445
Views
1
CrossRef citations to date
0
Altmetric
Review Articles

Whole grains-derived functional ingredients against hyperglycemia: targeting hepatic glucose metabolism

, , , , ORCID Icon &

References

  • Abdel-Moneim, A., S. M. Abd El-Twab, A. I. Yousef, M. B. Ashour, E. S. A. Reheim, and M. A. A. Hamed. 2022. New insights into the in vitro, in situ and in vivo antihyperglycemic mechanisms of gallic acid and p-coumaric acid. Archives of Physiology and Biochemistry 128 (5):1188–94. doi: 10.1080/13813455.2020.1762659.
  • Aberg, S., J. Mann, S. Neumann, A. B. Ross, and A. N. Reynolds. 2020. Whole-grain processing and glycemic control in type 2 diabetes: A randomized crossover trial. Diabetes Care 43 (8):1717–23. doi: 10.2337/dc20-0263.
  • Agil, R., Z. R. Patterson, H. Mackay, A. Abizaid, and F. Hosseinian. 2016. Triticale bran alkylresorcinols enhance resistance to oxidative stress in mice fed a high-fat diet. Foods 5 (4):5. doi: 10.3390/foods5010005.
  • Allen, L., L. Ramalingam, K. Menikdiwela, S. Scoggin, C. L. Shen, M. D. Tomison, G. Kaur, J. M. Dufour, E. Chung, N. S. Kalupahana, et al. 2017. Effects of delta-tocotrienol on obesity-related adipocyte hypertrophy, inflammation and hepatic steatosis in high-fat-fed mice. The Journal of Nutritional Biochemistry 48:128–37. doi: 10.1016/j.jnutbio.2017.07.003.
  • Amjadi, S., F. Shahnaz, B. Shokouhi, Y. Azarmi, M. Siahi-Shadbad, S. Ghanbarzadeh, M. Kouhsoltani, A. Ebrahimi, and H. Hamishehkar. 2021. Nanophytosomes for enhancement of rutin efficacy in oral administration for diabetes treatment in streptozotocin-induced diabetic rats. International Journal of Pharmaceutics 610:121208. doi: 10.1016/j.ijpharm.2021.121208.
  • Aoe, S., K. Mio, C. Yamanaka, and T. Kuge. 2020. Low Molecular Weight Barley β-Glucan Affects Glucose and Lipid Metabolism by Prebiotic Effects. Nutrients 13 (1):130. doi: 10.3390/nu13010130.
  • Babu, S., M. Krishnan, P. Rajagopal, V. Periyasamy, V. Veeraraghavan, R. Govindan, and S. Jayaraman. 2020. Beta-sitosterol attenuates insulin resistance in adipose tissue via IRS-1/Akt mediated insulin signaling in high fat diet and sucrose induced type-2 diabetic rats. European Journal of Pharmacology 873:173004. doi: 10.1016/j.ejphar.2020.173004.
  • Bashar, S. M., M. G. Elhadidy, A. F. Mostafa, B. Hamed, S. Helmy, and H. A. Abd-Elmoniem. 2021. Hepatoprotective effect of gallic acid against type 2-induced diabetic liver injury in male rats through modulation of fetuin-A and GLP-1 with involvement of ERK1/2/NF-kappaB and Wnt1/beta-catenin signaling pathways. General Physiology and Biophysics 40 (3):221–34. doi: 10.4149/gpb_2021005.
  • Besse-Patin, A., S. Jeromson, P. Levesque-Damphousse, B. Secco, M. Laplante, and J. L. Estall. 2019. PGC1A regulates the IRS1:IRS2 ratio during fasting to influence hepatic metabolism downstream of insulin. Proceedings of the National Academy of Sciences 116 (10):4285–90. doi: 10.1073/pnas.1815150116.
  • Călinoiu, L. F., and D. C. Vodnar. 2018. Whole grains and phenolic acids: A review on bioactivity, functionality, health benefits and bioavailability. Nutrients 10 (11):1615. doi: 10.3390/nu10111615.
  • Chang, W. C., J. S. Wu, C. W. Chen, P. L. Kuo, H. M. Chien, Y. T. Wang, and S. C. Shen. 2015. Protective effect of vanillic acid against hyperinsulinemia, hyperglycemia and hyperlipidemia via alleviating hepatic insulin resistance and inflammation in high-fat diet (HFD)-fed rats. Nutrients 7 (12):9946–59. doi: 10.3390/nu7125514.
  • Cheng, L., L. Shi, C. He, C. Wang, Y. Lv, H. Li, Y. An, H. Dai, Y. Duan, H. Zhang, et al. 2022. Rutin-activated adipose tissue thermogenesis is correlated with increased intestinal short-chain fatty acid levels. Phytotherapy Research 36 (6):2495–510. doi: 10.1002/ptr.7462.
  • Choi, J. S., H. Kim, M. H. Jung, S. Hong, and J. Song. 2010. Consumption of barley beta-glucan ameliorates fatty liver and insulin resistance in mice fed a high-fat diet. Molecular Nutrition & Food Research 54 (7):1004–13. doi: 10.1002/mnfr.200900127.
  • Chowdhury, S., S. Ghosh, K. Rashid, and P. C. Sil. 2016. Deciphering the role of ferulic acid against streptozotocin-induced cellular stress in the cardiac tissue of diabetic rats. Food and Chemical Toxicology 97:187–98. doi: 10.1016/j.fct.2016.09.011.
  • Della Pepa, G., C. Vetrani, M. Vitale, and G. Riccardi. 2018. Wholegrain intake and risk of type 2 diabetes: Evidence from epidemiological and intervention studies. Nutrients 10 (9):1288. doi: 10.3390/nu10091288.
  • Demir, S., P. P. Nawroth, S. Herzig, and B. Ekim Ustunel. 2021. Emerging targets in type 2 diabetes and diabetic complications. Advanced Science (Weinheim, Baden-Wurttemberg, Germany) 8 (18):e2100275. doi: 10.1002/advs.202100275.
  • Doan, K. V., C. M. Ko, A. W. Kinyua, D. J. Yang, Y.-H. Choi, I. Y. Oh, N. M. Nguyen, A. Ko, J. W. Choi, Y. Jeong, et al. 2015. Gallic acid regulates body weight and glucose homeostasis through AMPK activation. Endocrinology 156 (1):157–68. doi: 10.1210/en.2014-1354.
  • Fabjan, N., J. Rode, I. J. Košir, Z. Wang, Z. Zhang, and I. Kreft. 2003. Tartary buckwheat (Fagopyrum tataricum Gaertn.) as a source of dietary rutin and quercitrin. Journal of Agricultural and Food Chemistry 51 (22):6452–5. doi: 10.1021/jf034543e.
  • Fang, F., Z. Kang, and C. Wong. 2010. Vitamin E tocotrienols improve insulin sensitivity through activating peroxisome proliferator-activated receptors. Molecular Nutrition & Food Research 54 (3):345–52. doi: 10.1002/mnfr.200900119.
