechanism of bacterial inactivation by ultrasound waves and sonoprotective effect of milk components. Journal of Food Science 76 (2):M111–9. doi: 10.1111/j.1750-3841.2010.02007.x.
  • Gevari, M. T., T. Abbasiasl, S. Niazi, M. Ghorbani, and A. Koşar. 2020. Direct and indirect thermal applications of hydrodynamic and acoustic cavitation: A review. Applied Thermal Engineering 171:115065. doi: 10.1016/j.applthermaleng.2020.115065.
  • Ghafoor, K., T. Hui, and Y. H. Choi. 2011. Optimization of ultrasonic‐assisted extraction of total anthocyanins from grape peel using response surface methodology. Journal of Food Biochemistry 35 (3):735–46. doi: 10.1111/j.1745-4514.2010.00413.x.
  • Gholamhosseinpour, A., S. M. B. Hashemi, L. Raoufi Jahromi, and A. H. Sourki. 2020. Conventional heating, ultrasound and microwave treatments of milk: Fermentation efficiency and biological activities. International Dairy Journal 110:104809. doi: 10.1016/j.idairyj.2020.104809.
  • Gómez-Cruz, I., C. Cara, M. del, M. Contreras, and I. Romero. 2020. Recovery of bioactive compounds from exhausted olive pomace. Proceedings 83:9. doi: 10.3390/iecbm2020-08582.
  • Gómez-Salazar, J. A., D. A. Ochoa-Montes, A. Cerón-García, C. Ozuna, and M. E. Sosa-Morales. 2018. Effect of acid marination assisted by power ultrasound on the quality of rabbit meat. Journal of Food Quality 2018:1–6. doi: 10.1155/2018/5754930.
  • Gonzalez-Gonzalez, L., A. D. Alarcon-Rojo, L. M. Carrillo-Lopez, I. A. Garcia-Galicia, M. Huerta-Jimenez, and L. Paniwnyk. 2020. Does ultrasound equally improve the quality of beef? An insight into Longissimus lumborum, Infraspinatus and Cleidooccipitalis. Meat Science 160:107963. doi: 10.1016/j.meatsci.2019.107963.
  • González-González, L., L. Luna-Rodríguez, L. M. Carrillo-López, A. D. Alarcón-Rojo, I. García-Galicia, and R. Reyes-Villagrana. 2017. Ultrasound as an alternative to conventional marination: Acceptability and mass transfer. Journal of Food Quality 2017:1–8. doi: 10.1155/2017/8675720.
  • Gracin, L., A. R. Jambrak, H. Juretić, S. Dobrović, H. Juretic´b, J. Juretic´b, S. Dobrovic´b, D. Dobrovic´b, I. B. Barukčicá, M. G. Grozdanovicá, et al. 2015. Influence of high power ultrasound on Brettanomyces and lactic acid bacteria in wine in continuous flow treatment. Applied Acoustics 103:143–7. doi: 10.1016/j.apacoust.2015.05.005.
  • Guo, L., Y. Sun, Y. Zhu, B. Wang, L. Xu, M. Huang, Y. Li, and J. Sun. 2020. The antibacterial mechanism of ultrasound in combination with sodium hypochlorite in the control of Escherichia coli. Food Research International (Ottawa, Ont.) 129:108887. doi: 10.1016/j.foodres.2019.108887.
  • Guo, M., L. Zhang, Q. He, S. A. Arabi, H. Zhao, W. Chen, X. Ye, and D. Liu. 2020. Synergistic antibacterial effects of ultrasound and thyme essential oils nanoemulsion against Escherichia coli O157:H7. Ultrasonics Sonochemistry 66:104988. doi: 10.1016/j.ultsonch.2020.104988.
  • Guo, Y., B. Wu, X. Guo, D. Liu, P. Wu, H. Ma, and Z. Pan. 2021. Ultrasonication and thermosonication blanching treatments of carrot at varying frequencies: Effects on peroxidase inactivation mechanisms and quality characterization evaluation. Food Chemistry 343:128524. doi: 10.1016/j.foodchem.2020.128524.
  • Habinshuti, I., T. H. Mu, and M. Zhang. 2021. Structural, antioxidant, aroma, and sensory characteristics of Maillard reaction products from sweet potato protein hydrolysates as influenced by different ultrasound-assisted enzymatic treatments. Food Chemistry 361:130090. doi: 10.1016/J.FOODCHEM.2021.130090.
  • He, Q., M. Guo, T. Z. Jin, S. A. Arabi, and D. Liu. 2021. Ultrasound improves the decontamination effect of thyme essential oil nanoemulsions against Escherichia coli O157: H7 on cherry tomatoes. International Journal of Food Microbiology 337:108936. doi: 10.1016/j.ijfoodmicro.2020.108936.
  • He, Q., D. Liu, M. Ashokkumar, X. Ye, T. Z. Jin, and M. Guo. 2021. Antibacterial mechanism of ultrasound against Escherichia coli: Alterations in membrane microstructures and properties. Ultrasonics Sonochemistry 73:105509. doi: 10.1016/j.ultsonch.2021.105509.
  • Hernández-Falcón, T. A., A. Monter-Arciniega, N. d S. Cruz-Cansino, E. Alanís-García, G. M. Rodríguez-Serrano, A. Castañeda-Ovando, M. García-Garibay, E. Ramírez-Moreno, and J. Jaimez-Ordaz. 2018. Effect of thermoultrasound on aflatoxin M1 levels, physicochemical and microbiological properties of milk during storage. Ultrasonics Sonochemistry 48:396–403. doi: 10.1016/J.ULTSONCH.2018.06.018.
  • Higaki, K., S. Ueno, T. Koyano, and K. Sato. 2001. Effects of ultrasonic irradiation on crystallization behavior of tripalmitoylglycerol and cocoa butter. Journal of the American Oil Chemists’ Society 78 (5):513–8. doi: 10.1007/s11746-001-0295-y.
  • Higuera-Barraza, O. A., C. L. Del Toro-Sanchez, S. Ruiz-Cruz, and E. Márquez-Ríos. 2016. Effects of high-energy ultrasound on the functional properties of proteins. Ultrasonics Sonochemistry 31:558–62. doi: 10.1016/j.ultsonch.2016.02.007.
  • Hu, A., S. Jiao, J. Zheng, L. Li, Y. Fan, L. Chen, and Z. Zhang. 2015. Ultrasonic frequency effect on corn starch and its cavitation. LWT – Food Science and Technology 60 (2):941–7. doi: 10.1016/j.lwt.2014.10.048.
  • Hu, H., X. Fan, Z. Zhou, X. Xu, G. Fan, L. Wang, X. Huang, S. Pan, and L. Zhu. 2013. Acid-induced gelation behavior of soybean protein isolate with high intensity ultrasonic pre-treatments. Ultrasonics Sonochemistry 20 (1):187–95. doi: 10.1016/j.ultsonch.2012.07.011.
  • Hu, H., E. C. Y. Li-Chan, L. Wan, M. Tian, and S. Pan. 2013. The effect of high intensity ultrasonic pre-treatment on the properties of soybean protein isolate gel induced by calcium sulfate. Food Hydrocolloids 32 (2):303–11. doi: 10.1016/j.foodhyd.2013.01.016.
  • Hu, H., J. Wu, E. C. Y. Li-Chan, L. Zhu, F. Zhang, X. Xu, G. Fan, L. Wang, X. Huang, and S. Pan. 2013. Effects of ultrasound on structural and physical properties of soy protein isolate (SPI) dispersions. Food Hydrocolloids 30 (2):647–55. doi: 10.1016/j.foodhyd.2012.08.001.
  • Hua, I., and U. Pfalzer-Thompson. 2001. Ultrasonic irradiation of carbofuran: Decomposition kinetics and reactor characterization. Water Research 35 (6):1445–52. doi: 10.1016/S0043-1354(00)00398-5.
  • Huang, G., S. Chen, Y. Tang, C. Dai, L. Sun, H. Ma, and R. He. 2019. Stimulation of low intensity ultrasound on fermentation of skim milk medium for yield of yoghurt peptides by Lactobacillus paracasei. Ultrasonics Sonochemistry 51:315–24. doi: 10.1016/J.ULTSONCH.2018.09.033.
