705
Views
2
CrossRef citations to date
0
Altmetric
Review Articles

Formation, immunomodulatory activities, and enhancement of glucosinolates and sulforaphane in broccoli sprouts: a review for maximizing the health benefits to human

, , &

References

  • Agerbirk, N., and C. E. Olsen. 2012. Glucosinolate structures in evolution. Phytochemistry 77:16–45. doi: 10.1016/j.phytochem.2012.02.005.
  • Ahn, Y.-H., Y. Hwang, H. Liu, X. J. Wang, Y. Zhang, K. K. Stephenson, T. N. Boronina, R. N. Cole, A. T. Dinkova-Kostova, P. Talalay, et al. 2010. Electrophilic tuning of the chemoprotective natural product sulforaphane. Proceedings of the National Academy of Sciences 107 (21):9590–5. doi: 10.1073/pnas.1004104107.
  • Aires, A., E. Rosa, and R. Carvalho. 2006. Effect of nitrogen and sulfur fertilization on glucosinolates in the leaves and roots of broccoli sprouts (Brassica oleracea var. italica). Journal of the Science of Food and Agriculture 86 (10):1512–6. doi: 10.1002/jsfa.2535.
  • Almuhayawi, M. S., H. AbdElgawad, S. K. Al Jaouni, S. Selim, A. H. A. Hassan, and G. Khamis. 2020. Elevated CO2 improves glucosinolate metabolism and stimulates anticancer and anti-inflammatory properties of broccoli sprouts. Food Chemistry 328:127102. doi: 10.1016/j.foodchem.2020.127102.
  • An, W., K. Jhang, S. Woo, J. Kang, and Y. Chong. 2016. Sulforaphane exerts its anti-inflammatory effect against amyloid-β peptide via STAT-1 dephosphorylation and activation of Nrf2/HO-1 cascade in human THP-1 macrophages. Neurobiology of Aging 38:1–10. doi: 10.1016/j.neurobiolaging.2015.10.016.
  • Arita, Y., H. Jeong Park, A. Cantillon, K. Verma, R. Menon, D. Getahun, and M. R. Peltier. 2019. Pro- and anti-inflammatory effects of sulforaphane on placental cytokine production. Journal of Reproductive Immunology 131:44–9. doi: 10.1016/j.jri.2018.12.003.
  • Avila, F. W., Y. Yang, V. Faquin, S. J. Ramos, L. R. G. Guilherme, T. W. Thannhauser, and L. Li. 2014. Impact of selenium supply on Se-methylselenocysteine and glucosinolate accumulation in selenium-biofortified Brassica sprouts. Food Chemistry 165:578–86. doi: 10.1016/j.foodchem.2014.05.134.
  • Baenas, N., C. Garcia-Viguera, and D. A. Moreno. 2014. Biotic elicitors effectively increase the glucosinolates content in Brassicaceae sprouts. Journal of Agricultural and Food Chemistry 62 (8):1881–9. doi: 10.1021/jf404876z.
  • Baenas, N., I. Gomez-Jodar, D. A. Moreno, C. Garcia-Viguera, and P. M. Periago. 2017. Broccoli and radish sprouts are safe and rich in bioactive phytochemicals. Postharvest Biology and Technology 127:60–7. doi: 10.1016/j.postharvbio.2017.01.010.
  • Baenas, N., D. A. Moreno, and C. Garcia-Viguera. 2012. Selecting sprouts of Brassicaceae for optimum phytochemical composition. Journal of Agricultural and Food Chemistry 60 (45):11409–20. doi: 10.1021/jf302863c.
  • Baenas, N., D. Villano, C. Garcia-Viguera, and D. A. Moreno. 2016. Optimizing elicitation and seed priming to enrich broccoli and radish sprouts in glucosinolates. Food Chemistry 204:314–9. doi: 10.1016/j.foodchem.2016.02.144.
  • Bello, C., M. Maldini, S. Baima, C. Scaccini, and F. Natella. 2018. Glucoraphanin and sulforaphane evolution during juice preparation from broccoli sprouts. Food Chemistry 268:249–56. doi: 10.1016/j.foodchem.2018.06.089.
  • Bellostas, N., P. Kachlicki, J. C. Sorensen, and H. Sorensen. 2007. Glucosinolate profiling of seeds and sprouts of B-oleracea varieties used for food. Scientia Horticulturae 114 (4):234–42. doi: 10.1016/j.scienta.2007.06.015.
  • Ben-Neriah, Y., and M. Karin. 2011. Inflammation meets cancer, with NF-κB as the matchmaker. Nature Immunology 12 (8):715–23. doi: 10.1038/ni.2060.
  • Bhandari, S. R., J. S. Jo, and J. G. Lee. 2015. Comparison of glucosinolate profiles in different tissues of nine Brassica crops. Molecules 20 (9):15827–41. doi: 10.3390/molecules200915827.
  • Bochnak-Niedźwiecka, J., U. Szymanowska, and M. Świeca. 2020. Studies on the development of vegetable-based powdered beverages - Effect of the composition and dispersing temperature on potential bioaccessibility of main low-molecular antioxidants and antioxidant properties. LWT 131:109822. doi: 10.1016/j.lwt.2020.109822.
  • Bouayed, J., L. Hoffmann, and T. Bohn. 2011. Total phenolics, flavonoids, anthocyanins and antioxidant activity following simulated gastro-intestinal digestion and dialysis of apple varieties: Bioaccessibility and potential uptake. Food Chemistry 128 (1):14–21. doi: 10.1016/j.foodchem.2011.02.052.
  • Brown, P. D., J. G. Tokuhisa, M. Reichelt, and J. Gershenzon. 2003. Variation of glucosinolate accumulation among different organs and developmental stages of Arabidopsis thaliana. Phytochemistry 62 (3):471–81. doi: 10.1016/S0031-9422(02)00549-6.
  • Burow, M., A. Bergner, J. Gershenzon, and U. Wittstock. 2007. Glucosinolate hydrolysis in Lepidium sativum - identification of the thiocyanate-forming protein. Plant Molecular Biology 63 (1):49–61. doi: 10.1007/s11103-006-9071-5.
  • Burow, M., A. Losansky, R. Muller, A. Plock, D. J. Kliebenstein, and U. Wittstock. 2009. The genetic basis of constitutive and herbivore-induced ESP-independent nitrile formation in Arabidopsis. Plant Physiology 149 (1):561–74. doi: 10.1104/pp.108.130732.
  • Carrasco-Pozo, C., N. Tan, M. Gotteland, and K. Borges. 2017. Sulforaphane protects against high cholesterol-induced mitochondrial bioenergetics impairments, inflammation, and oxidative stress and preserves pancreatic β-cells function. Oxidative Medicine and Cellular Longevity 2017:3839756. doi: 10.1155/2017/3839756.