  • Fernandes, A. A., E. L. Novelli, K. Okoshi, M. P. Okoshi, B. P. Di Muzio, J. F. Guimaraes, and A. Fernandes Junior. 2010. Influence of rutin treatment on biochemical alterations in experimental diabetes. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie 64 (3):214–9. doi: 10.1016/j.biopha.2009.08.007.
  • Francavilla, A., and I. J. Joye. 2020. Anthocyanins in whole grain cereals and their potential effect on health. Nutrients 12 (10):2922. doi: 10.3390/nu12102922.
  • Francisqueti, F., I. Minatel, A. Ferron, S. Bazan, V. Silva, J. Garcia, D. De Campos, A. Ferreira, F. Moreto, A. Cicogna, et al. 2017. Effect of Gamma-Oryzanol as Therapeutic Agent to Prevent Cardiorenal Metabolic Syndrome in Animals Submitted to High Sugar-Fat Diet. Nutrients 9 (12):1299. doi: 10.3390/nu9121299.
  • Gao, J., X. He, Y. Ma, X. Zhao, X. Hou, E. Hao, J. Deng, and G. Bai. 2018. Chlorogenic acid targeting of the AKT PH domain activates AKT/GSK3beta/FOXO1 signaling and improves glucose metabolism. Nutrients 10 (10):1366. doi: 10.3390/nu10101366.
  • Garutti, M., G. Nevola, R. Mazzeo, L. Cucciniello, F. Totaro, C. A. Bertuzzi, R. Caccialanza, P. Pedrazzoli, and F. Puglisi. 2022. The impact of cereal grain composition on the health and disease outcomes. Frontiers in Nutrition 9:888974. doi: 10.3389/fnut.2022.888974.
  • Ghanbari-Gohari, F., S. M. Mousavi, and A. Esmaillzadeh. 2022. Consumption of whole grains and risk of type 2 diabetes: A comprehensive systematic review and dose-response meta-analysis of prospective cohort studies. Food Science & Nutrition 10 (6):1950–60. doi: 10.1002/fsn3.2811.
  • Ghosh, S., S. Chowdhury, P. Sarkar, and P. C. Sil. 2018. Ameliorative role of ferulic acid against diabetes associated oxidative stress induced spleen damage. Food and Chemical Toxicology : An International Journal Published for the British Industrial Biological Research Association 118:272–86. doi: 10.1016/j.fct.2018.05.029.
  • Gorman, T., D. C. D. Hope, R. Brownlie, A. Yu, D. Gill, J. Löfvenmark, M. Wedin, R. M. Mayers, M. R. Snaith, and D. M. Smith. 2008. Effect of high-fat diet on glucose homeostasis and gene expression in glucokinase knockout mice. Diabetes, Obesity & Metabolism 10 (10):885–97. doi: 10.1111/j.1463-1326.2007.00819.x.
  • Guimaraes, J. F., B. P. Muzio, C. M. Rosa, A. F. Nascimento, M. M. Sugizaki, A. A. Fernandes, A. C. Cicogna, C. R. Padovani, M. P. Okoshi, and K. Okoshi. 2015. Rutin administration attenuates myocardial dysfunction in diabetic rats. Cardiovascular Diabetology 14:90. doi: 10.1186/s12933-015-0255-7.
  • Gumede, N. M., B. W. Lembede, R. L. Brooksbank, K. H. Erlwanger, and E. Chivandi. 2020. β-Sitosterol Shows Potential to Protect Against the Development of High-Fructose Diet-Induced Metabolic Dysfunction in Female Rats. Journal of Medicinal Food 23 (4):367–74. doi: 10.1089/jmf.2019.0120.
  • Guo, H., M. Xia, T. Zou, W. Ling, R. Zhong, and W. Zhang. 2012. Cyanidin 3-glucoside attenuates obesity-associated insulin resistance and hepatic steatosis in high-fat diet-fed and db/db mice via the transcription factor FoxO1. The Journal of Nutritional Biochemistry 23 (4):349–60. doi: 10.1016/j.jnutbio.2010.12.013.
  • Guo, X. X., Z. Zeng, Y. Z. Qian, J. Qiu, K. Wang, Y. Wang, B. P. Ji, and F. Zhou. 2019. Wheat flour, enriched with gamma-oryzanol, phytosterol, and ferulic acid, alleviates lipid and glucose metabolism in high-fat-fructose-fed rats. Nutrients 11 (7):1697. doi: 10.3390/nu11071697.
  • Gupta, R., M. Meghwal, and P. K. Prabhakar. 2021. Bioactive compounds of pigmented wheat (Triticum aestivum): Potential benefits in human health. Trends in Food Science & Technology 110:240–52. doi: 10.1016/j.tifs.2021.02.003.
  • Gupte, M., S. Tousif, J. J. Lemon, A. Toro Cora, P. Umbarkar, and H. Lal. 2022. Isoform-specific role of GSK-3 in high fat diet induced obesity and glucose intolerance. Cells 11 (3):559. doi: 10.3390/cells11030559.
  • Hartvigsen, M. L., P. B. Jeppesen, H. N. Lærke, E. N. Njabe, K. E. B. Knudsen, and K. Hermansen. 2013. Concentrated arabinoxylan in wheat bread has beneficial effects as rye breads on glucose and changes in gene expressions in insulin-sensitive tissues of Zucker diabetic fatty (ZDF) rats. Journal of Agricultural and Food Chemistry 61 (21):5054–63. doi: 10.1021/jf3043538.
  • He, X., S. Zheng, Y. Sheng, T. Miao, J. Xu, W. Xu, K. Huang, and C. Zhao. 2021. Chlorogenic acid ameliorates obesity by preventing energy balance shift in high-fat diet induced obese mice. Journal of the Science of Food and Agriculture 101 (2):631–7. doi: 10.1002/jsfa.10675.
  • Herzig, S., F. Long, U. S. Jhala, S. Hedrick, R. Quinn, A. Bauer, D. Rudolph, G. Schutz, C. Yoon, P. Puigserver, et al. 2001. CREB regulates hepatic gluconeogenesis through the coactivator PGC-1. Nature 413 (6852):179–83. doi: 10.1038/35093131.
  • Hou, Q., Y. Li, L. Li, G. Cheng, X. Sun, S. Li, and H. Tian. 2015. The metabolic effects of oats intake in patients with type 2 diabetes: A systematic review and meta-analysis. Nutrients 7 (12):10369–87. doi: 10.3390/nu7125536.
  • Hu, Q., C. Qu, X. Xiao, W. Zhang, Y. Jiang, Z. Wu, D. Song, X. Peng, X. Ma, and Y. Zhao. 2021. Flavonoids on diabetic nephropathy: Advances and therapeutic opportunities. Chinese Medicine 16 (1):74. doi: 10.1186/s13020-021-00485-4.