  • Huang, H., K. C. Kwok, and H. H. Liang. 2008. Inhibitory activity and conformation changes of soybean trypsin inhibitors induced by ultrasound. Ultrasonics Sonochemistry 15 (5):724–30. doi: 10.1016/j.ultsonch.2007.10.007.
  • Huezo, L., A. Shah, and F. C. M. Jr. 2019. Effects of ultrasound on fermentation of glucose to ethanol by Saccharomyces cerevisiae. Fermentation 5 (1):16. doi: 10.3390/fermentation5010016.
  • Illera, A. E., M. T. Sanz, O. Benito-Román, S. Varona, S. Beltrán, R. Melgosa, and A. G. Solaesa. 2018. Effect of thermosonication batch treatment on enzyme inactivation kinetics and other quality parameters of cloudy apple juice. Innovative Food Science & Emerging Technologies 47:71–80. doi: 10.1016/j.ifset.2018.02.001.
  • Inguglia, E. S., C. M. Burgess, J. P. Kerry, and B. K. Tiwari. 2019. Ultrasound-assisted marination: Role of frequencies and treatment time on the quality of sodium-reduced poultry meat. Foods 8 (10):473. doi: 10.3390/foods8100473.
  • Iqbal, A., A. Murtaza, K. Marszałek, M. A. Iqbal, M. F. J. Chughtai, W. Hu, F. J. Barba, J. Bi, X. Liu, and X. Xu. 2020. Inactivation and structural changes of polyphenol oxidase in quince (Cydonia oblonga Miller) juice subjected to ultrasonic treatment. Journal of the Science of Food and Agriculture 100 (5):2065–73. doi: 10.1002/jsfa.10229.
  • Islam, M. N., M. Zhang, and B. Adhikari. 2014. The inactivation of enzymes by ultrasound: A review of potential mechanisms. Food Reviews International 30 (1):1–21. doi: 10.1080/87559129.2013.853772.
  • Jabbar, S., M. Abid, B. Hu, M. M. Hashim, S. Lei, T. Wu, and X. Zeng. 2015. Exploring the potential of thermosonication in carrot juice processing. Journal of Food Science and Technology 52 (11):7002–13. doi: 10.1007/s13197-015-1847-7.
  • James, C., G. Purnell, and S. J. James. 2015. A review of novel and innovative food freezing technologies. Food and Bioprocess Technology 8:1616–34. doi: 10.1007/s11947-015-1542-8.
  • Jankowska, M., B. Łozowicka, and P. Kaczyński. 2019. Comprehensive toxicological study over 160 processing factors of pesticides in selected fruit and vegetables after water, mechanical and thermal processing treatments and their application to human health risk assessment. The Science of the Total Environment 652:1156–67. doi: 10.1016/j.scitotenv.2018.10.324.
  • Jayasooriya, S. D., B. R. Bhandari, P. Torley, B R. D. Arcy, B. R. Bhandari, P. Torley, and B R. D. A. Effect. 2007. Effect of high power ultrasound waves on properties of meat: A review effect of high power ultrasound waves on 2912. International Journal of Food Properties 7: 301–19. doi: 10.1081/JFP-120030039.
  • Jiang, J., C. Gong, J. Wang, S. Tian, and Y. Zhang. 2014. Effects of ultrasound pre-treatment on the amount of dissolved organic matter extracted from food waste. Bioresource Technology 155:266–71. doi: 10.1016/J.BIORTECH.2013.12.064.
  • Jin, H., Q. Zhao, H. Feng, Y. Wang, J. Wang, Y. Liu, D. Han, and J. Xu. 2019. Changes on the structural and physicochemical properties of conjugates prepared by the Maillard reaction of black bean protein isolates and glucose with ultrasound pretreatment. Polymers 11 (5):848. 848. doi: 10.3390/polym11050848.
  • Jin, J., H. Ma, K. Wang, A. E. G. A. Yagoub, J. Owusu, W. Qu, R. He, C. Zhou, and X. Ye. 2015. Effects of multi-frequency power ultrasound on the enzymolysis and structural characteristics of corn gluten meal. Ultrasonics Sonochemistry 24:55–64. doi: 10.1016/j.ultsonch.2014.12.013.
  • Esua, O., D.-W. Sun, C. K. Ajani, J.-H. Cheng, and K. M. Keener. 2022. Modelling of inactivation kinetics of Escherichia coli and Listeria monocytogenes on grass carp treated by combining ultrasound with plasma functionalized buffer. Ultrasonics Sonochemistry 88:106086. doi: 10.1016/J.ULTSONCH.2022.106086.
  • Joo, H. J., M. F. R. Mizan, M. I. Hossain, D. U. Lee, and S. D. Ha. 2020. Enhanced elimination of Salmonella typhimurium and Campylobacter jejuni on chicken skin by sequential exposure to ultrasound and peroxyacetic acid. Journal of Food Safety 40 (4):e12803. doi: 10.1111/jfs.12803.
  • Kadkhodaee, R., and M. J. W. Povey. 2008. Ultrasonic inactivation of Bacillus α-amylase. I. effect of gas content and emitting face of probe. Ultrasonics Sonochemistry 15 (2):133–42. doi: 10.1016/j.ultsonch.2007.02.005.
  • Kang, D. C., Y. H. Zou, Y. P. Cheng, L. J. Xing, G. H. Zhou, and W. G. Zhang. 2016. Effects of power ultrasound on oxidation and structure of beef proteins during curing processing. Ultrasonics Sonochemistry 33:47–53. doi: 10.1016/j.ultsonch.2016.04.024.
  • Kang, D. c., X. q Gao, Q. f Ge, G. h Zhou, and W. g Zhang. 2017. Effects of ultrasound on the beef structure and water distribution during curing through protein degradation and modification. Ultrasonics Sonochemistry 38:317–25. doi: 10.1016/j.ultsonch.2017.03.026.
  • Kashyap, D. R., P. K. Vohra, S. Chopra, and R. Tewari. 2001. Applications of pectinases in the commercial sector: A review. Bioresource Technology 77 (3):215–27. doi: 10.1016/S0960-8524(00)00118-8.
  • Kiani, H., and D. Sun. 2017. Numerical simulation of heat transfer and phase change during freezing of potatoes with different shapes at the presence or absence of ultrasound irradiation. Heat and Mass Transfer 54:885–94.
  • Kida, M., S. Ziembowicz, and P. Koszelnik. 2018. Removal of organochlorine pesticides (OCPs) from aqueous solutions using hydrogen peroxide, ultrasonic waves, and a hybrid process. Separation and Purification Technology 192:457–64. doi: 10.1016/j.seppur.2017.10.046.
  • Kidak, R., and N. H. Ince. 2006. Ultrasonic destruction of phenol and substituted phenols: A review of current research. Ultrasonics Sonochemistry 13 (3):195–9. doi: 10.1016/j.ultsonch.2005.11.004.
  • Kjartansson, G. T., S. Zivanovic, K. Kristbergsson, and J. Weiss. 2006. Sonication-assisted extraction of chitin from shells of fresh water prawns (Macrobrachium rosenbergii). Journal of Agricultural and Food Chemistry 54 (9):3317–23. doi: 10.1021/jf052184c.
  • Koca, N., M. Urgu, and T. E. Saatli. 2018. Novel technologies in dairy processing. In Technological approaches for novel applications in dairy processing – Google books, ed. N. Koca, 51–70. London: IntechOpen.
  • Koda, S., M. Miyamoto, M. Toma, T. Matsuoka, and M. Maebayashi. 2009. Inactivation of Escherichia coli and Streptococcus mutans by ultrasound at 500 kHz. Ultrasonics Sonochemistry 16 (5):655–9. doi: 10.1016/j.ultsonch.2009.02.003.
  • Koo, H., R. N. Allan, R. P. Howlin, P. Stoodley, and L. Hall-Stoodley. 2017. Targeting microbial biofilms: Current and prospective therapeutic strategies. Nature Reviews Microbiology 15 (12):740–55. doi: 10.1038/nrmicro.2017.99.
  • Körzendörfer, A., J. Schäfer, J. Hinrichs, and S. Nöbel. 2019. Power ultrasound as a tool to improve the processability of protein-enriched fermented milk gels for Greek yogurt manufacture. Journal of Dairy Science 102 (9):7826–37. doi: 10.3168/jds.2019-16541.