  • Checker, R., L. Gambhir, M. Thoh, D. Sharma, and S. Sandur. 2015. Sulforaphane, a naturally occurring isothiocyanate, exhibits anti-inflammatory effects by targeting GSK3β/Nrf-2 and NF-κB pathways in T cells. Journal of Functional Foods 19:426–38. doi: 10.1016/j.jff.2015.08.030.
  • Chu, T., C. Peng, and L. Guo. 2018. Effect of MgSO4 treatment on bioactive compounds and antioxidant activity in broccoli sprouts. Shipin Kexue/Food Science 39 (11):53–9.
  • Clarke, J. D., A. Hsu, K. Riedl, D. Bella, S. J. Schwartz, J. F. Stevens, and E. Ho. 2011. Bioavailability and inter-conversion of sulforaphane and erucin in human subjects consuming broccoli sprouts or broccoli supplement in a cross-over study design. Pharmacological Research 64 (5):456–63. doi: 10.1016/j.phrs.2011.07.005.
  • Clifford, T., J. P. Acton, S. P. Cocksedge, K. A. B. Davies, and S. J. Bailey. 2021. The effect of dietary phytochemicals on nuclear factor erythroid 2-related factor 2 (Nrf2) activation: A systematic review of human intervention trials. Molecular Biology Reports 48 (2):1745–61. doi: 10.1007/s11033-020-06041-x.
  • De Nicola, G. R., M. Bagatta, E. Pagnotta, D. Angelino, L. Gennari, P. Ninfali, P. Rollin, and R. Iori. 2013. Comparison of bioactive phytochemical content and release of isothiocyanates in selected brassica sprouts. Food Chemistry 141 (1):297–303.
  • Eagles, S. K., A. S. Gross, and A. J. McLachlan. 2020. The effects of cruciferous vegetable-enriched diets on drug metabolism: A systematic review and meta-analysis of dietary intervention trials in humans. Clinical Pharmacology & Therapeutics 108 (2):212–27. doi: 10.1002/cpt.1811.
  • Ebihara, S., H. Tajima, and M. Ono. 2016. Nuclear factor erythroid 2-related factor 2 is a critical target for the treatment of glucocorticoid-resistant lupus nephritis. Arthritis Research & Therapy 18 (1):139. doi: 10.1186/s13075-016-1039-5.
  • El-Awady, A. A., W. I. A. Saber, N. M. A. Hamid, and H. A. Hassan. 2016. Increasing antioxidant content of broccoli sprouts using essential oils during cold storage. Agriculture (Polnohospodárstvo) 62 (3):111–26. doi: 10.1515/agri-2016-0012.
  • Fahey, J. W., Y. S. Zhang, and P. Talalay. 1997. Broccoli sprouts: An exceptionally rich source of inducers of enzymes that protect against chemical carcinogens. Proceedings of the National Academy of Sciences of the United States of America 94 (19):10367–72. doi: 10.1073/pnas.94.19.10367.
  • Folkard, D. L., G. Marlow, R. F. Mithen, and L. R. Ferguson. 2015. Effect of sulforaphane on NOD2 via NF-κB: Implications for crohn’s disease. Journal of Inflammation (London, England) 12 (1):6. doi: 10.1186/s12950-015-0051-x.
  • Force, L. E., T. J. O’Hare, L. S. Wong, and D. E. Irving. 2007. Impact of cold storage on glucosinolate levels in seed-sprouts of broccoli, rocket, white radish and kohl-rabi. Postharvest Biology and Technology 44 (2):175–8. doi: 10.1016/j.postharvbio.2006.11.014.
  • Franklin, S. J., S. E. Dickinson, K. L. Karlage, G. T. Bowden, and P. B. Myrdal. 2014. Stability of sulforaphane for topical formulation. Drug Development and Industrial Pharmacy 40 (4):494–502. doi: 10.3109/03639045.2013.768634.
  • Gan, R. Y., W. Y. Lui, K. Wu, C. L. Chan, S. H. Dai, Z. Q. Sui, and H. Corke. 2017. Bioactive compounds and bioactivities of germinated edible seeds and sprouts: An updated review. Trends in Food Science & Technology 59:1–14. doi: 10.1016/j.tifs.2016.11.010.
  • Gao, C., J. Lin, F. Xu, and J. Zheng. 2012. Variety of sulforaphane content among 15 Broccoli sprouts. Chinese Agricultural Science Bulletin 28 (34):177–83.
  • Geu-Flores, F., C. E. Olsen, and B. A. Halkier. 2009. Towards engineering glucosinolates into non-cruciferous plants. Planta 229 (2):261–70. doi: 10.1007/s00425-008-0825-y.
  • Gigolashvili, T., R. Yatusevich, B. Berger, C. Muller, and U. I. Flugge. 2007. The R2R3-MYB transcription factor HAG1/MYB28 is a regulator of methionine-derived glucosinolate biosynthesis in Arabidopsis thaliana. The Plant Journal : For Cell and Molecular Biology 51 (2):247–61. doi: 10.1111/j.1365-313X.2007.03133.x.
  • Gliszczyńska-Świgło, A., A. Kałużewicz, K. Lemańska, M. Knaflewski, and B. Tyrakowska. 2007. The effect of solar radiation on the flavonol content in broccoli inflorescence. Food Chemistry 100 (1):241–5. doi: 10.1016/j.foodchem.2005.09.048.
  • Gliszczyńska-Swigło, A., E. Ciska, K. Pawlak-Lemańska, J. Chmielewski, T. Borkowski, and B. Tyrakowska. 2006. Changes in the content of health-promoting compounds and antioxidant activity of broccoli after domestic processing. Food Additives and Contaminants 23 (11):1088–98. doi: 10.1080/02652030600887594.
  • Godfray, H. C. J., and T. Garnett. 2014. Food security and sustainable intensification. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 369 (1639):20120273. doi: 10.1098/rstb.2012.0273.
  • Grubb, C. D., and S. Abel. 2006. Glucosinolate metabolism and its control. Trends in Plant Science 11 (2):89–100. doi: 10.1016/j.tplants.2005.12.006.
  • Gu, Y., Q. Guo, L. Zhang, Z. Chen, Y. Han, and Z. Gu. 2012. Physiological and Biochemical Metabolism of Germinating Broccoli Seeds and Sprouts. Journal of Agricultural and Food Chemistry 60 (1):209–13. doi: 10.1021/jf203599v.
  • Guo, L. P., Z. X. Gu, X. L. Jin, and R. Q. Yang. 2017. iTRAQ - based proteomic and physiological analyses of broccoli sprouts in response to the stresses of heat, hypoxia and heat plus hypoxia. Plant and Soil 414 (1–2):355–77. doi: 10.1007/s11104-016-3132-6.