  • Hu, Y., M. Ding, L. Sampson, W. C. Willett, J. E. Manson, M. Wang, B. Rosner, F. B. Hu, and Q. Sun. 2020. Intake of whole grain foods and risk of type 2 diabetes: Results from three prospective cohort studies. BMJ (Clinical Research ed.) 370:m2206. doi: 10.1136/bmj.m2206.
  • Huang, B., Z. Wang, J. H. Park, O. H. Ryu, M. K. Choi, J. Y. Lee, Y. H. Kang, and S. S. Lim. 2015. Anti-diabetic effect of purple corn extract on C57BL/KsJ db/db mice. Nutrition Research and Practice 9 (1):22–9. doi: 10.4162/nrp.2015.9.1.22.
  • Huang, D. W., W. C. Chang, J. S. Wu, R. W. Shih, and S. C. Shen. 2016. Gallic acid ameliorates hyperglycemia and improves hepatic carbohydrate metabolism in rats fed a high-fructose diet. Nutrition Research (New York, N.Y.) 36 (2):150–60. doi: 10.1016/j.nutres.2015.10.001.
  • Huang, D. W., W. C. Chang, H. J. Yang, J. S. Wu, and S. C. Shen. 2018. Gallic acid alleviates hypertriglyceridemia and fat accumulation via modulating glycolysis and lipolysis pathways in perirenal adipose tissues of rats fed a high-fructose diet. International Journal of Molecular Sciences 19 (1):254. doi: 10.3390/ijms19010254.
  • Irakli, M. N., V. F. Samanidou, C. G. Biliaderis, and I. N. Papadoyannis. 2012. Development and validation of an HPLC-method for ­determination of free and bound phenolic acids in cereals after solid-phase extraction. Food Chemistry 134 (3):1624–32. doi: 10.1016/j.foodchem.2012.03.046.
  • Ji, Y., N. Ma, J. Zhang, H. Wang, T. Tao, F. Pei, and Q. Hu. 2021. Dietary intake of mixture coarse cereals prevents obesity by altering the gut microbiota in high-fat diet fed mice. Food and Chemical Toxicology 147:111901. doi: 10.1016/j.fct.2020.111901.
  • Jia, Y., C. Wu, Y. S. Kim, S. O. Yang, Y. Kim, J. S. Kim, M. Y. Jeong, J. H. Lee, B. Kim, S. Lee, et al. 2020. A dietary anthocyanin cyanidin-3-O-glucoside binds to PPARs to regulate glucose metabolism and insulin sensitivity in mice. Communications Biology 3 (1):514. doi: 10.1038/s42003-020-01231-6.
  • Jiang, X., X. Tang, P. Zhang, G. Liu, and H. Guo. 2014. Cyanidin-3-O-beta-glucoside protects primary mouse hepatocytes against high glucose-induced apoptosis by modulating mitochondrial dysfunction and the PI3K/Akt pathway. Biochemical Pharmacology 90 (2):135–44. doi: 10.1016/j.bcp.2014.04.018.
  • Jiang, Y. W., Z. H. Sun, W. W. Tong, K. Yang, K. Q. Guo, G. Liu, and A. Pan. 2021. Dietary intake and circulating concentrations of carotenoids and risk of type 2 diabetes: A dose-response meta-analysis of prospective observational studies. Advances in Nutrition (Bethesda, Md.) 12 (5):1723–33. doi: 10.1093/advances/nmab048.
  • Jin, L., T. Guo, Z. Li, Z. Lei, H. Li, Y. Mao, X. Wang, N. Zhou, Y. Zhang, R. Hu, et al. 2015. Role of glucokinase in the subcellular localization of glucokinase regulatory protein. International Journal of Molecular Sciences 16 (12):7377–93. doi: 10.3390/ijms16047377.
  • Joye, I. J. 2020. Dietary fibre from whole grains and their benefits on metabolic health. Nutrients 12:3045.
  • Kang, B. B., and B. H. Chiang. 2020. Amelioration of insulin resistance using the additive effect of ferulic acid and resveratrol on vesicle trafficking for skeletal muscle glucose metabolism. Phytotherapy Research : PTR 34 (4):808–16. doi: 10.1002/ptr.6561.
  • Khan, J., M. Z. Khan, Y. Ma, Y. Meng, A. Mushtaq, Q. Shen, and Y. Xue. 2022. Overview of the composition of whole grains’ phenolic acids and dietary fibre and their effect on chronic non-communicable diseases. International Journal of Environmental Research and Public Health 19 (5):3042. doi: 10.3390/ijerph19053042.
  • Kinyua, A. W., C. M. Ko, K. V. Doan, D. J. Yang, M. K. Q. Huynh, S. H. Moh, Y. H. Choi, and K. W. Kim. 2018. 4-hydroxy-3-methoxycinnamic acid regulates orexigenic peptides and hepatic glucose homeostasis through phosphorylation of FoxO1. Experimental & Molecular Medicine 50 (2):e437. doi: 10.1038/emm.2017.253.
  • Koo, S.-H., L. Flechner, L. Qi, X. Zhang, R. A. Screaton, S. Jeffries, S. Hedrick, W. Xu, F. Boussouar, P. Brindle, et al. 2005. The CREB coactivator TORC2 is a key regulator of fasting glucose metabolism. Nature 437 (7062):1109–11. doi: 10.1038/nature03967.
  • Kumar, G. S., M. S. Choy, D. M. Koveal, M. K. Lorinsky, S. P. Lyons, A. N. Kettenbach, R. Page, and W. Peti. 2018. Identification of the substrate recruitment mechanism of the muscle glycogen protein phosphatase 1 holoenzyme. Science Advances 4 (11):eaau6044. doi: 10.1126/sciadv.aau6044.
  • Langlet, F., R. A. Haeusler, D. Linden, E. Ericson, T. Norris, A. Johansson, J. R. Cook, K. Aizawa, L. Wang, C. Buettner, et al. 2017. Selective inhibition of FOXO1 activator/repressor balance modulates hepatic glucose handling. Cell 171 (4):824–35. doi: 10.1016/j.cell.2017.09.045.
  • Lee, H, and J. Lee. 2021. Anti-diabetic effect of hydroxybenzoic acid derivatives in free fatty acid-induced HepG2 cells via miR-1271/IRS1/PI3K/AKT/FOXO1 pathway. Journal of Food Biochemistry 45 (12):e13993 10.1111/jfbc.13993. PMC: 34730253
  • Lee, H., and Y. Lim. 2018. Tocotrienol-rich fraction supplementation reduces hyperglycemia-induced skeletal muscle damage through regulation of insulin signaling and oxidative stress in type 2 diabetic mice. The Journal of Nutritional Biochemistry 57:77–85. doi: 10.1016/j.jnutbio.2018.03.016.
  • Lewis, G. F., A. C. Carpentier, S. Pereira, M. Hahn, and A. Giacca. 2021. Direct and indirect control of hepatic glucose production by insulin. Cell Metabolism 33 (4):709–20. doi: 10.1016/j.cmet.2021.03.007.