  • Kulmann de Medeiros, J., J. R. Sarkis, D. P. Jaeschke, and G. D. Mercali. 2021. Thermosonication for peroxidase inactivation in sugarcane juice. LWT 140:110730. doi: 10.1016/j.lwt.2020.110730.
  • Kumar, K., A. N. Yadav, V. Kumar, P. Vyas, and H. S. Dhaliwal. 2017. Food waste: A potential bioresource for extraction of nutraceuticals and bioactive compounds. Bioresources and Bioprocessing 4 (1):1–14. doi: 10.1186/s40643-017-0148-6.
  • Kyllönen, H. M., P. Pirkonen, and M. Nyström. 2005. Membrane filtration enhanced by ultrasound: A review. Desalination 181 (1-3):319–35. doi: 10.1016/j.desal.2005.06.003.
  • Lauterborn, W., and R. Mettin. 2015. Acoustic cavitation: Bubble dynamics in high-power ultrasonic fields. In Power ultrasonics: Applications of high-intensity ultrasound, 37–78. doi: 10.1016/B978-1-78242-028-6.00003-X.
  • Lee, J., R. C. da Silva, V. Gibon, and S. Martini. 2018. Sonocrystallization of interesterified soybean oil: Effect of saturation level and supercooling. Journal of Food Science 83 (4):902–10. doi: 10.1111/1750-3841.14084.
  • Lee, N. Y., S. W. Kim, and S. D. Ha. 2014. Synergistic effects of ultrasound and sodium hypochlorite (NaOCl) on reducing Listeria monocytogenes ATCC19118 in broth, stainless steel, and iceberg lettuce. Foodborne Pathogens and Disease 11 (7):581–7. doi: 10.1089/fpd.2013.1722.
  • Li, D., H. Zhao, A. I. Muhammad, L. Song, M. Guo, and D. Liu. 2020. The comparison of ultrasound-assisted thawing, air thawing and water immersion thawing on the quality of slow/fast freezing bighead carp (Aristichthys nobilis) fillets. Food Chemistry 320:126614. doi: 10.1016/j.foodchem.2020.126614.
  • Li, J., J. Ahn, D. Liu, S. Chen, X. Ye, and T. Ding. 2016. Evaluation of ultrasound-induced damage to Escherichia coli and Staphylococcus aureus by flow cytometry and transmission electron microscopy. Applied and Environmental Microbiology 82 (6):1828–37. doi: 10.1128/AEM.03080-15.
  • Li, J., Y. Suo, X. Liao, J. Ahn, D. Liu, S. Chen, X. Ye, and T. Ding. 2017. Analysis of Staphylococcus aureus cell viability, sublethal injury and death induced by synergistic combination of ultrasound and mild heat. Ultrasonics Sonochemistry 39:101–10. doi: 10.1016/j.ultsonch.2017.04.019.
  • Li, K., Z. L. Kang, Y. Y. Zhao, X. L. Xu, and G. H. Zhou. 2014. Use of high-intensity ultrasound to improve functional properties of batter suspensions prepared from PSE-like chicken breast meat. Food and Bioprocess Technology 7 (12):3466–77. doi: 10.1007/s11947-014-1358-y.
  • Li, K., Z. L. Kang, Y. F. Zou, X. L. Xu, and G. H. Zhou. 2015. Effect of ultrasound treatment on functional properties of reduced-salt chicken breast meat batter. Journal of Food Science and Technology 52 (5):2622–33. doi: 10.1007/s13197-014-1356-0.
  • Li, L., A. Taha, M. Geng, Z. Zhang, H. Su, X. Xu, S. Pan, and H. Hu. 2021. Ultrasound-assisted gelation of β-carotene enriched oleogels based on Candelilla wax-nut oils: Physical properties and in-vitro digestion analysis. Ultrasonics Sonochemistry 79:105762. doi: 10.1016/j.ultsonch.2021.105762.
  • Li, W., T. S. H. Leong, M. Ashokkumar, and G. J. O. Martin. 2017. A study of the effectiveness and energy efficiency of ultrasonic emulsification. Physical Chemistry Chemical Physics: PCCP 20 (1):86–96. doi: 10.1039/c7cp07133g.
  • Liang, Y., W. Wang, Y. Shen, Y. Liu, and X. J. Liu. 2012. Effects of home preparation on organophosphorus pesticide residues in raw cucumber. Food Chemistry 133 (3):636–40. doi: 10.1016/j.foodchem.2012.01.016.
  • Liao, X., J. Li, Y. Suo, S. Chen, X. Ye, D. Liu, and T. Ding. 2018. Multiple action sites of ultrasound on Escherichia coli and Staphylococcus aureus. Food Science and Human Wellness 7 (1):102–9. doi: 10.1016/j.fshw.2018.01.002.
  • Lin, J., Y. Zhi-Wei, J. Lin, and Y. Zhi-Wei. 2020. Optimization of glycosylation modification process of ultrasound-assisted naked oat protein/β-glucan by response surface methodology. Science and Technology of Food Industry 41 (2):170–6. 41:170–176. doi: 10.13386/J.ISSN1002-0306.2020.02.027.
  • Lin, L., X. Wang, C. Li, and H. Cui. 2019. Inactivation mechanism of E. coli O157:H7 under ultrasonic sterilization. Ultrasonics Sonochemistry 59:104751. doi: 10.1016/j.ultsonch.2019.104751.
  • Liu, K., H. Wang, and X. Zhang. 2020. Ductile mode cutting of calcium fluoride. Ductile mode cutting of brittle materials, 179–210. Singapore: Springer. doi: 10.1007/978-981-32-9836-1_9.
  • Liu, Y., S. Chen, Y. Pu, A. I. Muhammad, M. Hang, D. Liu, and T. Ye. 2019. Ultrasound-assisted thawing of mango pulp: Effect on thawing rate, sensory, and nutritional properties. Food Chemistry 286: 576–83. doi: 10.1016/j.foodchem.2019.02.059.
  • Liu, Y., M. Li, Y. Liu, F. Bai, and K. Bian. 2019. Effects of pulsed ultrasound at 20 kHz on the sonochemical degradation of mycotoxins. World Mycotoxin Journal 12 (4):357–66. doi: 10.3920/WMJ2018.2431.
  • Liu, Y., M. Li, Y. Liu, and K. Bian. 2019. Structures of reaction products and degradation pathways of aflatoxin B1 by ultrasound treatment. Toxins 11 (9):526. doi: 10.3390/toxins11090526.
  • Lopez, P., and J. Burgos. 1995. Peroxidase stability and reactivation after heat treatment and manothermosonication. Journal of Food Science 60 (3):451–5. doi: 10.1111/j.1365-2621.1995.tb09801.x.
  • Lopez, P., and J. Burgos. 1995. Lipoxygenase inactivation by manothermosonication: Effects of sonication physical parameters, pH, KC1, sugars, glycerol, and enzyme concentration. Journal of Agricultural and Food Chemistry 43 (3):620–5. doi: 10.1021/jf00051a012.
  • López, P., F. J. Sala, J. L. de la Fuente, S. Condón, J. Raso, and J. Burgos. 1994. Inactivation of peroxidase, lipoxygenase, and polyphenol oxidase by manothermosonication. Journal of Agricultural and Food Chemistry 42 (2):252–6. doi: 10.1021/jf00038a005.
  • Lozowicka, B., M. Jankowska, I. Hrynko, and P. Kaczynski. 2016. Removal of 16 pesticide residues from strawberries by washing with tap and ozone water, ultrasonic cleaning and boiling. Environmental Monitoring and Assessment 188 (1):19. doi: 10.1007/s10661-015-4850-6.
  • Luche, J.-L. 1998. Synthetic organic sonochemistry. doi: 10.1007/978-1-4899-1910-6.
  • Ma, H., Y. Lin, Y. Jin, M. Gao, H. Li, Q. Wang, S. Ge, L. Cai, Z. Huang, Q. Van Le, et al. 2021. Effect of ultrasonic pretreatment on chain elongation of saccharified residue from food waste by anaerobic fermentation. Environmental Pollution (Barking, Essex: 1987) 268 (Pt B):115936. doi: 10.1016/j.envpol.2020.115936.