  • Guo, Q. H., L. P. Guo, Z. Y. Wang, Y. Zhuang, and Z. X. Gu. 2013. Response surface optimization and identification of isothiocyanates produced from broccoli sprouts. Food Chemistry 141 (3):1580–6.
  • Guo, R. F., Q. M. Hou, G. F. Yuan, Y. T. Zhao, and Q. M. Wang. 2014. Effect of 2, 4-epibrassinolide on main health-promoting compounds in broccoli sprouts. LWT - Food Science and Technology 58 (1):287–92. doi: 10.1016/j.lwt.2014.02.047.
  • Guo, L. P., P. Wang, Z. X. Gu, X. L. Jin, and R. Q. Yang. 2017. Proteomic analysis of broccoli sprouts by iTRAQ in response to jasmonic acid. Journal of Plant Physiology 218:16–25. doi: 10.1016/j.jplph.2017.07.003.
  • Guo, L., Z. Wang, R. Yang, and Z. Gu. 2016. Changes in the contents of bioactive compounds in germinating broccoli seeds and sprouts. Journal of Chinese Institute of Food Science and Technology 16 (3):160–7.
  • Guo, L. P., R. Q. Yang, and Z. X. Gu. 2016. Cloning of genes related to aliphatic glucosinolate metabolism and the mechanism of sulforaphane accumulation in broccoli sprouts under jasmonic acid treatment. Journal of the Science of Food and Agriculture 96 (13):4329–36. doi: 10.1002/jsfa.7629.
  • Guo, L. P., R. Q. Yang, Z. Y. Wang, Q. H. Guo, and Z. X. Gu. 2014a. Effect of NaCl stress on health-promoting compounds and antioxidant activity in the sprouts of three broccoli cultivars. International Journal of Food Sciences and Nutrition 65 (4):476–81. doi: 10.3109/09637486.2013.860583.
  • Guo, L. P., R. Q. Yang, Z. Y. Wang, Q. H. Guo, and Z. X. Gu. 2014b. Glucoraphanin, sulforaphane and myrosinase activity in germinating broccoli sprouts as affected by growth temperature and plant organs. Journal of Functional Foods 9:70–7. doi: 10.1016/j.jff.2014.04.015.
  • Guo, L. P., R. Q. Yang, Y. L. Zhou, and Z. X. Gu. 2016. Heat and hypoxia stresses enhance the accumulation of aliphatic glucosinolates and sulforaphane in broccoli sprouts. European Food Research and Technology 242 (1):107–16. doi: 10.1007/s00217-015-2522-y.
  • Guo, R. F., G. F. Yuan, and Q. M. Wang. 2011a. Effect of sucrose and mannitol on the accumulation of health-promoting compounds and the activity of metabolic enzymes in broccoli sprouts. Scientia Horticulturae 128 (3):159–65. doi: 10.1016/j.scienta.2011.01.014.
  • Guo, R. F., G. F. Yuan, and Q. M. Wang. 2011b. Sucrose enhances the accumulation of anthocyanins and glucosinolates in broccoli sprouts. Food Chemistry 129 (3):1080–7. doi: 10.1016/j.foodchem.2011.05.078.
  • Guo, R. F., G. F. Yuan, and Q. M. Wang. 2013. Effect of NaCl treatments on glucosinolate metabolism in broccoli sprouts. Journal of Zhejiang University Science B 14 (2):124–31. doi: 10.1631/jzus.B1200096.
  • Guo, L. P., Y. L. Zhu, and F. W. Wang. 2018. Calcium sulfate treatment enhances bioactive compounds and antioxidant capacity in broccoli sprouts during growth and storage. Postharvest Biology and Technology 139:12–9. doi: 10.1016/j.postharvbio.2018.01.010.
  • Halkier, B. A., and J. Gershenzon. 2006. Biology and biochemistry of glucosinolates. Annual Review of Plant Biology 57:303–33. doi: 10.1146/annurev.arplant.57.032905.105228.
  • Han, Y., Z. Zhu, M. Shen, Y. Cheng, Y. Yin, and W. Fang. 2020. Effects of selenium and sulfur on physiology and metabolism of sulforaphane of broccoli sprouts under high temperature stress. Journal of Nuclear Agricultural Sciences 34 (6):1350–8.
  • Hanschen, F. S., R. Klopsch, T. Oliviero, M. Schreiner, R. Verkerk, and M. Dekker. 2017. Optimizing isothiocyanate formation during enzymatic glucosinolate breakdown by adjusting pH value, temperature and dilution in Brassica vegetables and Arabidopsis thaliana. Scientific Reports 7:40807. doi: 10.1038/srep40807.
  • Hanschen, F. S., S. Platz, I. Mewis, M. Schreiner, S. Rohn, and L. W. Kroh. 2012. Thermally induced degradation of sulfur-containing aliphatic glucosinolates in Broccoli Sprouts (Brassica oleracea var. italica) and model systems. Journal of Agricultural and Food Chemistry 60 (9):2231–41. doi: 10.1021/jf204830p.
  • Hansen, B. G., D. J. Kliebenstein, and B. A. Halkier. 2007. Identification of a flavin-monooxygenase as the S-oxygenating enzyme in aliphatic glucosinolate biosynthesis in Arabidopsis. The Plant Journal 50 (5):902–10. doi: 10.1111/j.1365-313X.2007.03101.x.
  • Hasapis, X., and A. J. Macleod. 1982. Benzylglucosinolate degradation in heat-treated lepidium-sativum seeds and detection of a thiocyanate-forming factor. Phytochemistry 21 (5):1009–13. doi: 10.1016/S0031-9422(00)82405-X.
  • Hassini, I., M. C. Martinez-Ballesta, N. Boughanmi, D. A. Moreno, and M. Carvajal. 2017. Improvement of broccoli sprouts (Brassica oleracea L. var. italica) growth and quality by KCl seed priming and methyl jasmonate under salinity stress. Scientia Horticulturae 226:141–51. doi: 10.1016/j.scienta.2017.08.030.
  • Heiss, E., C. Herhaus, K. Klimo, H. Bartsch, and C. Gerhauser. 2001. Nuclear factor κB is a molecular target for sulforaphane-mediated anti-inflammatory mechanisms. Journal of Biological Chemistry 276 (34):32008–15. doi: 10.1074/jbc.M104794200.
  • Hernández-Rabaza, V., A. Cabrera-Pastor, L. Taoro-González, M. Malaguarnera, A. Agustí, M. Llansola, and V. Felipo. 2016. Hyperammonemia induces glial activation, neuroinflammation and alters neurotransmitter receptors in hippocampus, impairing spatial learning: Reversal by sulforaphane. Journal of Neuroinflammation 13 (1):41. doi: 10.1186/s12974-016-0505-y.