  • Li, D., Y. X. Rui, S. D. Guo, F. Luan, R. Liu, and N. Zeng. 2021. Ferulic acid: A review of its pharmacology, pharmacokinetics and derivatives. Life Sciences 284:119921. doi: 10.1016/j.lfs.2021.119921.
  • Li, M., X. Chi, Y. Wang, S. Setrerrahmane, W. Xie, and H. Xu. 2022. Trends in insulin resistance: Insights into mechanisms and therapeutic strategy. Signal Transduction and Targeted Therapy 7 (1):216. doi: 10.1038/s41392-022-01073-0.
  • Li, M., F. Wang, J. Wang, A. Wang, X. Yao, P. Strappe, Z. Zhou, Q. Wu, and T. Guo. 2022. Starch acylation of different short-chain fatty acids and its corresponding influence on gut microbiome and diabetic indexes. Food Chemistry 389:133089.
  • Li, X., X. Cai, X. Ma, L. Jing, J. Gu, L. Bao, J. Li, M. Xu, Z. Zhang, and Y. Li. 2016. Short- and long-term effects of wholegrain oat intake on weight management and glucolipid metabolism in overweight type-2 diabetics: A randomized control trial. Nutrients 8 (9):549. doi: 10.3390/nu8090549.
  • Liang, W., D. Zhang, J. Kang, X. Meng, J. Yang, L. Yang, N. Xue, Q. Gao, S. Han, and X. Gou. 2018. Protective effects of rutin on liver injury in type 2 diabetic db/db mice. Biomedicine & Pharmacotherapy 107:721–8. doi: 10.1016/j.biopha.2018.08.046.
  • Liu, M., Y. Zhang, H. Zhang, B. Hu, L. Wang, H. Qian, and X. Qi. 2016. The anti-diabetic activity of oat beta-d-glucan in streptozotocin-nicotinamide induced diabetic mice. International Journal of Biological Macromolecules 91:1170–6. doi: 10.1016/j.ijbiomac.2016.06.083.
  • Liu, M., M. Zheng, D. Cai, J. Xie, Z. Jin, H. Liu, and J. Liu. 2019. Zeaxanthin promotes mitochondrial biogenesis and adipocyte browning via AMPKα1 activation. Food & Function 10 (4):2221–33. doi: 10.1039/C8FO02527D.
  • Liu, Z. H., and B. Li. 2021. Procyanidin B1 and p-coumaric acid from highland barley grain showed synergistic effect on modulating glucose metabolism via IRS-1/PI3K/Akt pathway. Molecular Nutrition & Food Research 65 (18):e2100454. doi: 10.1002/mnfr.202100454.
  • Lopez-Soldado, I., J. J. Guinovart, and J. Duran. 2021. Increasing hepatic glycogen moderates the diabetic phenotype in insulin-deficient Akita mice. The Journal of Biological Chemistry 296:100498. doi: 10.1016/j.jbc.2021.100498.
  • Lu, G., X. Teng, Z. Zheng, R. Zhang, L. Peng, F. Zheng, J. Liu, H. Huang, and H. Xiong. 2016. Overexpression of a glucokinase point mutant in the treatment of diabetes mellitus. Gene Therapy 23 (4):323–9. doi: 10.1038/gt.2016.1.
  • Luo, K., X. Wang, and G. Zhang. 2019. Starch and beta-glucan in a whole-grain-like structural form improve hepatic insulin sensitivity in diet-induced obese mice. Food & Function 10 (8):5091–101. doi: 10.1039/C9FO00798A.
  • Ma, Y., M. Gao, and D. Liu. 2015. Chlorogenic acid improves high fat diet-induced hepatic steatosis and insulin resistance in mice. Pharmaceutical Research 32 (4):1200–9. doi: 10.1007/s11095-014-1526-9. 25248334
  • Mahendran, Y., H. Cederberg, J. Vangipurapu, A. J. Kangas, P. Soininen, J. Kuusisto, M. Uusitupa, M. Ala-Korpela, and M. Laakso. 2013. Glycerol and fatty acids in serum predict the development of hyperglycemia and type 2 diabetes in Finnish men. Diabetes Care 36 (11):3732–8. doi: 10.2337/dc13-0800.
  • Malin, S. K., E. L. Kullman, A. R. Scelsi, J. M. Haus, J. Filion, M. R. Pagadala, J. P. Godin, S. Kochhar, A. B. Ross, and J. P. Kirwan. 2018. A whole-grain diet reduces peripheral insulin resistance and improves glucose kinetics in obese adults: A randomized-controlled trial. Metabolism: Clinical and Experimental 82:111–7. doi: 10.1016/j.metabol.2017.12.011.
  • Marventano, S., C. Vetrani, M. Vitale, J. Godos, G. Riccardi, and G. Grosso. 2017. Whole grain intake and glycaemic control in healthy subjects: A systematic review and meta-analysis of randomized controlled trials. Nutrients 9 (7):769. doi: 10.3390/nu9070769.
  • Mattei, L., F. V. Francisqueti-Ferron, J. L. Garcia, A. J. T. Ferron, C. Silva, C. S. Gregolin, E. T. Nakandakare-Maia, J. Silva, F. Moreto, I. O. Minatel, et al. 2021. Antioxidant and anti-inflammatory properties of gamma- oryzanol attenuates insulin resistance by increasing GLUT- 4 expression in skeletal muscle of obese animals. Molecular and Cellular Endocrinology 537:111423. doi: 10.1016/j.mce.2021.111423.
  • McCorvie, T. J., P. M. Loria, M. Tu, S. Han, L. Shrestha, D. S. Froese, I. M. Ferreira, A. P. Berg, and W. W. Yue. 2022. Molecular basis for the regulation of human glycogen synthase by phosphorylation and glucose-6-phosphate. Nature Structural & Molecular Biology 29 (7):628–38. doi: 10.1038/s41594-022-00799-3.
  • Mitra, S., A. Rauf, A. M. Tareq, S. Jahan, T. B. Emran, T. G. Shahriar, K. Dhama, F. A. Alhumaydhi, A. S. M. Aljohani, M. Rebezov, et al. 2021. Potential health benefits of carotenoid lutein: An updated review. Food and Chemical Toxicology 154:112328. doi: 10.1016/j.fct.2021.112328.
  • Musa-Veloso, K., T. Poon, L. S. Harkness, M. O’Shea, and Y. Chu. 2018. The effects of whole-grain compared with refined wheat, rice, and rye on the postprandial blood glucose response: A systematic review and meta-analysis of randomized controlled trials. The American Journal of Clinical Nutrition 108 (4):759–74. doi: 10.1093/ajcn/nqy112.
  • Nair, A. T. N., A. Wesolowska-Andersen, C. Brorsson, A. L. Rajendrakumar, S. Hapca, S. Gan, A. Y. Dawed, L. A. Donnelly, R. McCrimmon, A. S. F. Doney, et al. 2022. Heterogeneity in phenotype, disease progression and drug response in type 2 diabetes. Nature Medicine 28 (5):982–8. doi: 10.1038/s41591-022-01790-7.