  • Ma, X., F. Hou, H. Zhao, D. Wang, W. Chen, S. Miao, and D. Liu. 2020. Conjugation of soy protein isolate (SPI) with pectin by ultrasound treatment. Food Hydrocolloids 108:106056. doi: 10.1016/j.foodhyd.2020.106056.
  • Mahamuni, N. N., and Y. G. Adewuyi. 2010. Advanced oxidation processes (AOPs) involving ultrasound for waste water treatment: A review with emphasis on cost estimation. Ultrasonics Sonochemistry 17 (6):990–1003. doi: 10.1016/j.ultsonch.2009.09.005.
  • Mahato, S., Z. Zhu, and D. Sun. 2019. Glass transitions as affected by food compositions and by conventional and novel freezing technologies: A review. Trends in Food Science & Technology 94:1–11. doi: 10.1016/j.tifs.2019.09.010.
  • Majid, I., G. A. Nayik, and V. Nanda. 2015. Ultrasonication and food technology: A review. Cogent Food & Agriculture 1 (1):1071022. doi: 10.1080/23311932.2015.1071022.
  • Martínez-Velasco, A., C. Lobato-Calleros, B. E. Hernández-Rodríguez, A. Román-Guerrero, J. Alvarez-Ramirez, and E. J. Vernon-Carter. 2018. High intensity ultrasound treatment of faba bean (Vicia faba L.) protein: Effect on surface properties, foaming ability and structural changes. Ultrasonics Sonochemistry 44:97–105. doi: 10.1016/j.ultsonch.2018.02.007.
  • Mason, T. J., and C. Pétrier. 2004. Ultrasound processes. . In Advanced oxidation processes for water and wastewater treatment, ed. S. Parsons, 185–208. London: IWA Publishing.
  • McClements, D. J. 1995. Advances in the application of ultrasound in food analysis and processing. Trends in Food Science & Technology 6 (9):293–9. doi: 10.1016/S0924-2244(00)89139-6.
  • McDonnell, C. K., P. Allen, C. Morin, and J. G. Lyng. 2014. The effect of ultrasonic salting on protein and water-protein interactions in meat. Food Chemistry 147:245–51. doi: 10.1016/j.foodchem.2013.09.125.
  • Medina-Meza, I. G., P. Boioli, and G. V. Barbosa-Cánovas. 2016. Assessment of the effects of ultrasonics and pulsed electric fields on nutritional and rheological properties of raspberry and blueberry purees. Food and Bioprocess Technology 9 (3):520–31. doi: 10.1007/s11947-015-1642-5.
  • Millan-Sango, D., A. McElhatton, and V. P. Valdramidis. 2015. Determination of the efficacy of ultrasound in combination with essential oil of oregano for the decontamination of Escherichia coli on inoculated lettuce leaves. Food Research International 67:145–54. doi: 10.1016/j.foodres.2014.11.001.
  • Monroy, Y., S. Rivero, and M. A. García. 2018. Microstructural and techno-functional properties of cassava starch modified by ultrasound. Ultrasonics Sonochemistry 42:795–804. doi: 10.1016/J.ULTSONCH.2017.12.048.
  • Morales, R., K. D. Martínez, V. M. Pizones Ruiz-Henestrosa, and A. M. R. Pilosof. 2015. Modification of foaming properties of soy protein isolate by high ultrasound intensity: Particle size effect. Ultrasonics Sonochemistry 26:48–55. doi: 10.1016/j.ultsonch.2015.01.011.
  • Mortazavia, S. M., A. M. Sania, and S. Mohsenib. 2015. Destruction of AFT by ultrasound treatment. Journal of Applied Environmental and Biological Sciences 4:198–202.
  • Muthoosamy, K., and S. Manickam. 2017. State of the art and recent advances in the ultrasound-assisted synthesis, exfoliation and functionalization of graphene derivatives. Ultrasonics Sonochemistry 39:478–93. doi: 10.1016/j.ultsonch.2017.05.019.
  • Naddeo, V., M F. N. Secondes, L. Borea, S. W. Hasan, F. Ballesteros, and V. Belgiorno. 2020. Removal of contaminants of emerging concern from real wastewater by an innovative hybrid membrane ­process – UltraSound, Adsorption, and Membrane ultrafiltration (USAMe®). Ultrasonics Sonochemistry 68:105237. doi: 10.1016/J.ULTSONCH.2020.105237.
  • Naji, O., R. A. Al-Juboori, L. Bowtell, A. Alpatova, and N. Ghaffour. 2020. Direct contact ultrasound for fouling control and flux enhancement in air-gap membrane distillation. Ultrasonics Sonochemistry 61:104816. doi: 10.1016/j.ultsonch.2019.104816.
  • Nalajala, V. S., and V. S. Moholkar. 2011. Investigations in the physical mechanism of sonocrystallization. Ultrasonics Sonochemistry 18 (1):345–55. doi: 10.1016/J.ULTSONCH.2010.06.016.
  • Nowacka, M., M. Dadan, and U. Tylewicz. 2021. Current applications of ultrasound in fruit and vegetables osmotic dehydration processes. Applied Sciences 11 (3):1269–22. doi: 10.3390/app11031269.
  • Nowacka, M., and M. Wedzik. 2016. Effect of ultrasound treatment on microstructure, colour and carotenoid content in fresh and dried carrot tissue. Applied Acoustics 103:163–71. doi: 10.1016/j.apacoust.2015.06.011.
  • Nowak, K. W., M. Zielinska, and K. M. Waszkielis. 2019. The effect of ultrasound and freezing/thawing treatment on the physical properties of blueberries. Food Science and Biotechnology 28 (3):741–9. doi: 10.1007/s10068-018-0528-5.
  • Ojha, K. S., D. F. Keenan, A. Bright, J. P. Kerry, and B. K. Tiwari. 2016. Ultrasound assisted diffusion of sodium salt replacer and effect on physicochemical properties of pork meat. International Journal of Food Science & Technology 51 (1):37–45. doi: 10.1111/ijfs.13001.
  • Ojha, K. S., T. J. Mason, C. P. O'Donnell, J. P. Kerry, and B. K. Tiwari. 2017. Ultrasound technology for food fermentation applications. Ultrasonics Sonochemistry 34:410–7. doi: 10.1016/j.ultsonch.2016.06.001.
  • Okonkwo, V. C., E. M. Kwofie, O. I. Mba, and M. O. Ngadi. 2021. Impact of thermo-sonication on quality indices of starch-based sauces. Ultrasonics Sonochemistry 73:105473. doi: 10.1016/J.ULTSONCH.2021.105473.
  • Oliveira, H. M., V. S. Correia, M. A. Segundo, A. J. M. Fonseca, and A. R. J. Cabrita. 2017. Does ultrasound improve the activity of alpha amylase? A comparative study towards a tailor-made enzymatic hydrolysis of starch. LWT 84:674–85. doi: 10.1016/j.lwt.2017.06.035.
  • Ortuño, C., M. T. Martínez-Pastor, A. Mulet, and J. Benedito. 2013. Application of high power ultrasound in the supercritical carbon dioxide inactivation of Saccharomyces cerevisiae. Food Research International 51 (2):474–81. doi: 10.1016/j.foodres.2013.01.041.
  • O'Sullivan, J., M. Park, and J. Beevers. 2016. The effect of ultrasound upon the physicochemical and emulsifying properties of wheat and soy protein isolates. Journal of Cereal Science 69:77–84. doi: 10.1016/j.jcs.2016.02.013.
  • Oztekin, R., and D. T. Sponza. 2021. Treatment of wastewaters from the olive mill industry wastewaters by sonication process at different conditions. Asian Journal of Applied Chemistry Research 8 (4):7–53. doi: 10.9734/ajacr/2021/v8i430197.
  • Christen, P., and A. López-Munguía. 1994. Enzymes and food flavor. Food Biotechnology 8 (2-3):167–90. doi: 10.1080/08905439409549874.
  • Paraskeva, P., and E. Diamadopoulos. 2006. Technologies for olive mill wastewater (OMW) treatment: A review. Journal of Chemical Technology & Biotechnology 81 (9):1475–85. doi: 10.1002/jctb.1553.
  • Park, J. S., and J. W. Ha. 2019. Ultrasound treatment combined with fumaric acid for inactivating food-borne pathogens in apple juice and its mechanisms. Food Microbiology 84:103277. doi: 10.1016/j.fm.2019.103277.