  • Hirai, M. Y., K. Sugiyama, Y. Sawada, T. Tohge, T. Obayashi, A. Suzuki, R. Araki, N. Sakurai, H. Suzuki, K. Aoki, et al. 2007. Omics-based identification of Arabidopsis Myb transcription factors regulating aliphatic glucosinolate biosynthesis. Proceedings of the National Academy of Sciences of United States of America 104 (15):6478–83. doi: 10.1073/pnas.0611629104.
  • Hur, J., M. Yoo, D. B. Shin, and S. Lee. 2013. Inhibition of nitric oxide production corresponds to the sulforaphane content in korean sheperd’s purse (Capsella bursa-pastoris) and related species in BV-2 cell. Food Science and Biotechnology 22 (4):1085–9. doi: 10.1007/s10068-013-0187-5.
  • Jost, R., L. Altschmied, E. Bloem, J. Bogs, J. Gershenzon, U. Hähnel, R. Hänsch, T. Hartmann, S. Kopriva, C. Kruse, et al. 2005. Expression profiling of metabolic genes in response to methyl jasmonate reveals regulation of genes of primary and secondary sulfur-related pathways in Arabidopsis thaliana. Photosynthesis Research 86 (3):491–508. doi: 10.1007/s11120-005-7386-8.
  • Kestwal, R. M., J. C. Lin, D. Bagal-Kestwal, and B. H. Chiang. 2011. Glucosinolates fortification of cruciferous sprouts by sulphur supplementation during cultivation to enhance anti-cancer activity. Food Chemistry 126 (3):1164–71. doi: 10.1016/j.foodchem.2010.11.152.
  • Kiani, S., N. Babaeianjelodar, N. Bagheri, and H. Najafizarrini. 2018. Effect of mannitol stress on morphological, biochemical and polyphenol parameters in Broccoli Sprouts (Brassica Oleracea Var. Italica). Applied Ecology and Environmental Research 16 (2):2043–58. doi: 10.15666/aeer/1602_20432058.
  • Kikuchi, M., Y. Aoki, N. Kishimoto, Y. Masuda, N. Suzuki, S. Takashimizu, K. Yoshida, K. Aizawa, H. Suganuma, and Y. Nishizaki. 2021. Effects of glucoraphanin-rich broccoli sprout extracts on sleep quality in healthy adults: An exploratory study. Journal of Functional Foods 84 (10):104574. doi: 10.1016/j.jff.2021.104574.
  • Kim, Y., K. Kim, D. Park, E. Lee, H. Lee, Y.-S. Lee, J. Choe, and D. Jeoung. 2012. Histone deacetylase 3 mediates allergic skin inflammation by regulating expression of mcp1 protein *: hdac3 mediates allergic skin inflammation. Journal of Biological Chemistry 287 (31):25844–59. doi: 10.1074/jbc.M112.348284.
  • Klein, M., M. Reichelt, J. Gershenzon, and J. Papenbrock. 2006. The three desulfoglucosinolate sulfotransferase proteins in Arabidopsis have different substrate specificities and are differentially expressed. The FEBS Journal 273 (1):122–36. doi: 10.1111/j.1742-4658.2005.05048.x.
  • Kusnierczyk, A., P. Winge, H. Midelfart, W. S. Armbruster, J. T. Rossiter, and A. M. Bones. 2007. Transcriptional responses of Arabidopsis thaliana ecotypes with different glucosinolate profiles after attack by polyphagous Myzus persicale and oligophagous Brevicoryne brassicae. Journal of Experimental Botany 58 (10):2537–52. doi: 10.1093/jxb/erm043.
  • Kyriacou, M. C., Y. Rouphael, F. Di Gioia, A. Kyratzis, F. Serio, M. Renna, S. De Pascale, and P. Santamaria. 2016. Micro-scale vegetable production and the rise of microgreens. Trends in Food Science & Technology 57:103–15. doi: 10.1016/j.tifs.2016.09.005.
  • Le, T. N., C. H. Chiu, and P. C. Hsieh. 2020. Bioactive compounds and bioactivities of Brassica oleracea L. var. Italica sprouts and microgreens: an updated overview from a nutraceutical perspective. Plants-Basel 9 (8):946. doi: 10.3390/plants9080946.
  • Lee, M. 2021. Effect of addition of broccoli sprout powder on storage stability activity and flavor compounds of bread. Culinary Science & Hospitality Research 27 (9):45–54.
  • Leng, C. Q., Y. X. Zhang, M. Wang, P. Wang, Z. X. Gu, and R. Q. Yang. 2019. Dynamic variation of glucosinolates and isothiocyanates in broccoli sprouts during hydrolysis. Scientia Horticulturae 255:128–33. doi: 10.1016/j.scienta.2019.05.026.
  • Li, C., S. Song, Y. He, X. Zhang, and H. Liu. 2021. CaCl2-HCl electrolyzed water affects glucosinolate metabolism and improves the quality of broccoli sprouts. Food Research International 150:110807. doi: 10.1016/j.foodres.2021.110807.
  • Li, J., B. G. Hansen, J. A. Ober, D. J. Kliebenstein, and B. A. Halkier. 2008. Subclade of flavin-monooxygenases involved in aliphatic glucosinolate biosynthesis. Plant Physiology 148 (3):1721–33. doi: 10.1104/pp.108.125757.
  • Li, L., J. Hao, S. Song, S. Nirasawa, Z. Jiang, and H. Liu. 2018. Effect of slightly acidic electrolyzed water on bioactive compounds and morphology of broccoli sprouts. Food Research International 105:102–9. doi: 10.1016/j.foodres.2017.10.052.
  • Li, L., S. Song, S. Nirasawa, Y.-C. Hung, Z. Jiang, and H. Liu. 2019. Slightly acidic electrolyzed water treatment enhances the main bioactive phytochemicals content in broccoli sprouts via changing metabolism. Journal of Agricultural and Food Chemistry 67 (2):606–14. doi: 10.1021/acs.jafc.8b04958.
  • Li, J., K. A. Kristiansen, B. G. Hansen, and B. A. Halkier. 2011. Cellular and subcellular localization of flavin-monooxygenases involved in glucosinolate biosynthesis. Journal of Experimental Botany 62 (3):1337–46. doi: 10.1093/jxb/erq369.
  • Liang, H., Y. Q. Wei, R. M. Li, L. Cheng, Q. P. Yuan, and F. P. Zheng. 2018. Intensifying sulforaphane formation in broccoli sprouts by using other cruciferous sprouts additions. Food Science and Biotechnology 27 (4):957–62. doi: 10.1007/s10068-018-0347-8.
