1,128
Views
104
CrossRef citations to date
0
Altmetric
Research Article

Environmental Stress Response in Wine Lactic Acid Bacteria: Beyond Bacillus subtilis

&
Pages 77-86 | Received 13 Jan 2006, Accepted 09 Feb 2006, Published online: 11 Oct 2008

REFERENCES

  • Altermann E., Russell W. M., Azcarate-Peril M. A., et al. Complete genome sequence of the probiotic lactic acid bacterium Lactobacillus acidophilus NCFM. Proc. Natl. Acad. Sci. USA 2005; 102: 3906–3912, [CSA]
  • Ahrne S., Nobaek S., Jeppsson B., Adlerberth I., Wold A. E., Molin G. The normal Lactobacillus flora of healthy human rectal and oral mucosa. J. Appl. Microbiol. 1998; 85: 88–94, [CSA], [CROSSREF]
  • Aymerich T., Martin B., Garriga M., Hugas M. Microbial quality and direct PCR identification of lactic acid bacteria and non-pathogenic staphylococci from artisanal low-acid sausages. Appl. Environ. Microbiol. 2003; 69: 4583–4594, [CSA], [CROSSREF]
  • Bartowsky E. J., Henschke P. A. Malolactic fermentation and wine flavour. The Australian Grapegrower and Winemaker 1995; 378: 83–94, [CSA]
  • Beltramo C., Grandvalet C., Pierre F., Guzzo J. Evidence for multiple levels of regulation of Oenococcus oeni clpP-clpL locus expression in response to stress. J. Bacteriol. 2004; 186: 2200–2205, [CSA], [CROSSREF]
  • Beneduce L., Spano G., Vernile A., Tarantino D., Massa S. Molecular characterization of lactic acid populations associated with wine spoilage. J. Basic. Microbiol. 2004; 44: 10–16, [CSA], [CROSSREF]
  • Bolotin A., Wincker P., Mauger S., Jaillon O., Malarme K., Weissenbach J., Ehrlich S. D., Sorokin A. The complete genome sequence of the lactic acid bacterium Lactococcus lactis subsp. lactis IL1403. Genome Res. 2001; 11: 731–753, [CSA], [CROSSREF]
  • Carrete R., Vidal M. T., Bordons A., Constanti M. Inhibitory effect of sulfur dioxide and other stress compounds in wine on the ATPase activity of Oenococcus oeni. FEMS Microbiol. Lett. 2002; 211: 155–159, [CSA], [CROSSREF]
  • Bourdineaud J. P., Nehme B., Tesse S., Lonvaud-Funel A. The ftsH gene of the wine bacterium Oenococcus oeni is involved in protection against environmental stress. Appl. Environ. Microbiol. 2003; 69: 2512–2520, [CSA], [CROSSREF]
  • Carreté R., Reguant C., Bordons A., Magda C. Relationship between a stress membrane protein of Oenococcus oeni and glyceraldehyde-3-phosphate dehydrogenases. Appl. Biochem., Biotech. 2005; 127: 43–52, [CSA], [CROSSREF]
  • Comitini F., Clementi F., Mannazu I., Ciani M. Yeast–bacteria interactions: The case of Saccharomyces cerevisiae and Oenococcus oeni. 23rd International Specialised Symposium on Yeasts. Diamond Congress Co., Budapest, Hungary 2003; 221, (P-4-67). Veszprém: Ookpress Kft
  • Cotter P. D., Hill C. Surviving the acid test: Responses of Gram-positive bacteria to low pH. Microbiol. Mol. Biol. Rev. 2003; 67: 429–453, [CSA], [CROSSREF]
  • Chastanet A., Ferrè T., Msadek T. Comparative genomics reveal novel heat shock regulatory mechanisms in Staphylococcus aureus and other Gram-positive bacteria. Mol. Microbiol. 2003; 47: 1061–1073, [CSA], [CROSSREF]