  • Patil, A. L., P. N. Patil, and P. R. Gogate. 2014. Degradation of imidacloprid containing wastewaters using ultrasound based treatment strategies. Ultrasonics Sonochemistry 21 (5):1778–86. doi: 10.1016/j.ultsonch.2014.02.029.
  • Pawar, S. V., and V. K. Rathod. 2020. Role of ultrasound in assisted fermentation technologies for process enhancements. Preparative Biochemistry & Biotechnology. 50 (6):627–34. doi: 10.1080/10826068.2020.1725773. PMID: 32065573
  • Pérez-Andrés, J. M., C. M. G. Charoux, P. J. Cullen, and B. K. Tiwari. 2018. Chemical modifications of lipids and proteins by nonthermal food processing technologies. Journal of Agricultural and Food Chemistry 66 (20):5041–54. doi: 10.1021/acs.jafc.7b06055.
  • Qiu, L., M. Zhang, B. Chitrakar, and B. Bhandari. 2020. Application of power ultrasound in freezing and thawing processes: Effect on process efficiency and product quality. Ultrasonics Sonochemistry 68:105230. doi: 10.1016/j.ultsonch.2020.105230.
  • Raut-Jadhav, S., D. V. Pinjari, D. R. Saini, S. H. Sonawane, and A. B. Pandit. 2016. Intensification of degradation of methomyl (carbamate group pesticide) by using the combination of ultrasonic cavitation and process intensifying additives. Ultrasonics Sonochemistry 31:135–42. doi: 10.1016/j.ultsonch.2015.12.015.
  • Raviyan, P., Z. Zhang, and H. Feng. 2005. Ultrasonication for tomato pectinmethylesterase inactivation: Effect of cavitation intensity and temperature on inactivation. Journal of Food Engineering 70 (2):189–96. doi: 10.1016/j.jfoodeng.2004.09.028.
  • Razola-Díaz, M. D. C., E. J. Guerra-Hernández, C. Rodríguez-Pérez, A. M. Gómez-Caravaca, B. García-Villanova, and V. Verardo. 2021. Optimization of ultrasound-assisted extraction via sonotrode of phenolic compounds from orange by-products. Foods 10 (5):1120. doi: 10.3390/foods10051120.
  • Riesz, P., and T. Kondo. 1992. Free radical formation induced by ultrasound and its biological implications. Free Radical Biology & Medicine 13 (3):247–70. doi: 10.1016/0891-5849(92)90021-8.
  • Robinson, D. S. 1991. Peroxidases and catalases in foods. Oxidative Enzymes in Foods, 1–45.
  • Arancon, R. N. 2013. Market and trade of coconut products. Experts’ Consultation on Coconut Sector Development in the Asia and the Pacific.
  • Ruan, S., J. Luo, Y. Li, Y. Wang, S. Huang, F. Lu, and H. Ma. 2020. Ultrasound-assisted liquid-state fermentation of soybean meal with Bacillus subtilis: Effects on peptides content, ACE inhibitory activity and biomass. Process Biochemistry 91:73–82. doi: 10.1016/j.procbio.2019.11.035.
  • Rubio, F., E. D. Blandford, and L. J. Bond. 2016. Survey of advanced nuclear technologies for potential applications of sonoprocessing. Ultrasonics 71:211–22. doi: 10.1016/j.ultras.2016.06.017.
  • Ruecroft, G. 2007. Ultrasound, crystallisation & drug formulation. Specialty Chemicals Magazine 27 (5): 60–2.
  • Sabnis, S. S., S. D. Singh, and P. R. Gogate. 2022. Improvements in azithromycin recrystallization using ultrasound for size reduction. Ultrasonics Sonochemistry 83:105922. doi: 10.1016/J.ULTSONCH.2022.105922.
  • Saeeduddin, M., M. Abid, S. Jabbar, T. Wu, M. M. Hashim, F. N. Awad, B. Hu, S. Lei, and X. Zeng. 2015. Quality assessment of pear juice under ultrasound and commercial pasteurization processing conditions. LWT - Food Science and Technology 64 (1):452–8. doi: 10.1016/j.lwt.2015.05.005.
  • Saleem, R., and R. Ahmad. 2016. Effect of ultrasonication on secondary structure and heat induced gelation of chicken myofibrils. Journal of Food Science and Technology 53 (8):3340–8. doi: 10.1007/s13197-016-2311-z.
  • Santos, M. V., Y. Ma, Z. Caplan, and D. M. Barbano. 2003. Sensory threshold of off-flavors caused by proteolysis and lipolysis in milk. Journal of Dairy Science 86 (5):1601–7. doi: 10.3168/jds.S0022-0302(03)73745-X.
  • Savchenko, M., M. Hurtado, M. T. Lopez-Lopez, G. Rus, L. Álvarez de Cienfuegos, J. Melchor, and J. A. Gavira. 2022. Lysozyme crystallization in hydrogel media under ultrasound irradiation. Ultrasonics Sonochemistry 88:106096. doi: 10.1016/J.ULTSONCH.2022.106096.
  • Schneider, Y., S. Zahn, and H. Rohm. 2008. Power requirements of the high-frequency generator in ultrasonic cutting of foods. Journal of Food Engineering 86 (1):61–7. doi: 10.1016/j.jfoodeng.2007.09.024.
  • Schramm, J. D., and I. Hua. 2001. Ultrasonic irradiation of dichlorvos: Decomposition mechanism. Water Research 35 (3):665–74. doi: 10.1016/S0043-1354(00)00304-3.
  • Sharma, P., V. K. Gaur, S. H. Kim, and A. Pandey. 2020. Microbial strategies for bio-transforming food waste into resources. Bioresource Technology 299:122580. doi: 10.1016/j.biortech.2019.122580.
  • Sharma, P., V. K. Gaur, R. Sirohi, S. Varjani, S. Hyoun Kim, and J. W. C. Wong. 2021. Sustainable processing of food waste for production of bio-based products for circular bioeconomy. Bioresource Technology 325:124684. doi: 10.1016/j.biortech.2021.124684.
  • Sheng, L., Y. Wang, J. Chen, J. Zou, Q. Wang, and M. Ma. 2018. Influence of high-intensity ultrasound on foaming and structural properties of egg white. Food Research International (Ottawa, Ont.) 108:604–10. doi: 10.1016/j.foodres.2018.04.007.
  • Shi, H., X. Zhang, X. Chen, R. Fang, Y. Zou, D. Wang, and W. Xu. 2020. How ultrasound combined with potassium alginate marination tenderizes old chicken breast meat: Possible mechanisms from tissue to protein. Food Chemistry 328:127144. doi: 10.1016/J.FOODCHEM.2020.127144.
  • Shi, Z., S. Zhong, W. Yan, M. Liu, Z. Yang, and X. Qiao. 2019. The effects of ultrasonic treatment on the freezing rate, physicochemical quality, and microstructure of the back muscle of grass carp (Ctenopharyngodon idella). LWT 111:301–8. doi: 10.1016/j.lwt.2019.04.071.
  • Shriwas, A. K., and P. R. Gogate. 2011. Ultrasonic degradation of methyl Parathion in aqueous solutions: Intensification using additives and scale up aspects. Separation and Purification Technology 79 (1):1–7. doi: 10.1016/j.seppur.2011.02.034.
  • da Silva, T. L. T., S. Danthine, and S. Martini. 2021. Palm-based fat crystallized at different temperatures with and without high-intensity ultrasound in batch and in a scraped surface heat exchanger. LWT 138:110593. doi: 10.1016/j.lwt.2020.110593.
  • Silva, T. L. T. d., M. Marsh, V. Gibon, and S. Martini. 2020. Sonocrystallization as a tool to reduce oil migration by changing physical properties of a palm kernel fat. Journal of Food Science 85 (4):964–71. doi: 10.1111/1750-3841.15099.
  • Singh, S., S. K. Singh, I. Chowdhury, and R. Singh. 2017. Understanding the mechanism of bacterial biofilms resistance to antimicrobial agents. The Open Microbiology Journal 11:53–62. doi: 10.2174/1874285801711010053.
  • Singla, M., and N. Sit. 2021.Application of ultrasound in combination with other technologies in food processing: A review. Ultrasonics Sonochemistry 73:105506. doi: 10.1016/j.ultsonch.2021.105506.