  • Lim, K.-G., H. J. Ho, and M. Lee. 2021. Quality characteristics of bread added with broccoli sprout powder using geumgang wheat and micro organisms during storage. Culinary Science & Hospitality Research 27 (4):12–22. doi: 10.20878/cshr.2021.27.4.002.
  • Lin, W., R. T. Wu, T. Wu, T. O. Khor, H. Wang, and A. N. Kong. 2008. Sulforaphane suppressed lps-induced inflammation in mouse peritoneal macrophages through nrf2 dependent pathway. Biochemical Pharmacology 76 (8):967–73. doi: 10.1016/j.bcp.2008.07.036.
  • Liu, H., and P. Talalay. 2013. Relevance of anti-inflammatory and antioxidant activities of exemestane and synergism with sulforaphane for disease prevention. Proceedings of the National Academy of Sciences of the United States of America 110 (47):19065–70. doi: 10.1073/pnas.1318247110.
  • Lopez-Cervantes, J., L. G. Tirado-Noriega, D. I. Sanchez-Machado, O. N. Campas-Baypoli, E. U. Cantu-Soto, and J. A. Nunez-Gastelum. 2013. Biochemical composition of broccoli seeds and sprouts at different stages of seedling development. International Journal of Food Science & Technology 48 (11):2267–2275. doi: 10.1111/ijfs.12213.
  • Luo, T., X. Fu, Y. Liu, Y. Ji, and Z. Shang. 2021. Sulforaphane inhibits osteoclastogenesis via suppression of the autophagic pathway. Molecules 26 (2):347. doi: 10.3390/molecules26020347.
  • Luthy, J., and M. H. Benn. 1977. Thiocyanate formation from glucosinolates - study of autolysis of allylglucosinolate in Thlaspi-Arvense L - Seed Flour Extracts. Canadian Journal of Biochemistry 55 (10):1028–31.
  • Lv, X. G., G. L. Meng, W. N. Li, D. D. Fan, X. Wang, C. A. Espinoza-Pinochet, and C. L. Cespedes-Acuna. 2020. Sulforaphane and its antioxidative effects in broccoli seeds and sprouts of different cultivars. Food Chemistry 316:126216. doi: 10.1016/j.foodchem.2020.126216.
  • Lv, X. G., Q. L. Wang, X. Wang, X. H. Zheng, D. D. Fan, C. A. Espinoza-Pinochet, and C. L. Cespedes-Acuna. 2020. Selection and microencapsulation of myrosinase enzyme from broccoli sprouts of different varieties and characteristics evaluation. Journal of Food Process Engineering 43 (12):e13567. doi: 10.1111/jfpe.13567.
  • Mahn, A., and A. Castillo. 2021. Potential of sulforaphane as a natural immune system enhancer: a review. Molecules 26 (3):752. doi: 10.3390/molecules26030752.
  • Mangla, B., S. Javed, M. H. Sultan, P. Kumar, K. Kohli, A. Najmi, H. A. Alhazmi, M. Al Bratty, and W. Ahsan. 2021. Sulforaphane: A review of its therapeutic potentials, advances in its nanodelivery, recent patents, and clinical trials. Phytotherapy Research: PTR 35 (10):5440–58. doi: 10.1002/ptr.7176.
  • Marino, M., D. Martini, S. Venturi, M. Tucci, M. Porrini, P. Riso, and C. Del Bo. 2021. An overview of registered clinical trials on glucosinolates and human health: the current situation. Frontiers in Nutrition 8:730906. doi: 10.3389/fnut.2021.730906.
  • Martinez-Villaluenga, C., E. Penas, E. Ciska, M. K. Piskula, H. Kozlowska, C. Vidal-Valverde, and J. Frias. 2010. Time dependence of bioactive compounds and antioxidant capacity during germination of different cultivars of broccoli and radish seeds. Food Chemistry 120 (3):710–6. doi: 10.1016/j.foodchem.2009.10.067.
  • Martinez-Zamora, L., N. Castillejo, and F. Artes-Hernandez. 2021. Postharvest UV-B and UV-C radiation enhanced the biosynthesis of glucosinolates and isothiocyanates in Brassicaceae sprouts. Postharvest Biology and Technology 181:111650. doi: 10.1016/j.postharvbio.2021.111650.
  • Matusheski, N. V., J. A. Juvik, and E. H. Jeffery. 2004. Heating decreases epithiospecifier protein activity and increases sulforaphane formation in broccoli. Phytochemistry 65 (9):1273–81.
  • Matusheski, N. V., R. Swarup, J. A. Juvik, R. Mithen, M. Bennett, and E. H. Jeffery. 2006. Epithiospecifer protein from broccoli (Brassica oleracea L. ssp. italica) inhibiits formation of the anticancer agent sulforaphane. Journal of Agricultural and Food Chemistry 54 (6):2069–76. doi: 10.1021/jf0525277.
  • McGuinness, G., and Y. Kim. 2020. Sulforaphane treatment for autism spectrum disorder: a systematic review. Excli Journal 19:892–903. doi: 10.17179/excli2020-2487.
  • Meijer, K., R. J. Vonk, M. G. Priebe, and R. Han. 2015. Cell-based screening assay for anti-inflammatory activity of bioactive compounds. Food Chemistry 166 (1):158–64. doi: 10.1016/j.foodchem.2014.06.053.
  • Mendivil, E., A. Sandoval-Rodriguez, L. Zuniga-Ramos, A. Santos-Garcia, and J. Armendariz-Borunda. 2019. Capsaicin and sulforaphane prevent experimental liver fibrosis via upregulation of peroxisome proliferator-activated receptor gamma and nuclear factor (erythroid-derived 2)-like 2. Journal of Functional Foods 52:382–8. doi: 10.1016/j.jff.2018.11.014.
  • Mewis, I., M. Schreiner, C. N. Nguyen, A. Krumbein, C. Ulrichs, M. Lohse, and R. Zrenner. 2012. UV-B irradiation changes specifically the secondary metabolite profile in broccoli sprouts: induced signaling overlaps with defense response to biotic stressors. Plant & Cell Physiology 53 (9):1546–60.
  • Mikkelsen, M. D., L. D. Buron, B. Salomonsen, C. E. Olsen, B. G. Hansen, U. H. Mortensen, and B. A. Halkier. 2012. Microbial production of indolylglucosinolate through engineering of a multi-gene pathway in a versatile yeast expression platform. Metabolic Engineering 14 (2):104–11. doi: 10.1016/j.ymben.2012.01.006.
  • Mikkelsen, M. D., B. L. Petersen, E. Glawischnig, A. B. Jensen, E. Andreasson, and B. A. Halkier. 2003. Modulation of CYP79 genes and glucosinolate profiles in Arabidopsis by defense signaling pathways. Plant Physiology 131 (1):298–308. doi: 10.1104/pp.011015.
