261
Views
11
CrossRef citations to date
0
Altmetric
Research Article

IdeR in Mycobacteria: From Target Recognition to Physiological Function

, &
Pages 69-75 | Received 04 Jan 2006, Accepted 20 Jan 2006, Published online: 11 Oct 2008

REFERENCES

  • Agranoff D., Krishna S. Metal ion homeostasis and intracellular parasitism. Mol Microbio 1998; 28: 403–412, [CSA]
  • Agranoff D., Monahan I. M., Mangan J. A., Butcher P. D., Krishna S. Mycobacterium tuberculosis expresses a novel pH-dependent divalent cation transporter belonging to the Nramp family. J. Exp. Med. 1999; 5: 717–724, [CSA], [CROSSREF]
  • Berish S. A., Subbarao S., Chen C. Y., Trees D. L., Morse S. A. Identification and cloning of a fur homolog from Neisseria gonorrhoeae. Infect. Immun. 1993; 61: 4599–4606, [CSA]
  • Bijlsma J. J., Waidner B., Vliet A. H., Hughes N. J., Hag S., Bereswill S., Kelly D. J., Vandenbroucke-Grauls C. M., Kist M., Kusters J. G. The Helicobacter pylori homologue of the ferric uptake regulator is involved in acid resistance. Infect. Immun. 2002; 70: 606–611, [CSA], [CROSSREF]
  • Boland C. A., Meijer W. G. The iron dependent regulatory protein IdeR DtxR of Rhodococcus equi. FEMS Microbiol. Lett. 2000; 191: 1–5, [CSA]
  • Butterton J. R., Calderwood S. B. Identification, cloning, and sequencing of a gene required for ferric vibriobactin utilization by Vibrio cholerae. J. Bacteriol. 1994; 176: 5631–5638, [CSA]
  • Chen C. S., White A., Love J., Murphy J. R., Ringe D. Methyl groups of thymine bases are important for nucleic acid recognition by DtxR. Biochemistry 2000; 39: 10397–10407, [CSA], [CROSSREF]
  • Chou C. J., Wisedchaisri G., Monfeli R. R., Oram D. M., Holmes R. K., Hol W. G., Beeson C. Functional Studies of the Mycobacterium tuberculosis Iron-dependent Regulator. J. Biol. Chem. 2004; 279: 53554–53561, [CSA], [CROSSREF]
  • Clemens D. L., Lee B. Y., Horwitz M. A. Purification, characterization, and genetic analysis of Mycobacterium tuberculosis urease, a potentially critical determinant of host-pathogen interaction. J. Bacteriol. 1995; 177: 5644–5652, [CSA]
  • Cronje L., Edmondson N., Eisenach K. D., Bornman L. Iron and iron chelating agents modulate Mycobacterium tuberculosis growth and monocyte-macrophage viability and effector functions. FEMS Immunol. Med. Microbiol. 2005; 45: 103–112, [CSA], [CROSSREF]
  • Dhople A. M., Ibanez M. A., Poirier T. C. Role of iron in the pathogenesis of Mycobacterium avium infection in mice. Microbios. 1996; 87: 77–87, [CSA]
  • Domenech P., Reed M. B., Barry C. E. 3rd Contribution of the Mycobacterium tuberculosis MmpL protein family to virulence and drug resistance. Infect. Immun. 2005; 73: 3492–3501, [CSA], [CROSSREF]
  • Doukhan L., Predich M., Nair G., Dussurget O., Mandic-Mulec I., Cole S. T., Smith D. R., Smith I. Genomic organization of the mycobacterial sigma gene cluster. Gene. 1995; 165: 67–70, [CSA], [CROSSREF]
  • Dussurget O., Rodriguez M., Smith I. An ideR mutant of Mycobacterium smegmatis has a derepressed siderophore production and an altered oxidative-stress response. Mol. Microbiol. 1996; 22: 535–544, [CSA], [CROSSREF]
  • Dussurget O., Rodriguez M., Smith I. Protective role of the mycobacterial IdeR against reactive oxygen species and isoniazid toxicity. Tuber. Lung. Dis. 1998; 79: 99–106, [CSA], [CROSSREF]