  • Siró, I., C. Vén, C. Balla, G. Jónás, I. Zeke, and L. Friedrich. 2009. Application of an ultrasonic assisted curing technique for improving the diffusion of sodium chloride in porcine meat. Journal of Food Engineering 91 (2):353–62. doi: 10.1016/j.jfoodeng.2008.09.015.
  • Słowik-Borowiec, M., and E. Szpyrka. 2020. Selected food processing techniques as a factor for pesticide residue removal in apple fruit. Environmental Science and Pollution Research International 27 (2):2361–73. doi: 10.1007/s11356-019-06943-9.
  • Stadnik, J., and Z. J. Dolatowski. 2011. Influence of sonication on Warner-Bratzler shear force, colour and myoglobin of beef (M. semimembranosus). 553–9. doi: 10.1007/s00217-011-1550-5.
  • Su, G., X. Zheng, J. Zou, G I. N. Waterhouse, and D. Sun-Waterhouse. 2021. Insight into the advantages of premixing yeast-wheat gluten and combining ultrasound and transglutaminase pretreatments in producing umami enzymatic protein hydrolysates. Food Chemistry 342:128317. doi: 10.1016/J.FOODCHEM.2020.128317.
  • Su, Y., M. Zhang, B. Bhandari, and W. Zhang. 2018. Enhancement of water removing and the quality of fried purple-fleshed sweet potato in the vacuum frying by combined power ultrasound and microwave technology. Ultrasonics Sonochemistry 44:368–79. doi: 10.1016/j.ultsonch.2018.02.049.
  • Sukhatskiy, Y. V., Z. O. Znak, and O. I. Zin. 2020. Cavitation and its combinations with other advanced oxidation processes in phenol wastewater treatment: A review. Voprosy khimii i khimicheskoi tekhnologii.
  • Sun, Q., F. Sun, X. Xia, H. Xu, and B. Kong. 2019. The comparison of ultrasound-assisted immersion freezing, air freezing and immersion freezing on the muscle quality and physicochemical properties of common carp (Cyprinus carpio) during freezing storage. Ultrasonics Sonochemistry 51:281–91. doi: 10.1016/j.ultsonch.2018.10.006.
  • Suzuki, A. H., J. Lee, S. G. Padilla, and S. Martini. 2010. Altering functional properties of fats using power ultrasound. Journal of Food Science 75 (4):E208–E214. doi: 10.1111/j.1750-3841.2010.01572.x.
  • Taha, A., E. Ahmed, A. Ismaiel, M. Ashokkumar, X. Xu, S. Pan, and H. Hu. 2020. Ultrasonic emulsification: An overview on the preparation of different emulsifiers-stabilized emulsions. Trends in Food Science & Technology 105:363–77. doi: 10.1016/j.tifs.2020.09.024.
  • Taheri, M. E., E. Salimi, K. Saragas, J. Novakovic, E. M. Barampouti, S. Mai, D. Malamis, K. Moustakas, and M. Loizidou. 2021. Effect of pretreatment techniques on enzymatic hydrolysis of food waste. Biomass Conversion and Biorefinery 11 (2):219–26. doi: 10.1007/s13399-020-00729-7.
  • Taylor, P. 2015. Enhancement of food processes by ultrasound : A enhancement of food processes by ultrasound : A review. Critical Reviews in Food Science and Nutrition 55:570–94. doi: 10.1080/10408398.2012.667849.
  • Taylor, P., B. Xu, M. Zhang, B. Bhandari, X. Cheng, B. Xu, M. Zhang, B. Bhandari, and X. Cheng. 2014. Influence of ultrasound-assisted osmotic dehydration and freezing on the water state, cell structure, and quality of radish (Raphanus sativus L.) cylinders influence of ultrasound-assisted osmotic dehydrati. Drying Technology : An International Journal 37–41. doi: 10.1080/07373937.2014.947427.
  • Terefe, N. S., M. Gamage, K. Vilkhu, L. Simons, R. Mawson, and C. Versteeg. 2009. The kinetics of inactivation of pectin methylesterase and polygalacturonase in tomato juice by thermosonication. Food Chemistry 117 (1):20–7. doi: 10.1016/j.foodchem.2009.03.067.
  • Tervo, J. T., R. Mettin, and W. Lauterborn. 2006. Bubble cluster dynamics in acoustic cavitation. Acta Acustica united with Acustica 92:178–80.
  • Thakur, B. R., and P. E. Nelson. 1997. Inactivation of lipoxygenase in whole soy flour suspension by ultrasonic cavitation. Food/Nahrung 41 (5):299–301. doi: 10.1002/food.19970410510.
  • Thangavadivel, K., M. Megharaj, R. S. C. Smart, P. J. Lesniewski, and R. Naidu. 2009. Application of high frequency ultrasound in the destruction of DDT in contaminated sand and water. Journal of Hazardous Materials 168 (2-3):1380–6. doi: 10.1016/j.jhazmat.2009.03.024.
  • Thanh Nguyen, T., Y. Asakura, S. Koda, and K. Yasuda. 2017. Dependence of cavitation, chemical effect, and mechanical effect thresholds on ultrasonic frequency. Ultrasonics Sonochemistry 39:301–6. doi: 10.1016/J.ULTSONCH.2017.04.037.
  • Tian, Y., Z. Chen, Z. Zhu, and D. W. Sun. 2020. Effects of tissue pre-degassing followed by ultrasound-assisted freezing on freezing efficiency and quality attributes of radishes. Ultrasonics Sonochemistry 67:105162. doi: 10.1016/J.ULTSONCH.2020.105162.
  • Tian, Z. M., M. X. Wan, S. P. Wang, and J. Q. Kang. 2004. Effects of ultrasound and additives on the function and structure of trypsin. Ultrasonics Sonochemistry 11 (6):399–404. doi: 10.1016/j.ultsonch.2003.09.004.
  • Tolker-Nielsen, T. 2015. Biofilm development. Microbiology Spectrum 3 (2):MB. doi: 10.1128/microbiolspec.mb-0001-2014.
  • Torres-León, C., M. L. Chávez-González, A. Hernández-Almanza, G. A. Martínez-Medina, N. Ramírez-Guzmán, L. Londoño-Hernández, and C. N. Aguilar. 2021. Recent advances on the microbiological and enzymatic processing for conversion of food wastes to valuable bioproducts. Current Opinion in Food Science 38:40–5. doi: 10.1016/j.cofs.2020.11.002.
  • Tsikrika, K., B. S. Chu, D. H. Bremner, and M. A. Lemos. 2018. The effect of different frequencies of ultrasound on the activity of horseradish peroxidase. LWT 89:591–5. doi: 10.1016/j.lwt.2017.11.021.
  • Tu, J., M. Zhang, B. Xu, and H. Liu. 2015a. Effects of different freezing methods on the quality and microstructure of lotus (Nelumbo nucifera) root. International Journal of Refrigeration 52:59–65. doi: 10.1016/j.ijrefrig.2014.12.015.
  • Tu, J., M. Zhang, B. Xu, and H. Liu. 2015b. Effect of physicochemical properties on freezing suitability of Lotus (Nelumbo nucifera) root. International Journal of Refrigeration 50:1–9. doi: 10.1016/j.ijrefrig.2014.10.006.
  • Vercet, A., J. Burgos, S. Crelier, and P. Lopez-Buesa. 2001. Inactivation of proteases and lipases by ultrasound. Innovative Food Science & Emerging Technologies 2 (2):139–50. doi: 10.1016/S1466-8564(00)00037-0.
  • Vercet, A., J. Burgos, and P. Lopez-Buesa. 2002. Manothermosonication of heat-resistant lipase and protease from Pseudomonas fluorescens: Effect of pH and sonication parameters. The Journal of Dairy Research 69 (2):243–54. doi: 10.1017/S0022029902005460.
  • Vercet, A., P. Lopez, and J. Burgos. 1997. Inactivation of heat-resistant lipase and protease from Pseudomonas fluorescens by manothermosonication. Journal of Dairy Science 80 (1):29–36. doi: 10.3168/jds.S0022-0302(97)75909-5.
  • Vercet, A., C. Sánchez, J. Burgos, L. Montañés, and P. Lopez Buesa. 2002. The effects of manothermosonication on tomato pectic enzymes and tomato paste rheological properties. Journal of Food Engineering 53 (3):273–8. doi: 10.1016/S0260-8774(01)00165-0.