  • Mir, S. A., M. A. Shah, and M. M. Mir. 2017. Microgreens: Production, shelf life, and bioactive components. Critical Reviews in Food Science and Nutrition 57 (12):2730–6. doi: 10.1080/10408398.2016.1144557.
  • Mirmiran, P., Z. Bahadoran, F. Hosseinpanah, A. Keyzad, and F. Azizi. 2012. Effects of broccoli sprout with high sulforaphane concentration on inflammatory markers in type 2 diabetic patients: A randomized double-blind placebo-controlled clinical trial. Journal of Functional Foods 4 (4):837–41. doi: 10.1016/j.jff.2012.05.012.
  • Mithen, R., J. Clarke, C. Lister, and C. Dean. 1995. Genetics of aliphatic glucosinolates.3. side-chain structure of aliphatic glucosinolates in Arabidopsis-thaliana. Heredity 74 (2):210–5. doi: 10.1038/hdy.1995.29.
  • Moreira-Rodriguez, M., V. Nair, J. Benavides, L. Cisneros-Zevallos, and D. A. Jacobo-Velazquez. 2017a. UVA, UVB light doses and harvesting time differentially tailor glucosinolate and phenolic profiles in broccoli sprouts. Molecules 22 (7):1065. doi: 10.3390/molecules22071065.
  • Moreira-Rodriguez, M., V. Nair, J. Benavides, L. Cisneros-Zevallos, and D. A. Jacobo-Velazquez. 2017b. UVA, UVB light, and methyl jasmonate, alone or combined, redirect the biosynthesis of glucosinolates, phenolics, carotenoids, and chlorophylls in broccoli sprouts. International Journal of Molecular Sciences 18 (11):2330. doi: 10.3390/ijms18112330.
  • Munters, E., N. Pieters, A. Cuypers, J. Penders, J. Vangronsveld, and T. Nawrot. 2010. Effects of broccoli sprouts intake on oxidative stress, inflammation, microalbuminuria and platelet function in human volunteers: A cross-over study. Proceedings of the Nutrition Society 69 (OCE8):E590. doi: 10.1017/S0029665110004842.
  • Natella, F., M. Maldini, M. Nardini, E. Azzini, M. S. Foddai, A. M. Giusti, S. Baima, G. Morelli, and C. Scaccini. 2016. Improvement of the nutraceutical quality of broccoli sprouts by elicitation. Food Chemistry 201:101–9. doi: 10.1016/j.foodchem.2016.01.063.
  • Neugart, S., S. Baldermann, F. S. Hanschen, R. Klopsch, M. Wiesner-Reinhold, and M. Schreiner. 2018. The intrinsic quality of brassicaceous vegetables: How secondary plant metabolites are affected by genetic, environmental, and agronomic factors. Scientia Horticulturae 233:460–78. doi: 10.1016/j.scienta.2017.12.038.
  • Ngo, S. N. T., and D. B. Williams. 2021. Protective effect of isothiocyanates from cruciferous vegetables on breast cancer: epidemiological and preclinical perspectives. Anti-Cancer Agents in Medicinal Chemistry 21 (11):1413–30. doi: 10.2174/1871520620666200924104550.
  • Park, S. J., M. J. Lee, Y.-J. Choi, Y. R. Yun, M.-A. Lee, S. J. Oh, and S. H. Park. 2020. Improvement of sulfur compounds in broccoli sprouts by methionine loaded polyvinyl alcohol-sodium alginate hydrogels for application in Kimchi. LWT 118:108745. doi: 10.1016/j.lwt.2019.108745.
  • Pereira, F. M. V., E. Rosa, J. W. Fahey, K. K. Stephenson, R. Carvalho, and A. Aires. 2002. Influence of temperature and ontogeny on the levels of glucosinolates in broccoli (Brassica oleracea var. italica) sprouts and their effect on the induction of mammalian phase 2 enzymes. Journal of Agricultural and Food Chemistry 50 (21):6239–44. doi: 10.1021/jf020309x.
  • Perez-Balibrea, S., D. A. Moreno, and C. Garcia-Viguera. 2008. Influence of light on health-promoting phytochemicals of broccoli sprouts. Journal of the Science of Food and Agriculture 88 (5):904–10. doi: 10.1002/jsfa.3169.
  • Perez-Balibrea, S., D. A. Moreno, and C. Garcia-Viguera. 2010. Glucosinolates in broccoli sprouts (Brassica oleracea var. italica) as conditioned by sulphate supply during germination. Journal of Food Science 75 (8):C673–C677. doi: 10.1111/j.1750-3841.2010.01811.x.
  • Perez-Balibrea, S., D. A. Moreno, and C. Garcia-Viguera. 2011a. Genotypic effects on the phytochemical quality of seeds and sprouts from commercial broccoli cultivars. Food Chemistry 125 (2):348–54. doi: 10.1016/j.foodchem.2010.09.004.
  • Perez-Balibrea, S., D. A. Moreno, and C. Garcia-Viguera. 2011b. Improving the phytochemical composition of broccoli sprouts by elicitation. Food Chemistry 129 (1):35–44. doi: 10.1016/j.foodchem.2011.03.049.
  • Pfalz, M., M. D. Mikkelsen, P. Bednarek, C. E. Olsen, B. A. Halkier, and J. Kroymann. 2011. Metabolic engineering in Nicotiana benthamiana reveals key enzyme functions in Arabidopsis indole glucosinolate modification. The Plant Cell 23 (2):716–29. doi: 10.1105/tpc.110.081711.
  • Place, D. E., and T. D. Kanneganti. 2018. Recent advances in inflammasome biology. Current Opinion in Immunology 50:32–8. doi: 10.1016/j.coi.2017.10.011.
  • Qi, T., F. Xu, X. Yan, S. Li, and H. Li. 2016. Sulforaphane exerts anti-inflammatory effects against lipopolysaccharide-induced acute lung injury in mice through the Nrf2/ARE pathway. International Journal of Molecular Medicine 37 (1):182–8. doi: 10.3892/ijmm.2015.2396.
  • Qu, X., C. Neuhoff, M. U. Cinar, M. Pröll, E. Tholen, D. Tesfaye, M. Hölker, K. Schellander, and M. J. Uddin. 2021. Epigenetic modulation of tlr4 expression by sulforaphane increases anti-inflammatory capacity in porcine monocyte-derived dendritic cells. Biology 10 (6):490. doi: 10.3390/biology10060490.
  • Ragusa, L., V. Picchi, A. Tribulato, C. Cavallaro, R. Lo Scalzo, and F. Branca. 2017. The effect of the germination temperature on the phytochemical content of broccoli and rocket sprouts. International Journal of Food Sciences and Nutrition 68 (4):411–20. doi: 10.1080/09637486.2016.1248907.