  • Dussurget O., Timm J., Gomez M., Gold B., Yu S., Sabol S. Z., Holmes R. K., Jacobs W. R., Jr., Smith I. Transcriptional control of the iron responsive fxbA gene by the mycobacterial regulator IdeR. J. Bacteriol. 1999; 181: 3402–3408, [CSA]
  • Feese M. D., Ingason B. P., Goranson-Siekierke J., Holmes R. K., Hol W. G. Crystal Structure of the Iron-dependent Regulator from Mycobacterium tuberculosis at 2.0-Å Resolution Reveals the Src Homology Domain 3-like Fold and Metal Binding Function of the Third Domain. J. Biol. Chem. 2001; 276: 5959–5966, [CSA], [CROSSREF]
  • Fiss E. H., Yu S., Jacobs W. R., Jr. Identification of genes involved in the sequestration of iron in mycobacteria, the ferric exochelin biosynthetic and uptake pathways. Mol. Microbiol. 1994; 14: 557–569, [CSA]
  • Gold B., Rodriguez G. M., Marras S. A., Pentecost M., Smith I. The Mycobacterium tuberculosis IdeR is a dual functional regulator that controls transcription of genes involved in iron acquisition, iron storage and survival in macrophages. Mol. Microbiol. 2001; 42: 851–865, [CSA], [CROSSREF]
  • Heimer S. R., Welch R. A., Perna N. T., Posfai G., Evans P. S., Kaper J. B., Blattner F. R., Mobley H. L. Urease of enterohemorrhagic Escherichia coli, evidence for regulation by fur and a trans-acting factor. Infect. Immun. 2002; 70: 1027–1031, [CSA], [CROSSREF]
  • Ho W. L., Yu R. C., Chou C. C. Effect of iron limitation on the growth and cytotoxin production of Salmonella choleraesuis SC-5. Int. J. Food. Microbiol. 2004; 3: 295–302, [CSA], [CROSSREF]
  • Hobson R. J., McBride A. J., Kempsell K. E., Dale J. W. Use of an arrayed promoter-probe library for the identification of macrophage-regulated genes in Mycobacterium tuberculosis. Microbiology 2002; 148: 1571–1579, [CSA]
  • Macham L. P., Ratledge C. A new group of water-soluble iron-binding compounds from Mycobacteria, the exochelins. J. Gen. Microbiol. 1975; 89: 379–382, [CSA]
  • Manabe Y. C., Saviola B. J., Sun L., Murphy J. R., Bishai W. R. Attenuation of virulence in Mycobacterium tuberculosis expressing a constitutively active iron repressor. Proc. Natl. Acad. Sci. USA 1999; 96: 12844–12848, [CSA], [CROSSREF]
  • Manabe Y. C., Hatem C. L., Kesavan A. K., Durack J., Murphy J. R. Both Corynebacterium diphtheriae DtxRE175K) and Mycobacterium tuberculosis IdeRD177K) are dominant positive repressors of IdeR-regulated genes in M. tuberculosis. Infect. Immun. 2005; 73: 5988–5994, [CSA], [CROSSREF]
  • Martinez A., Kolter R. Protection of DNA during oxidative stress by the non specific DNA-binding protein Dps. J. Bacteriol. 1997; 179: 5188–5194, [CSA]
  • Neilands J. B. Evolution of biological iron binding centers. Struct. Bond. 1972; 11: 145–170, [CSA]
  • Neilands J. B. Microbial iron compounds. Annu. Rev. Biochem. 1981; 50: 715–731, [CSA], [CROSSREF]
  • Neilands J. B. Microbial envelope proteins related to iron. Annu. Rev. Microbiol. 1982; 36: 285–309, [CSA], [CROSSREF]
  • Payne S. M. Iron and virulence in Shigella. Mol. Microbiol. 1989; 3: 1301–1306, [CSA]
  • Pohl E., Qui X., Must L. M., Holmes R. K., Hol W. G. Comparison of high-resolution structures of the diphtheria toxin repressor in complex with cobalt and zinc at the cation-anion binding site. Protein Sci. 1997; 6: 1114–1118, [CSA]