  • Nanjaiah, H., and B. Vallikannan. 2019. Enhanced phosphorylation of AMPK by lutein and oxidised lutein that lead to mitochondrial biogenesis in hyperglycemic HepG2 cells. Journal of Cellular Biochemistry 120 (9):15255–67. doi: 10.1002/jcb.28793.
  • Nankar, R., P. K. Prabhakar, and M. Doble. 2017. Hybrid drug combination: Combination of ferulic acid and metformin as anti-diabetic therapy. Phytomedicine : International Journal of Phytotherapy and Phytopharmacology 37:10–3. doi: 10.1016/j.phymed.2017.10.015.
  • Naowaboot, J., P. Piyabhan, N. Munkong, W. Parklak, and P. Pannangpetch. 2016. Ferulic acid improves lipid and glucose homeostasis in high-fat diet-induced obese mice. Clinical and Experimental Pharmacology & Physiology 43 (2):242–50. doi: 10.1111/1440-1681.12514. 26541794
  • Narasimhan, A., M. Chinnaiyan, and B. Karundevi. 2015. Ferulic acid exerts its antidiabetic effect by modulating insulin-signalling molecules in the liver of high-fat diet and fructose-induced type-2 diabetic adult male rat. Applied Physiology, Nutrition, and Metabolism = Physiologie Appliquee, Nutrition et Metabolisme 40 (8):769–81. doi: 10.1139/apnm-2015-0002.
  • Neyrinck, A. M., S. Hiel, C. Bouzin, V. G. Campayo, P. D. Cani, L. B. Bindels, and N. M. Delzenne. 2018. Wheat-derived arabinoxylan oligosaccharides with bifidogenic properties abolishes metabolic disorders induced by western diet in mice. Nutrition & Diabetes 8 (1):15. doi: 10.1038/s41387-018-0019-z.
  • Nguyen, L. V., K. D. A. Nguyen, C. T. Ma, Q. T. Nguyen, H. T. H. Nguyen, D. J. Yang, T. L. Tran, K. W. Kim, and K. V. Doan. 2021. p-Coumaric acid enhances hypothalamic leptin signaling and glucose homeostasis in mice via differential effects on AMPK activation. International Journal of Molecular Sciences 22 (3):1431. doi: 10.3390/ijms22031431.
  • Nie, Q., J. Hu, H. Chen, F. Geng, and S. Nie. 2022. Arabinoxylan ameliorates type 2 diabetes by regulating the gut microbiota and metabolites. Food Chemistry 371:131106. doi: 10.1016/j.foodchem.2021.131106.
  • Nozaki, Y., M. C. Petersen, D. Zhang, D. F. Vatner, R. J. Perry, A. Abulizi, S. Haedersdal, X.-M. Zhang, G. M. Butrico, V. T. Samuel, et al. 2020. Metabolic control analysis of hepatic glycogen synthesis in vivo. Proceedings of the National Academy of Sciences 117 (14):8166–76. doi: 10.1073/pnas.1921694117.
  • Nurmi, T., L. Nyström, M. Edelmann, A.-M. Lampi, and V. Piironen. 2008. Phytosterols in wheat genotypes in the HEALTHGRAIN diversity screen. Journal of Agricultural and Food Chemistry 56 (21):9710–5. doi: 10.1021/jf8010678.
  • Obafemi, T. O., K. F. Jaiyesimi, A. A. Olomola, O. R. Olasehinde, O. A. Olaoye, F. D. Adewumi, B. A. Afolabi, O. B. Adewale, C. O. Akintayo, and O. A. Ojo. 2021. Combined effect of metformin and gallic acid on inflammation, antioxidant status, endoplasmic reticulum (ER) stress and glucose metabolism in fructose-fed streptozotocin-induced diabetic rats. Toxicology Research 8:1419–27.
  • Oboh, G., M. D. Ogunbadejo, O. B. Ogunsuyi, and S. I. Oyeleye. 2022. Can gallic acid potentiate the antihyperglycemic effect of acarbose and metformin? Evidence from streptozotocin-induced diabetic rat model. Archives of Physiology and Biochemistry 128 (3):619–27. doi: 10.1080/13813455.2020.1716014.
  • Oishi, K., S. Yamamoto, N. Itoh, R. Nakao, Y. Yasumoto, K. Tanaka, Y. Kikuchi, S. Fukudome, K. Okita, and Y. Takano-Ishikawa. 2015. Wheat alkylresorcinols suppress high-fat, high-sucrose diet-induced obesity and glucose intolerance by increasing insulin sensitivity and cholesterol excretion in male mice. The Journal of Nutrition 145 (2):199–206. doi: 10.3945/jn.114.202754.
  • Ola, M. S., M. M. Ahmed, R. Ahmad, H. M. Abuohashish, S. S. Al-Rejaie, and A. S. Alhomida. 2015. Neuroprotective effects of rutin in streptozotocin-induced diabetic rat retina. Journal of Molecular Neuroscience : MN 56 (2):440–8. doi: 10.1007/s12031-015-0561-2.
  • Ong, K. W., A. Hsu, and B. K. Tan. 2013. Anti-diabetic and anti-lipidemic effects of chlorogenic acid are mediated by ampk activation. Biochemical Pharmacology 85 (9):1341–51. doi: 10.1016/j.bcp.2013.02.008.
  • Panfili, G., A. Fratianni, and M. Irano. 2003. Normal phase high-performance liquid chromatography method for the determination of tocopherols and tocotrienols in cereals. Journal of Agricultural and Food Chemistry 51 (14):3940–4. doi: 10.1021/jf030009v.
  • Pang, Y., S. Ahmed, Y. Xu, T. Beta, Z. Zhu, Y. Shao, and J. Bao. 2018. Bound phenolic compounds and antioxidant properties of whole grain and bran of white, red and black rice. Food Chemistry 240:212–21. doi: 10.1016/j.foodchem.2017.07.095.
  • Paznocht, L., Z. Kotikova, M. Sulc, J. Lachman, M. Orsak, M. Eliasova, and P. Martinek. 2018. Free and esterified carotenoids in pigmented wheat, tritordeum and barley grains. Food Chemistry 240:670–8. doi: 10.1016/j.foodchem.2017.07.151.
  • Pereira-Caro, G., G. Cros, T. Yokota, and A. Crozier. 2013. Phytochemical profiles of black, red, brown, and white rice from the Camargue region of France. Journal of Agricultural and Food Chemistry 61 (33):7976–86. doi: 10.1021/jf401937b.
  • Perry, R. J., J. G. Camporez, R. Kursawe, P. M. Titchenell, D. Zhang, C. J. Perry, M. J. Jurczak, A. Abudukadier, M. S. Han, X. M. Zhang, et al. 2015. Hepatic acetyl CoA links adipose tissue inflammation to hepatic insulin resistance and type 2 diabetes. Cell 160 (4):745–58. doi: 10.1016/j.cell.2015.01.012.