  • Vyas, N., K. Manmi, Q. Wang, A. J. Jadhav, M. Barigou, R. L. Sammons, S. A. Kuehne, and A. D. Walmsley. 2019. Which parameters affect biofilm removal with acoustic cavitation? A review. Ultrasound in Medicine & Biology 45 (5):1044–55. doi: 10.1016/j.ultrasmedbio.2019.01.002.
  • Wagh, A., P. Birkin, and S. Martini. 2016. High-intensity ultrasound to improve physical and functional properties of lipids. Annual Review of Food Science and Technology 7:23–41. doi: 10.1146/annurev-food-041715-033112.
  • Wang, A., D. Kang, W. Zhang, C. Zhang, Y. Zou, and G. Zhou. 2017. Changes in calpain activity, protein degradation and microstructure of beef M. semitendinosus by the application of ultrasound. Food Chemistry 245:724–30. doi: 10.1016/j.foodchem.2017.12.003.
  • Wang, A., D. Kang, W. Zhang, C. Zhang, Y. Zou, and G. Zhou. 2018. Changes in calpain activity, protein degradation and microstructure of beef M. semitendinosus by the application of ultrasound. Food Chemistry 245:724–30. doi: 10.1016/j.foodchem.2017.12.003.
  • Wang, C. K., and Y. H. Shih. 2016. Facilitated ultrasonic irradiation in the degradation of diazinon insecticide. Sustainable Environment Research 26 (3):110–6. doi: 10.1016/j.serj.2016.04.003.
  • Wang, D., F. Hou, X. Ma, W. Chen, L. Yan, T. Ding, X. Ye, and D. Liu. 2020. Study on the mechanism of ultrasound-accelerated enzymatic hydrolysis of starch: Analysis of ultrasound effect on different objects. International Journal of Biological Macromolecules 148:493–500. doi: 10.1016/J.IJBIOMAC.2020.01.064.
  • Wang, D., X. Ma, L. Yan, T. Chantapakul, W. Wang, T. Ding, X. Ye, and D. Liu. 2017. Ultrasound assisted enzymatic hydrolysis of starch catalyzed by glucoamylase: Investigation on starch properties and degradation kinetics. Carbohydrate Polymers 175:47–54. doi: 10.1016/J.CARBPOL.2017.06.093.
  • Wang, J., Q. Liu, B. Xie, and Z. Sun. 2020. Effect of ultrasound combined with ultraviolet treatment on microbial inactivation and quality properties of mango juice. Ultrasonics Sonochemistry 64:105000–11. doi: 10.1016/j.ultsonch.2020.105000.
  • Wang, J., J. Wang, J. Ye, S. K. Vanga, and V. Raghavan. 2019. Influence of high-intensity ultrasound on bioactive compounds of strawberry juice: Profiles of ascorbic acid, phenolics, antioxidant activity and microstructure. Food Control 96:128–36. doi: 10.1016/j.foodcont.2018.09.007.
  • Wang, N., X. Zhou, W. Wang, L. Wang, L. Jiang, T. Liu, and D. Yu. 2021. Effect of high intensity ultrasound on the structure and solubility of soy protein isolate-pectin complex. Ultrasonics Sonochemistry 80:105808. doi: 10.1016/j.ultsonch.2021.105808.
  • Wu, J., T. V. Gamage, K. S. Vilkhu, L. K. Simons, and R. Mawson. 2008. Effect of thermosonication on quality improvement of tomato juice. Innovative Food Science & Emerging Technologies 9 (2):186–95. doi: 10.1016/j.ifset.2007.07.007.
  • Xin, Y., M. Zhang, and B. Adhikari. 2014. Ultrasound assisted immersion freezing of broccoli (Brassica oleracea L. var. botrytis L.). Ultrasonics Sonochemistry 21 (5):1728–35. doi: 10.1016/j.ultsonch.2014.03.017.
  • Xiong, G., L. Zhang, W. Zhang, and J. Wu. 2012. Influence of ultrasound and proteolytic enzyme inhibitors on muscle degradation, tenderness, and cooking loss of hens during aging. Czech Journal of Food Sciences 30:195–205.
  • Xiong, T., W. Xiong, M. Ge, J. Xia, B. Li, and Y. Chen. 2018. Effect of high intensity ultrasound on structure and foaming properties of pea protein isolate. Food Research International (Ottawa, Ont.) 109:260–7. doi: 10.1016/j.foodres.2018.04.044.
  • Xu, B. g., M. Zhang, B. Bhandari, X. f Cheng, and J. Sun. 2015. Effect of ultrasound immersion freezing on the quality attributes and water distributions of wrapped red radish. Food and Bioprocess Technology 8 (6):1366–76. doi: 10.1007/s11947-015-1496-x.
  • Xu, B., J. Yuan, L. Wang, F. Lu, B. Wei, R. S. M. Azam, X. Ren, C. Zhou, H. Ma, and B. Bhandari. 2020. Effect of multi-frequency power ultrasound (MFPU) treatment on enzyme hydrolysis of casein. Ultrasonics Sonochemistry 63:104930. doi: 10.1016/j.ultsonch.2019.104930.
  • Xu, B., M. Zhang, B. Bhandari, and X. Cheng. 2014. Influence of power ultrasound on ice nucleation of radish cylinders during ultrasound-assisted immersion freezing. International Journal of Refrigeration 46:1–8. doi: 10.1016/j.ijrefrig.2014.07.009.
  • Xue, F., Z. Wu, J. Tong, J. Zheng, and C. Li. 2017. Effect of combination of high-intensity ultrasound treatment and dextran glycosylation on structural and interfacial properties of buckwheat protein isolates. Bioscience, Biotechnology, and Biochemistry 81 (10):1891–8. doi: 10.1080/09168451.2017.1361805.
  • Xue, S., X. Xu, H. Shan, H. Wang, J. Yang, and G. Zhou. 2018. Effects of high-intensity ultrasound, high-pressure processing, and high- pressure homogenization on the physicochemical and functional properties of myofibrillar proteins. Innovative Food Science & Emerging Technologies 45:354–60. doi: 10.1016/j.ifset.2017.12.007.
  • Yaldagard, M., S. A. Mortazavi, and F. Tabatabaie. 2007. The effects of ultrasound on the activity of alpha-amylase during barley germination. African Journal of Biotechnology 7:21–3.
  • Yang, W., X. Kong, Y. Zheng, W. Sun, S. Chen, D. Liu, H. Zhang, H. Fang, J. Tian, and X. Ye. 2019. Controlled ultrasound treatments modify the morphology and physical properties of rice starch rather than the fine structure. Ultrasonics Sonochemistry 59:104709. doi: 10.1016/J.ULTSONCH.2019.104709.
  • Yang, Y., J. Xiang, Z. Zhang, E. C. Umego, G. Huang, R. He, and H. Ma. 2020. Stimulation of in situ low intensity ultrasound on batch fermentation of Saccharomyces cerevisiae to enhance the GSH yield. Journal of Food Process Engineering 43 (10):e13489. doi: 10.1111/jfpe.13489.
  • Yao, J. J., N. Y. Gao, C. Li, L. Li, and B. Xu. 2010. Mechanism and kinetics of parathion degradation under ultrasonic irradiation. Journal of Hazardous Materials 175 (1-3):138–45. doi: 10.1016/j.jhazmat.2009.09.140.
  • Yeung, C. K., and S. C. Huang. 2017. Effects of ultrasound pretreatment and ageing processing on quality and tenderness of pork loin. Journal of Food and Nutrition Research 5 (11):809–16. doi: 10.12691/jfnr-5-11-3.
  • Yi, C., Q. Lu, Y. Wang, Y. Wang, and B. Yang. 2018. Degradation of organic wastewater by hydrodynamic cavitation combined with acoustic cavitation. Ultrasonics Sonochemistry 43:156–65. doi: 10.1016/j.ultsonch.2018.01.013.
  • Yu, H., Q. Zhong, Y. Liu, Y. Guo, Y. Xie, W. Zhou, and W. Yao. 2020. Recent advances of ultrasound-assisted Maillard reaction. Ultrasonics Sonochemistry 64:104844. doi: 10.1016/J.ULTSONCH.2019.104844.