  • Pohl E., Holmes R. K., Hol W. G. Crystal structure of the iron-dependent regulator IdeR) from Mycobacterium tuberculosis shows both metal binding sites fully occupied. J. Mol. Biol. 1999; 285: 1145–1156, [CSA], [CROSSREF]
  • Prakash P., Yellaboina S., Ranjan A., Hasnain S. E. Computational prediction and experimental verification of novel IdeR binding sites in the upstream sequences of Mycobacterium tuberculosis ORFs. Bioinformatics 2005; 21: 2161–2166, [CSA], [CROSSREF]
  • Pressler U., Staudenmaier H., Zimmermann L., Braun V. Genetics of the iron dicitrate transport system of Escherichia coli. J. Bacteriol. 1988; 170: 2716–2724, [CSA]
  • Qiu X., Verlinde C. L., Zhang S., Schmitt M. P., Holmes R. K., Hol W. G. Three-dimensional structure of the diphtheria toxin repressor in complex with divalent cation co-repressors. Structure 1995; 3: 87–100, [CSA], [CROSSREF]
  • Qiu X., Pohl E., Holmes R. K., Hol W. G. High-resolution structure of the diphtheria toxin repressor complexed with cobalt and manganese reveals an SH3-like third domain and suggests a possible role of phosphate as co-corepressor. Biochemistry 1996; 35: 12292–12302, [CSA], [CROSSREF]
  • Quadri L. E., Sello J., Keating T. A., Weinreb P. H., Walsh C. T. Identification of a Mycobacterium tuberculosis gene cluster encoding the biosynthetic enzymes for assembly of the virulence-conferring siderophore mycobactin. Chem. Biol. 1998; 5: 631–645, [CSA], [CROSSREF]
  • Ratledge C. Iron, mycobacteria and tuberculosis. Tuberculosis 2004; 84: 110–130, [CSA], [CROSSREF]
  • Ren J., Prescott J. F. Analysis of virulence plasmid gene expression of intra-macrophage and in vitro grown Rhodococcus equi ATCC 33701. Vet. Microbiol. 2003; 94: 167–182, [CSA], [CROSSREF]
  • Rodriguez G. M., Gold B., Gomez M., Dussurget O., Smith I. Identification and characterization of two divergently transcribed iron regulated genes in Mycobacterium tuberculosis. Tuber Lung Dis. 1999; 79: 287–298, [CSA], [CROSSREF]
  • Rodriguez G. M., Voskuil M. I., Gold B., Schoolnik G. K., Smith I. IdeR, an Essential Gene in Mycobacterium tuberculosis, Role of IdeR in Iron-Dependent Gene Expression, Iron Metabolism, and Oxidative Stress Response. Infect. Immun. 2002; 70: 3371–3381, [CSA], [CROSSREF]
  • Rodriguez G. M., Smith I. Mechanisms of iron regulation in mycobacteria, role in physiology and virulence. Mol. Microbiol. 2003; 47: 1485–1494, [CSA], [CROSSREF]
  • Schiering N., Tao X., Zeng H., Murphy J. R., Petsko G. A., Ringe D. Structures of the apo- and the metal ion-activated forms of the diphtheria tox repressor from Corynebacterium diphtheriae. Proc. Natl. Acad. Sci. USA 1995; 92: 9843–9850, [CSA]
  • Schmitt M. P., Holmes R. K. Iron dependent regulation of diphtheria toxin and siderophore expression by the cloned Corynebacterium diphtheriae repressor gene dtxR in C. diphtheriae C7 strains. Infect. Immun. 1991; 59: 1899–1904, [CSA]
  • Schmitt M. P., Twiddy E. M., Holmes R. K. Purification and Characterization of the Diphtheria Toxin Repressor. Proc. Natl. Acad. Sci. USA 1992; 89: 7576–7580, [CSA]
  • Schmitt M. P., Holmes R. K. Analysis of diphtheria toxin repressor-operator interactions and characterization of a mutant repressor with decreased binding activity for divalent metals. Mol. Microbiol. 1993; 9: 173–181, [CSA]