  • Ranaweera, S., C. Y. Dissanayake, P. Natraj, Y. J. Lee, and C. H. Han. 2020. Anti-inflammatory effect of sulforaphane on LPS-stimulated raw 264.7 cells and ob/ob mice. Journal of Veterinary Science 21 (6):E91. doi: 10.4142/jvs.2020.21.e91.
  • Reintanz, B., M. Lehnen, M. Reichelt, J. Gershenzon, M. Kowalczyk, G. Sandberg, M. Godde, R. Uhl, and K. Palme. 2001. Bus, a bushy arabidopsis CYP79F1 knockout mutant with abolished synthesis of short-chain aliphatic glucosinolates. The Plant Cell 13 (2):351–67. doi: 10.1105/tpc.13.2.351.
  • Rosa, E., E. M. V. Pereira, A. Aires, and R. Carvalho. 2007. Effects of post-harvest storage conditions on the levels of glucosinolates in broccoli sprouts (Brassica oleracea var. italica) grown under different temperature regimes. The Journal of Horticultural Science and Biotechnology 82 (6):974–8. doi: 10.1080/14620316.2007.11512335.
  • Ruhee, R. T., and K. Suzuki. 2020. The integrative role of sulforaphane in preventing inflammation, oxidative stress and fatigue: a review of a potential protective phytochemical. Antioxidants 9 (6):521. doi: 10.3390/antiox9060521.
  • Schuster, J., T. Knill, M. Reichelt, J. Gershenzon, and S. Binder. 2006. Branched-chain aminotransferase4 is part of the chain elongation pathway in the biosynthesis of methionine-derived glucosinolates in Arabidopsis. The Plant Cell 18 (10):2664–79. doi: 10.1105/tpc.105.039339.
  • Seo, M. S., and J. S. Kim. 2017. Understanding of MYB transcription factors involved in glucosinolate biosynthesis in Brassicaceae. Molecules 22 (9):1549. doi: 10.3390/molecules22091549.
  • Shams, R., R. Abu-Khudir, and E. M. Ali. 2017. Sulforaphane, polyphenols and related anti-inflammatory and antioxidant activities changes of Egyptian broccoli during growth. Journal of Food Measurement and Characterization 11 (4):2061–8. doi: 10.1007/s11694-017-9589-z.
  • Smeekens, S. 2000. Sugar-induced signal transduction in plants. Annual Review of Plant Physiology and Plant Molecular Biology 51 (1):49–81. doi: 10.1146/annurev.arplant.51.1.49.
  • Socała, K., D. Nieoczym, E. Kowalczuk-Vasilev, E. Wyska, and P. Wlaź. 2017. Increased seizure susceptibility and other toxicity symptoms following acute sulforaphane treatment in mice. Toxicology and Applied Pharmacology 326:43–53. doi: 10.1016/j.taap.2017.04.010.
  • Sonderby, I. E., F. Geu-Flores, and B. A. Halkier. 2010. Biosynthesis of glucosinolates - gene discovery and beyond. Trends in Plant Science 15 (5):283–90. doi: 10.1016/j.tplants.2010.02.005.
  • Sundaram, M. K., S. R, P., Haque, N. Akhter, S. Khan, S. Ahmed, and A. Hussain. 2021. Dietary isothiocyanates inhibit cancer progression by modulation of epigenome. Seminars in Cancer Biology. 83:353–376. doi: 10.1016/j.semcancer.2020.12.021.
  • Takagi, T., H. Inoue, N. Takahashi, R. Katsumata-Tsuboi, and M. Uehara. 2017. Sulforaphane inhibits osteoclast differentiation by suppressing the cell-cell fusion molecules DC-STAMP and OC-STAMP. Biochemical and Biophysical Research Communications. 483 (1):718–24. doi: 10.1016/j.bbrc.2016.12.075.
  • Tang, R., Q-q Cao, S-w Hu, L-j He, P-f Du, G. Chen, R. Fu, F. Xiao, Y-r Sun, J-c Zhang, et al. 2022. Sulforaphane activates anti-inflammatory microglia, modulating stress resilience associated with BDNF transcription. Acta Pharmacologica Sinica 43 (4):829–39. doi: 10.1038/s41401-021-00727-z.
  • Tang, D. Y., Y. M. Dong, H. K. Ren, L. Li, and C. F. He. 2014. A review of phytochemistry, metabolite changes, and medicinal uses of the common food mung bean and its sprouts (Vigna radiata). Chemistry Central Journal 8 (1). doi: 10.1186/1752-153X-8-4.
  • Terry, N., A. M. Zayed, M. P. de Souza, and A. S. Tarun. 2000. Selenium in higher plants. Annual Review of Plant Physiology and Plant Molecular Biology 51 (1):401–32. doi: 10.1146/annurev.arplant.51.1.401.
  • Textor, S., S. Bartram, J. Kroymann, K. L. Falk, A. Hick, J. A. Pickett, and J. Gershenzon. 2004. Biosynthesis of methionine-derived glucosinolates in Arabidopsis thaliana: Recombinant expression and characterization of methylthioalkylmalate synthase, the condensing enzyme of the chain-elongation cycle. Planta 218 (6):1026–35. doi: 10.1007/s00425-003-1184-3.
  • Textor, S., J. W. de Kraker, B. Hause, J. Gershenzon, and J. G. Tokuhisa. 2007. MAM3 catalyzes the formation of all aliphatic glucosinolate chain lengths in Arabidopsis. Plant Physiology 144 (1):60–71. doi: 10.1104/pp.106.091579.
  • Tian, L., J. Wu, X. Li, R. Yang, and Z. Gu. 2017. Effect of NaCl and CaCl2 treatment on glucosinolate and isothiocyanates content in broccoli sprouts. Journal of Nanjing Agricultural University 40 (2):352–8.
  • Tian, M., X. Xu, H. Hu, Y. Liu, and S. Pan. 2017. Optimisation of enzymatic production of sulforaphane in broccoli sprouts and their total antioxidant activity at different growth and storage days. Journal of Food Science and Technology 54 (1):209–18. doi: 10.1007/s13197-016-2452-0.
  • Tian, M., X. Xu, Y. Liu, L. Xie, and S. Pan. 2016. Effect of Se treatment on glucosinolate metabolism and health-promoting compounds in the broccoli sprouts of three cultivars. Food Chemistry 190:374–80. doi: 10.1016/j.foodchem.2015.05.098.
  • Townsend, B. E., and R. W. Johnson. 2017. Sulforaphane reduces lipopolysaccharide-induced proinflammatory markers in hippocampus and liver but does not improve sickness behavior. Nutritional Neuroscience 20 (3):195–202. doi: 10.1080/1028415X.2015.1103463.