  • Perry, R. J., D. Zhang, M. T. Guerra, A. L. Brill, L. Goedeke, A. R. Nasiri, A. Rabin-Court, Y. Wang, L. Peng, S. Dufour, et al. 2020. Glucagon stimulates gluconeogenesis by INSP3R1-mediated hepatic lipolysis. Nature 579 (7798):279–83. doi: 10.1038/s41586-020-2074-6.
  • Petersen, M. C., D. F. Vatner, and G. I. Shulman. 2017. Regulation of hepatic glucose metabolism in health and disease. Nature Reviews Endocrinology 13 (10):572–87. doi: 10.1038/nrendo.2017.80.
  • Puigserver, P., J. Rhee, J. Donovan, C. J. Walkey, J. C. Yoon, F. Oriente, Y. Kitamura, J. Altomonte, H. Dong, D. Accili, et al. 2003. Insulin-regulated hepatic gluconeogenesis through FOXO1–PGC-1α interaction. Nature 423 (6939):550–5. doi: 10.1038/nature01667.
  • Qi, M.-Y., X.-T. Wang, H.-L. Xu, Z.s-L. Yang, Y. Cheng, and B. Zhou. 2020. Protective effect of ferulic acid on STZ-induced diabetic nephropathy in rats. Food & Function 11 (4):3706–18. doi: 10.1039/c9fo02398d. 32307498
  • Qiu, X., D. H. Gao, X. Xiang, Y. F. Xiong, T. S. Zhu, L. G. Liu, X. F. Sun, and L. P. Hao. 2015. Ameliorative effects of lutein on non-alcoholic fatty liver disease in rats. World Journal of Gastroenterology 21 (26):8061–72. doi: 10.3748/wjg.v21.i26.8061.
  • Radika, M. K., P. Viswanathan, and C. V. Anuradha. 2013. Nitric oxide mediates the insulin sensitizing effects of β-sitosterol in high fat diet-fed rats. Nitric Oxide : biology and Chemistry 32:43–53. doi: 10.1016/j.niox.2013.04.007. 23624268
  • Rahimifard, M., M. Baeeri, H. Bahadar, S. Moini-Nodeh, M. Khalid, H. Haghi-Aminjan, H. Mohammadian, and M. Abdollahi. 2020. Therapeutic effects of gallic acid in regulating senescence and diabetes; an in vitro study. Molecules 25 (24):5875. doi: 10.3390/molecules25245875.
  • Ramalingam, S., M. Packirisamy, M. Karuppiah, G. Vasu, R. Gopalakrishnan, K. Gothandam, and M. Thiruppathi. 2020. Effect of beta-sitosterol on glucose homeostasis by sensitization of insulin resistance via enhanced protein expression of PPRgamma and ­glucose transporter 4 in high fat diet and streptozotocin-induced diabetic rats. Cytotechnology 72 (3):357–66. doi: 10.1007/s10616-020-00382-y.
  • Rashed, A. A., Saparuddin, F. Rathi, D.-N G. Nasir, N. N. M, and Lokman, E. F. 2022. Effects of resistant starch interventions on metabolic biomarkers in pre-diabetes and diabetes adults. Frontiers in Nutrition 8:793414. doi: 10.3389/fnut.2021.793414.
  • Ren, Y., L. Li, L. Wan, Y. Huang, and S. Cao. 2022. Glucokinase as an emerging anti-diabetes target and recent progress in the development of its agonists. Journal of Enzyme Inhibition and Medicinal Chemistry 37 (1):606–15. doi: 10.1080/14756366.2021.2025362.
  • Rines, A. K., K. Sharabi, C. D. J. Tavares, and P. Puigserver. 2016. Targeting hepatic glucose metabolism in the treatment of type 2 diabetes. Nature Reviews. Drug Discovery 15 (11):786–804. doi: 10.1038/nrd.2016.151.
  • Ross, A. B., M. J. Shepherd, M. Schüpphaus, V. Sinclair, B. Alfaro, A. Kamal-Eldin, and P. Åman. 2003. Alkylresorcinols in cereals and cereal products. Journal of Agricultural and Food Chemistry 51 (14):4111–8. doi: 10.1021/jf0340456.
  • Sandberg, J. C., I. M. E. Björck, and A. C. Nilsson. 2017. Effects of whole grain rye, with and without resistant starch type 2 supplementation, on glucose tolerance, gut hormones, inflammation and appetite regulation in an 11–14.5 hour perspective; a randomized controlled study in healthy subjects. Nutrition Journal 16 (1):25. doi: 10.1186/s12937-017-0246-5.
  • Sarma, S. M., D. P. Singh, P. Singh, P. Khare, P. Mangal, S. Singh, V. Bijalwan, J. Kaur, S. Mantri, R. K. Boparai, et al. 2018. Finger millet arabinoxylan protects mice from high-fat diet induced lipid derangements, inflammation, endotoxemia and gut bacterial dysbiosis. International Journal of Biological Macromolecules 106:994–1003. doi: 10.1016/j.ijbiomac.2017.08.100.
  • Schmitz-Peiffer, C. 2020. Deconstructing the role of PKC epsilon in glucose homeostasis. Trends in Endocrinology and Metabolism: TEM 31 (5):344–56. doi: 10.1016/j.tem.2020.01.016.
  • Siebenhandl, S., H. Grausgruber, N. Pellegrini, D. Del Rio, V. Fogliano, R. Pernice, and E. Berghofer. 2007. Phytochemical profile of main antioxidants in different fractions of purple and blue wheat, and black barley. Journal of Agricultural and Food Chemistry 55 (21):8541–7. doi: 10.1021/jf072021j.
  • Singh, B., A. Kumar, H. Singh, S. Kaur, S. Arora, and B. Singh. 2022. Protective effect of vanillic acid against diabetes and diabetic nephropathy by attenuating oxidative stress and upregulation of NF-kappaB, TNF-alpha and COX-2 proteins in rats. Phytotherapy Research 36 (3):1338–52. doi: 10.1002/ptr.7392.
  • Song, X. L., M. J. Li, Q. Liu, Z. X. Hu, Z. Y. Xu, J. H. Li, W. L. Zheng, X. M. Huang, F. Xiao, Y. H. Cui, et al. 2020. Cyanidin-3-O-glucoside protects lens epithelial cells against high glucose-induced apoptosis and prevents cataract formation via suppressing NF-kappaB activation and COX-2 expression. Journal of Agricultural and Food Chemistry 68 (31):8286–94. doi: 10.1021/acs.jafc.0c03194.
  • Sreelekshmi, M., and K. G. Raghu. 2021. Vanillic acid mitigates the impairments in glucose metabolism in HepG2 cells through BAD-GK interaction during hyperinsulinemia. Journal of Biochemical and Molecular Toxicology 35 (6):1–8. doi: 10.1002/jbt.22750.