  • Yuan, S., C. Li, Y. Zhang, H. Yu, Y. Xie, Y. Guo, and W. Yao. 2021. Ultrasound as an emerging technology for the elimination of chemical contaminants in food: A review. Trends in Food Science & Technology 109:374–85. doi: 10.1016/j.tifs.2021.01.048.
  • Yuan, X., X. Li, X. Zhang, Z. Mu, Z. Gao, L. Jiang, and Z. Jiang. 2018. Effect of ultrasound on structure and functional properties of laccase-catalyzed α-lactalbumin. Journal of Food Engineering 223:116–23. doi: 10.1016/j.jfoodeng.2017.12.008.
  • Yukesh Kannah, R., J. Merrylin, T. Poornima Devi, S. Kavitha, P. Sivashanmugam, G. Kumar, and J. Rajesh Banu. 2020. Food waste valorization: Biofuels and value added product recovery. Bioresource Technology Reports 11:100524. doi: 10.1016/j.biteb.2020.100524.
  • Zhang, M., Hui, H. Dong, L. Zhao, D. Xi Wang, and D. Meng. 2019. A review on Fenton process for organic wastewater treatment based on optimization perspective. The Science of the Total Environment 670:110–21. doi: 10.1016/j.scitotenv.2019.03.180.
  • Zhang, M., X. Xia, Q. Liu, Q. Chen, and B. Kong. 2019. Changes in microstructure, quality and water distribution of porcine longissimus muscles subjected to ultrasound-assisted immersion freezing during frozen storage. Meat Science 151:24–32. #pagerange#. doi: 10.1016/j.meatsci.2019.01.002.
  • Zhang, P., Z. Zhu, and D. W. Sun. 2018. Using power ultrasound to accelerate food freezing processes: Effects on freezing efficiency and food microstructure. Critical Reviews in Food Science and Nutrition 58 (16):2842–53. doi: 10.1080/10408398.2018.1482528.
  • Zhang, X., X. Yue, B. Ma, X. Fu, H. Ren, and M. Ma. 2021. Ultrasonic pretreatment enhanced the glycation of ovotransferrin and improved its antibacterial activity. Food Chemistry 346:128905. doi: 10.1016/J.FOODCHEM.2020.128905.
  • Zhang, Y., Y. Dai, H. Hou, X. Li, H. Dong, W. Wang, and H. Zhang. 2020. Ultrasound-assisted preparation of octenyl succinic anhydride modified starch and its influence mechanism on the quality. Food Chemistry: X 5:100077. doi: 10.1016/J.FOCHX.2020.100077.
  • Zhang, Y., Y. Hou, F. Chen, Z. Xiao, J. Zhang, and X. Hu. 2011. The degradation of chlorpyrifos and diazinon in aqueous solution by ultrasonic irradiation: Effect of parameters and degradation pathway. Chemosphere 82 (8):1109–15. doi: 10.1016/j.chemosphere.2010.11.081.
  • Zhang, Y., Z. Xiao, F. Chen, Y. Ge, J. Wu, and X. Hu. 2010. Degradation behavior and products of malathion and chlorpyrifos spiked in apple juice by ultrasonic treatment. Ultrasonics Sonochemistry 17 (1):72–7. doi: 10.1016/j.ultsonch.2009.06.003.
  • Zhang, Y., W. Zhang, X. Liao, J. Zhang, Y. Hou, Z. Xiao, F. Chen, and X. Hu. 2010. Degradation of diazinon in apple juice by ultrasonic treatment. Ultrasonics Sonochemistry 17 (4):662–8. doi: 10.1016/j.ultsonch.2009.11.007.
  • Zhang, Y., Z. Zhang, F. Chen, H. Zhang, and X. Hu. 2012. Effect of sonication on eliminating of phorate in apple juice. Ultrasonics Sonochemistry 19 (1):43–8. doi: 10.1016/j.ultsonch.2011.05.014.
  • Zhang, Z., F. Xiong, Y. Wang, C. Dai, Z. Xing, M. Dabbour, B. Mintah, R. He, and H. Ma. 2019. Fermentation of Saccharomyces cerevisiae in a one liter flask coupled with an external circulation ultrasonic irradiation slot: Influence of ultrasonic mode and frequency on the bacterial growth and metabolism yield. Ultrasonics Sonochemistry 54:39–47. doi: 10.1016/j.ultsonch.2019.02.017.
  • Zheng, T., X. Li, A. Taha, Y. Wei, T. Hu, P. B. Fatamorgana, Z. Zhang, F. Liu, X. Xu, S. Pan, et al. 2019. Effect of high intensity ultrasound on the structure and physicochemical properties of soy protein isolates produced by different denaturation methods. Food Hydrocolloids. 97:105216. doi: 10.1016/j.foodhyd.2019.105216.
  • Zhong, Y., E. Bertoft, Z. Li, A. Blennow, and X. Liu. 2020. Amylopectin starch granule lamellar structure as deduced from unit chain length data. Food Hydrocolloids. 108:106053. doi: 10.1016/j.foodhyd.2020.106053.
  • Zhou, G. H., X. L. Xu, and Y. Liu. 2010. Preservation technologies for fresh meat – A review. Meat Science 86 (1):119–28. doi: 10.1016/j.meatsci.2010.04.033.
  • Zhou, M., J. Liu, Y. Zhou, X. Huang, F. Liu, S. Pan, and H. Hu. 2016. Effect of high intensity ultrasound on physicochemical and ­functional properties of soybean glycinin at different ionic strengths. Innovative Food Science & Emerging Technologies 34:205–13. doi: 10.1016/j.ifset.2016.02.007.
  • Zhou, Q., Y. Bian, Q. Peng, F. Liu, W. Wang, and F. Chen. 2019. The effects and mechanism of using ultrasonic dishwasher to remove five pesticides from rape and grape. Food Chemistry 298:125007. doi: 10.1016/j.foodchem.2019.125007.
  • Zhu, F. 2015. Impact of ultrasound on structure, physicochemical properties, modifications, and applications of starch. Trends in Food Science & Technology 43 (1):1–17. doi: 10.1016/j.tifs.2014.12.008.
  • Zhu, Y., T. Zhang, D. Xu, S. Wang, Y. Yuan, S. He, and Y. Cao. 2019. The removal of pesticide residues from pakchoi (Brassica rape L. ssp. chinensis) by ultrasonic treatment. Food Control. 95:176–80. doi: 10.1016/j.foodcont.2018.07.039.
  • Zhu, Z., Z. Chen, Q. Zhou, D. W. Sun, H. Chen, Y. Zhao, W. Zhou, X. Li, and H. Pan. 2018. Freezing efficiency and quality attributes as affected by voids in plant tissues during ultrasound-assisted immersion freezing. Food and Bioprocess Technology 11 (9):1615–26. doi: 10.1007/s11947-018-2103-8.
  • Zhu, Z., P. Zhang, and D. Sun. 2019. Effects of multi-frequency ultrasound on freezing rates and quality attributes of potatoes. Ultrasonics Sonochemistry 60:104733. doi: 10.1016/j.ultsonch.2019.104733.
  • Zhu, Z., P. Zhang, and D. W. Sun. 2020. Effects of multi-frequency ultrasound on freezing rates and quality attributes of potatoes. Ultrasonics Sonochemistry 60:104733. doi: 10.1016/j.ultsonch.2019.104733.
  • Zou, Y., F. Lu, B. Yang, J. Ma, J. Yang, C. Li, X. Wang, D. Wang, and W. Xu. 2021. Effect of ultrasound assisted konjac glucomannan treatment on properties of chicken plasma protein gelation. Ultrasonics Sonochemistry 80:105821. doi: 10.1016/J.ULTSONCH.2021.105821.
  • Zou, Y., H. Shi, P. Xu, D. Jiang, X. Zhang, W. Xu, and D. Wang. 2019. Combined effect of ultrasound and sodium bicarbonate marination on chicken breast tenderness and its molecular mechanism. Ultrasonics Sonochemistry 59:104735. doi: 10.1016/J.ULTSONCH.2019.104735.
  • Zou, Y., W. Zhang, D. Kang, and G. Zhou. 2018. Improvement of tenderness and water holding capacity of spiced beef by the application of ultrasound during cooking. International Journal of Food Science & Technology 53 (3):828–36. doi: 10.1111/ijfs.13659.