  • Tříska, J., J. Balík, M. Houška, P. Novotná, M. Magner, N. Vrchotová, P. Híc, L. Jílek, K. Thorová, P. Šnurkovič, et al. 2021. Factors influencing sulforaphane content in broccoli sprouts and subsequent sulforaphane extraction. Foods 10 (8):1927. doi: 10.3390/foods10081927.
  • Turner, E. R., Y. G. Luo, and R. L. Buchanan. 2020. Microgreen nutrition, food safety, and shelf life: A review. Journal of Food Science 85 (4):870–82. doi: 10.1111/1750-3841.15049.
  • Vale, A. P., J. Santos, N. V. Brito, D. Fernandes, E. Rosa, and M. B. P. P. Oliveira. 2015. Evaluating the impact of sprouting conditions on the glucosinolate content of Brassica oleracea sprouts. Phytochemistry 115:252–60. doi: 10.1016/j.phytochem.2015.02.004.
  • Vale, A. P., J. Santos, N. V. Brito, C. Marinho, V. Amorim, E. Rosa, and M. B. P. P. Oliveira. 2015. Effect of refrigerated storage on the bioactive compounds and microbial quality of Brassica oleraceae sprouts. Postharvest Biology and Technology 109:120–9. doi: 10.1016/j.postharvbio.2015.06.013.
  • Vicas, S. I., S. Cavalu, V. Laslo, M. Tocai, T. O. Costea, and L. Moldovan. 2019. Growth, photosynthetic pigments, phenolic, glucosinolates content and antioxidant capacity of broccoli sprouts in response to nanoselenium particles supply. Notulae Botanicae Horti Agrobotanici Cluj-Napoca 47 (3):821–8. doi: 10.15835/nbha47311490.
  • Vuong, L. D., Q. N. Nguyen, and V. L. Truong. 2019. Anti-inflammatory and anti-oxidant effects of combination between sulforaphane and acetaminophen in lps-stimulated raw 264.7 macrophage cells. Immunopharmacology and Immunotoxicology 41 (3):413–9. doi: 10.1080/08923973.2019.1569049.
  • Wagner, A. E., C. Boesch-Saadatmandi, J. Dose, G. Schultheiss, and G. Rimbach. 2012. Anti-inflammatory potential of allyl-isothiocyanate–role of Nrf2, NF-κB and microRNA-155. Journal of Cellular and Molecular Medicine 16 (4):836–43. doi: 10.1111/j.1582-4934.2011.01367.x.
  • Wentzell, A. M., and D. J. Kliebenstein. 2008. Genotype, age, tissue, and environment regulate the structural outcome of glucosinolate activation. Plant Physiology 147 (1):415–28. doi: 10.1104/pp.107.115279.
  • Westphal, A., K. M. Riedl, J. L. Cooperstone, S. Kamat, V. M. Balasubramaniam, S. J. Schwartz, and V. Bohm. 2017. High-pressure processing of broccoli sprouts: influence on bioactivation of glucosinolates to isothiocyanates. Journal of Agricultural and Food Chemistry 65 (39):8578–85. doi: 10.1021/acs.jafc.7b01380.
  • Williams, D. J., C. Critchley, S. Pun, M. Chaliha, and T. J. O’Hare. 2010. Key role of Fe2+ in epithiospecifier protein activity. Journal of Agricultural and Food Chemistry 58 (15):8512–21. doi: 10.1021/jf904532n.
  • Xue, A., W. Liang, S. Wen, Y. Gao, X. Huang, Y. Tong, Y. Hao, and L. Luo. 2021. Metabolomic analysis based on EESI-MS indicate blue LED light promotes aliphatic-glucosinolates biosynthesis in broccoli sprouts. Journal of Food Composition and Analysis 97:103777. doi: 10.1016/j.jfca.2020.103777.
  • Yang, R., L. Guo, X. Jin, C. Shen, Y. Zhou, and Z. Gu. 2015. Enhancement of glucosinolate and sulforaphane formation of broccoli sprouts by zinc sulphate via its stress effect. Journal of Functional Foods 13:345–9. doi: 10.1016/j.jff.2015.01.007.
  • Yang, R. Q., L. P. Guo, Y. L. Zhou, C. Shen, and Z. X. Gu. 2015. Calcium mitigates the stress caused by ZnSO4 as a sulphur fertilizer and enhances the sulforaphane formation of broccoli sprouts. RSC Advances 5 (17):12563–70. doi: 10.1039/C4RA11371C.
  • Yang, R., Q. Hui, Z. Gu, Y. Zhou, L. Guo, C. Shen, and W. Zhang. 2016. Effects of CaCl2 on the metabolism of glucosinolates and the formation of isothiocyanates as well as the antioxidant capacity of broccoli sprouts. Journal of Functional Foods 24:156–63. doi: 10.1016/j.jff.2016.04.007.
  • Yin, Y., Q. Lin, H. Zhou, and Y. Song. 2016. Optimization of ultrasound-assisted hydrolysis conditions of glucosinolates to isothiocyanates in broccoli sprout. Chemical World 57 (4):200–208.
  • Yin, Y., Y. Liu, C. Cheng, Z. Yang, Z. Luo, and W. Fang. 2021. iTRAQ-based proteomic and physiological analyses of broccoli sprouts in response to exogenous melatonin with ZnSO4 stress. RSC Advances 11 (20):12336–47. doi: 10.1039/D1RA00696G.
  • Youn, H. S., Y. S. Kim, Z. Y. Park, S. Y. Kim, N. Y. Choi, S. M. Joung, J. A. Seo, K.-M. Lim, M.-K. Kwak, D. H. Hwang, et al. 2010. Sulforaphane suppresses oligomerization of TLR4 in a thiol-dependent manner. The Journal of Immunology 184 (1):411–9. doi: 10.4049/jimmunol.0803988.
  • Zhang, Y., L. Tan, C. Li, H. Wu, D. Ran, and Z. Zhang. 2020. Sulforaphane alter the microbiota and mitigate colitis severity on mice ulcerative colitis induced by DSS. AMB Express 10 (1):119. doi: 10.1186/s13568-020-01053-z.
  • Zhu, Y. L., F. W. Wang, and L. P. Guo. 2019. Effect of jasmonic acid on glucosinolate metabolism in different organs of broccoli sprouts. Emirates Journal of Food and Agriculture 31 (2):81–7. doi: 10.9755/ejfa.2019.v31.i2.1908.
  • Zhuang, L., K. X. Xu, Y. L. Zhu, F. W. Wang, J. X. Xiao, and L. P. Guo. 2021. Calcium affects glucoraphanin metabolism in broccoli sprouts under ZnSO4 stress. Food Chemistry 334:127520. doi: 10.1016/j.foodchem.2020.127520.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.