  • Stanley Mainzen Prince, P., and N. Kamalakkannan. 2006. Rutin improves glucose homeostasis in streptozotocin diabetic tissues by altering glycolytic and gluconeogenic enzymes. Journal of Biochemical and Molecular Toxicology 20 (2):96–102. doi: 10.1002/jbt.20117.
  • Sun, H., X. Ma, S. Zhang, D. Zhao, and X. Liu. 2018. Resistant starch produces antidiabetic effects by enhancing glucose metabolism and ameliorating pancreatic dysfunction in type 2 diabetic rats. International Journal of Biological Macromolecules 110:276–84. doi: 10.1016/j.ijbiomac.2017.11.162.
  • Sun, H., P. Saeedi, S. Karuranga, M. Pinkepank, K. Ogurtsova, B. B. Duncan, C. Stein, A. Basit, J. C. N. Chan, J. C. Mbanya, et al. 2022. IDF Diabetes Atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Research and Clinical Practice 183:109119. doi: 10.1016/j.diabres.2021.109119.
  • Tang, R., R. Li, H. Li, X. L. Ma, P. Du, X. Y. Yu, L. Ren, L. L. Wang, and W. S. Zheng. 2021. Design of hepatic targeted drug delivery systems for natural products: Insights into nomenclature revision of nonalcoholic fatty liver disease. ACS Nano. 15 (11):17016–46. doi: 10.1021/acsnano.1c02158.
  • Ter Horst, K. W., P. W. Gilijamse, R. I. Versteeg, M. T. Ackermans, A. J. Nederveen, S. E. la Fleur, J. A. Romijn, M. Nieuwdorp, D. Zhang, V. T. Samuel, et al. 2017. Hepatic diacylglycerol-associated protein kinase cepsilon translocation links hepatic steatosis to hepatic insulin resistance in humans. Cell Reports 19 (10):1997–2004. doi: 10.1016/j.celrep.2017.05.035.
  • Tian, L., H. Ning, W. Shao, Z. Song, Y. Badakhshi, W. Ling, B. B. Yang, P. L. Brubaker, and T. Jin. 2020. Dietary cyanidin-3-glucoside attenuates high-fat-diet-induced body-weight gain and impairment of glucose tolerance in mice via effects on the hepatic hormone FGF21. The Journal of Nutrition 150 (8):2101–11. doi: 10.1093/jn/nxaa140.
  • Tian, R., W. Yang, Q. Xue, L. Gao, J. Huo, D. Ren, and X. Chen. 2016. Rutin ameliorates diabetic neuropathy by lowering plasma glucose and decreasing oxidative stress via Nrf2 signaling pathway in rats. European Journal of Pharmacology 771:84–92. doi: 10.1016/j.ejphar.2015.12.021.
  • Tian, W., Y. Zheng, W. Wang, D. Wang, M. Tilley, G. Zhang, Z. He, and Y. Li. 2022. A comprehensive review of wheat phytochemicals: From farm to fork and beyond. Comprehensive Reviews in Food Science and Food Safety 21 (3):2274–308. doi: 10.1111/1541-4337.12960.
  • Titchenell, P. M., Q. Chu, B. R. Monks, and M. J. Birnbaum. 2015. Hepatic insulin signalling is dispensable for suppression of glucose output by insulin in vivo. Nature Communactions 6:7078.
  • Truong, H. T., P. D. Luu, K. Imamura, T. Matsubara, H. Takahashi, N. Takenaka, L. V. Boi, and Y. Maeda. 2017. Binary solvent extraction of tocols, γ-oryzanol, and ferulic acid from rice bran using alkaline treatment combined with ultrasonication. Journal of Agricultural and Food Chemistry 65 (24):4897–904. doi: 10.1021/acs.jafc.7b00055.
  • Tu, J., G. Liu, X. Cao, S. Zhu, Q. Li, G. Ji, Y. Han, and H. Xiao. 2019. Hypoglycemic effects of wheat bran alkyresorcinols in high-fat/high-sucrose diet and low-dose streptozotocin-induced type 2 diabetic male mice and protection of pancreatic beta cells. Food & Function 10 (6):3282–90. doi: 10.1039/C8FO02396D.
  • Van Hung, P. 2016. Phenolic compounds of cereals and their antioxidant capacity. Critical Reviews in Food Science and Nutrition 56 (1):25–35. doi: 10.1080/10408398.2012.708909.
  • Wang, O., J. Liu, Q. Cheng, X. Guo, Y. Wang, L. Zhao, F. Zhou, and B. Ji. 2015. Effects of ferulic acid and γ-oryzanol on high-fat and high-fructose diet-induced metabolic syndrome in rats. PloS One 10 (2):e0118135. doi: 10.1371/journal.pone.0118135. PMC: 25646799
  • Wang, A., M. Liu, W. Shang, J. Liu, Z. Dai, P. Strappe, and Z. Zhou. 2019. Attenuation of metabolic syndrome in the ob/ob mouse model by resistant starch intervention is dose dependent. Food & Function 10 (12):7940–51. doi: 10.1039/c9fo01771b.
  • Wang, H., X. Sun, N. Zhang, Z. Ji, Z. Ma, Q. Fu, R. Qu, and S. Ma. 2017. Ferulic acid attenuates diabetes-induced cognitive impairment in rats via regulation of PTP1B and insulin signaling pathway. Physiology & Behavior 182:93–100.
  • Wang, J., J. Bai, M. Fan, T. Li, Y. Li, H. Qian, L. Wang, H. Zhang, X. Qi, and Z. Rao. 2020. Cereal-derived arabinoxylans: Structural features and structure–activity correlations. Trends in Food Science & Technology 96:157–65. doi: 10.1016/j.tifs.2019.12.016.
  • Wang, L., J. Li, and L.-J. Di. 2022. Glycogen synthesis and beyond, a comprehensive review of GSK3 as a key regulator of metabolic pathways and a therapeutic target for treating metabolic diseases. Medicinal Research Reviews 42 (2):946–82. doi: 10.1002/med.21867.
  • Wang, L., X. Pan, L. Jiang, Y. Chu, S. Gao, X. Jiang, Y. Zhang, Y. Chen, S. Luo, and C. Peng. 2022. The biological activity mechanism of chlorogenic acid and its applications in food industry: A review. Frontiers in Nutrition 9:943911. doi: 10.3389/fnut.2022.943911.
  • Wang, Y., H. Kwon, X. Su, and F. E. Wondisford. 2020. Glycerol not lactate is the major net carbon source for gluconeogenesis in mice during both short and prolonged fasting. Molecular Metabolism 31:36–44. doi: 10.1016/j.molmet.2019.11.005.
  • Wang, Z., Z. Hu, B. Deng, R. G. Gilbert, and M. A. Sullivan. 2022. The effect of high-amylose resistant starch on the glycogen structure of diabetic mice. International Journal of Biological Macromolecules 200:124–31. doi: 10.1016/j.ijbiomac.2021.12.071.