  • Schmitt M. P., Holmes R. K. Cloning, sequence, and footprint analysis of two promoter/operators from Corynebacterium diphtheriae that are regulated by the diphtheria toxin repressor and iron. J. Bacteriol. 1994; 176: 1141–1149, [CSA]
  • Schmitt M. P., Predich M., Doukhan L., Smith I., Holmes R. K. Characterization of an iron-dependent regulatory protein IdeR) of Mycobacterium tuberculosis as a functional homolog of the diphtheria toxin repressor DtxR) from Corynebacterium diphtheriae. Infect. Immun. 1995; 63: 4284–4289, [CSA]
  • Skamene E., Schurr E., Gros P. Infection genomics, Nramp1 as a major determinant of natural resistance to intracellular infections. Annu. Rev. Med. 1998; 49: 275–287, [CSA], [CROSSREF]
  • Sritharan M. Iron as a candidate in virulence and pathogenesis in mycobacteria and other microorganisms. World J. Microbio. Biotech. 2000; 16: 769–780, [CSA], [CROSSREF]
  • Supek F., Supekova L., Nelson H., Nelson N. Function of metal-ion homeostasis on the cell division cycle, mitochondrial protein processing, sensitivity to mycobacterial infection and brain function. J. Exp. Biol. 1997; 200: 321–330, [CSA]
  • Tao X., Murphy J. R. Binding of the metalloregulatory protein DtxR to the diphtheria tox operator requires a divalent heavy metal ion and protects the palindromic sequence from DNase I digestion. J. Biol. Chem. 1992; 267: 21761–21764, [CSA]
  • Tao X., Boyd J., Murphy J. R. Specific Binding of the Diphtheria tox Regulatory Element DtxR to the tox Operator Requires Divalent Heavy Metal Ions and a 9-Base-Pair Interrupted Palindromic Sequence. Proc. Natl. Acad. Sci. USA. 1992; 89: 5897–5901, [CSA]
  • Tolmasky M. E., Wertheimer A. M., Actis L. A., Crosa J. H. Characterization of the Vibrio anguillarum fur gene, role in regulation of expression of the FatA outer membrane protein and catechols. J. Bacteriol. 1994; 176: 213–220, [CSA]
  • Venturi V., Ottevanger C., Bracke M., Weisbeek P. Iron regulation of siderophore biosynthesis and transport in Pseudomonas putida WCS358, involvement of a transcriptional activator and the Fur protein. Mol. Microbiol. 1995; 15: 1081–1093, [CSA]
  • White A., Ding X., vanderSpek J. C., Murphy J. R., Ringe D. Structure of the metal-ion-activated diphtheria toxin repressor/tox operator complex. Nature 1998; 394: 502–506, [CSA], [CROSSREF]
  • Wisedchaisri G., Holmes R. K., Hol W. G. Crystal structure of an IdeR-DNA complex reveals a conformational change in activated IdeR for base-specific interactions. J. Mol. Biol. 2004; 342: 1155–1169, [CSA], [CROSSREF]
  • Yellaboina S., Seshadri J., Kumar M. S., Ranjan A. PredictRegulon, a web server for the prediction of the regulatory protein binding sites and operons in prokaryote genomes. Nucleic. Acids Res. 2004a; 32: W318–W320, [CSA]
  • Yellaboina S., Ranjan S., Chakhaiyar P., Hasnain S. E., Ranjan A. Prediction of DtxR regulon, Identification of binding sites and operons controlled by Diphtheria toxin repressor in Corynebacterium diphtheriae. BMC Microbiology 2004b; 4: 38, [CSA], [CROSSREF]
  • Zimmermann L., Hantke K., Braun V. Exogenous induction of the iron dicitrate transport system of Escherichia coli K-12. J. Bacteriol. 1984; 159: 271–277, [CSA]

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.