  • Winzell, M. S., M. Coghlan, B. Leighton, G. Frangioudakis, D. M. Smith, L. H. Storlien, and B. Ahrén. 2011. Chronic glucokinase activation reduces glycaemia and improves glucose tolerance in high-fat diet fed mice. European Journal of Pharmacology 663 (1–3):80–6. doi: 10.1016/j.ejphar.2011.05.009.
  • Wisetkomolmat, J., C. Arjin, A. Satsook, M. Seel-Audom, W. Ruksiriwanich, C. Prom-U-Thai, and K. Sringarm. 2022. Comparative analysis of nutritional components and phytochemical attributes of selected thai rice bran. Frontiers in Nutrition 9 :833730. doi: 10.3389/fnut.2022.833730.
  • Wong, W. Y., L. C. Ward, C. W. Fong, W. N. Yap, and L. Brown. 2017. Anti-inflammatory gamma- and delta-tocotrienols improve cardiovascular, liver and metabolic function in diet-induced obese rats. European Journal of Nutrition 56 (1):133–50. doi: 10.1007/s00394-015-1064-1.
  • Wongmekiat, O., N. Lailerd, A. Kobroob, and W. Peerapanyasut. 2021. Protective effects of purple rice husk against diabetic nephropathy by modulating PGC-1alpha/SIRT3/SOD2 signaling and maintaining mitochondrial redox equilibrium in rats. Biomolecules 11 (8):1224. doi: 10.3390/biom11081224.
  • Xie, J., M. Liu, H. Liu, Z. Jin, F. Guan, S. Ge, J. Yan, M. Zheng, D. Cai, and J. Liu. 2021. Zeaxanthin ameliorates obesity by activating the beta3-adrenergic receptor to stimulate inguinal fat thermogenesis and modulating the gut microbiota. Food & Function 12 (24):12734–50. doi: 10.1039/D1FO02863D.
  • Ye, X., W. Chen, P. Tu, R. Jia, Y. Liu, Y. Li, Q. Tang, X. Zheng, and Q. Chu. 2021. Food-derived cyanidin-3-O-glucoside alleviates oxidative stress: Evidence from the islet cell line and diabetic db/db mice. Food & Function 12 (22):11599–610. doi: 10.1039/D1FO02385C.
  • Ye, X., J. Li, Z. Gao, D. Wang, H. Wang, and J. Wu. 2022. Chlorogenic acid inhibits lipid deposition by regulating the enterohepatic FXR-FGF15 pathway. BioMed Research International 2022:4919153.
  • Ying, C., L. Chen, S. Wang, Y. Mao, H. Ling, W. Li, and X. Zhou. 2017. Zeaxanthin ameliorates high glucose-induced mesangial cell apoptosis through inhibiting oxidative stress via activating AKT signalling-pathway. Biomedicine & Pharmacotherapy 90:796–805. doi: 10.1016/j.biopha.2017.04.013.
  • Yoon, D. S., S. Y. Cho, H. J. Yoon, S. R. Kim, and U. J. Jung. 2021. Protective effects of p-coumaric acid against high-fat diet-induced metabolic dysregulation in mice. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie 142:111969 doi: 10.1016/j.biopha.2021.111969. PMC: 34333285
  • Yoon, S. A., S. I. Kang, H. S. Shin, S. W. Kang, J. H. Kim, H. C. Ko, and S. J. Kim. 2013. p-Coumaric acid modulates glucose and lipid metabolism via AMP-activated protein kinase in L6 skeletal muscle cells. Biochemical and Biophysical Research Communications 432 (4):553–7. doi: 10.1016/j.bbrc.2013.02.067.
  • Yu, J., T. Deng, and S. Xiang. 2018. Structural basis for protein phosphatase 1 recruitment by glycogen-targeting subunits. The FEBS Journal 285 (24):4646–59. doi: 10.1111/febs.14699.
  • Zabad, O. M., Y. A. Samra, and L. A. Eissa. 2019. p-Coumaric acid alleviates experimental diabetic nephropathy through modulation of Toll like receptor-4 in rats. Life Sciences 238:116965. doi: 10.1016/j.lfs.2019.116965.
  • Zhang, G., Z. Xu, Y. Gao, X. Huang, Y. Zou, and T. Yang. 2015. Effects of germination on the nutritional properties, phenolic profiles, and antioxidant activities of buckwheat. Journal of Food Science 80 (5):H1111–H1119. doi: 10.1111/1750-3841.12830.
  • Zhang, K., J. Sun, M. Fan, H. Qian, H. Ying, Y. Li, and L. Wang. 2021. Functional ingredients present in whole-grain foods as therapeutic tools to counteract obesity: Effects on brown and white adipose tissues. Trends in Food Science & Technology 109:513–26. doi: 10.1016/j.tifs.2021.01.055.
  • Zhao, L., I. Kang, X. Fang, W. Wang, M. A. Lee, R. R. Hollins, M. R. Marshall, and S. Chung. 2015. Gamma-tocotrienol attenuates high-fat diet-induced obesity and insulin resistance by inhibiting adipose inflammation and M1 macrophage recruitment. International Journal of Obesity (2005) 39 (3):438–46.
  • Zheng, H. X., S. S. Qi, J. He, C. Y. Hu, H. Han, H. Jiang, and X. S. Li. 2020. Cyanidin-3-glucoside from black rice ameliorates diabetic nephropathy via reducing blood glucose, suppressing oxidative stress and inflammation, and regulating transforming growth factor beta1/smad expression. Journal of Agricultural and Food Chemistry 68 (15):4399–410. doi: 10.1021/acs.jafc.0c00680.
  • Zhou, X., S. Wang, X. Ding, L. Qin, Y. Mao, L. Chen, W. Li, and C. Ying. 2017. Zeaxanthin improves diabetes-induced cognitive deficit in rats through activiting PI3K/AKT signaling pathway. Brain Research Bulletin 132:190–8. doi: 10.1016/j.brainresbull.2017.06.001.
  • Zhou, Z., F. Wang, X. Ren, Y. Wang, and C. Blanchard. 2015. Resistant starch manipulated hyperglycemia/hyperlipidemia and related genes expression in diabetic rats. International Journal of Biological Macromolecules 75:316–21. doi: 10.1016/j.ijbiomac.2015.01.052.
  • Zhu, F. 2018. Anthocyanins in cereals: Composition and health effects. Food Research International (Ottawa, Ont.) 109:232–49. doi: 10.1016/j.foodres.2018.04.015.
  • Zhu, W., Q. Jia, Y. Wang, Y. Zhang, and M. Xia. 2012. The anthocyanin cyanidin-3-O-beta-glucoside, a flavonoid, increases hepatic glutathione synthesis and protects hepatocytes against reactive oxygen species during hyperglycemia: Involvement of a cAMP-PKA-dependent signaling pathway. Free Radical Biology and Medicine 52 (2):314–27. doi: 10.1016/j.freeradbiomed.2011.10.483.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.