  • Chastanet A., Msadek T. clpP of Streptococcus salivarius Is a Novel Member of the Dually Regulated Class of Stress Response Genes in Gram-Positive Bacteria. J. Bacteriol. 2003; 185: 683–687, [CSA], [CROSSREF]
  • da Silveira M. G., Romão M. V.S., Loureiro-Dias M. C., Rombouts F. M., Abee T. Flow cytometric assessment of membrane integrity of ethanol-stressed Oenococcus oeni cells. Appl. Environ. Microbiol. 2002; 68: 6087–6093, [CSA], [CROSSREF]
  • da Silveira M. G., Golovina E. A, Hoekstra F. A., Rombouts F. M., Abee T. Membrane fluidity adjustments in ethanol-stressed Oenococcus oeni cells. Appl. Environ. Microbiol. 2003; 69: 5826–5832, [CSA], [CROSSREF]
  • da Silveira M. G., Baumgärtner M., Rombouts F. M., Abee T. Effect of adaptation to ethanol on cytoplasmic and membrane protein profiles of Oenococcus oeni. Appl. Environ. Microbiol. 2004; 70: 2748–2755, [CSA], [CROSSREF]
  • Davies C. R., Wibowo D., Fleet G. H., Lee T. H. Properties of wine lactic acid bacteria: Their potential oenological significance. Am. J. Enol. and Viticul. 1988; 39: 137–142, [CSA]
  • Derré I., Rapoport G., Msadek T. CtsR, a novel regulator of stress and heat shock response, controls clp and molecular chaperone gene expression in Gram-positive bacteria. Mol. Microbiol. 1999; 31: 117–132, [CSA], [CROSSREF]
  • Derzelle S., Hallet B., Ferain T., Delcour J., Hols P. Cold shock induction of the cspL gene in Lactobacillus plantarum involves transcriptional regulation. J. Bacteriol. 2002; 184: 5518–5523, [CSA], [CROSSREF]
  • Derzelle S., Hallet B., Ferain T., Delcour J., Hols P. Improved adaptation to cold shock, stationary-phase, and freezing stresses in Lactobacillus plantarum overproducing cold shock proteins. Appl. Environ. Microbiol. 2003; 69: 4285–4290, [CSA], [CROSSREF]
  • Ehrnsperger M., Gaestel M., Buchner J. Molecular Chaperones in the life Cycle of Proteins, A. L. Fink, Y. Goto. Dekker, New York 1998; 533–575
  • Ercolini D., Hill P. J., Dodd C. E.R. Bacterial community structure and location in Stilton cheese. Appl. Environ. Microbiol. 2003; 69: 3540–3548, [CSA], [CROSSREF]
  • Grandvalet C., Coucheney F., Beltramo C., Guzzo J. CtsR is the master regulator of stress response gene expression in Oenococcus oeni. J. Bacteriol. 2005; 187: 5614–5623, [CSA], [CROSSREF]
  • Graumann P., Schroder R., Schmid R., Marahiel M. A. Cold shock stress induced proteins in Bacillus subtilis. J. Bacteriol. 1996; 178: 4611–4619, [CSA]
  • Guzzo J., Delmas F., Pierre F., Jobin M. P., Samyn B., Van Beeumen J., Cavin J. F., Divies C. A small heat shock protein from Leu-conostoc oenos induced by multiple stresses and during stationary growth phase. Lett. Appl. Microbiol. 1997; 24: 393–396, [CSA], [CROSSREF]
  • Guzzo J., Jobin M. P., Divies C. Increase of sulfite tolerance in Oenococcus oeni by means of acidic adaptation. FEMS Microbiol. Lett. 1998; 160: 143–147, [CSA]
  • Guzzo J., Jobin M. P., Delmas F., Fortier L. C., Garmyn D., Tourdot-Marechal R., Lee B., Divies C. Regulation of stress response in Oenococcus oeni as a function of environmental changes and growth phase. Int. J. Food. Microbiol. 2000; 55: 27–31, [CSA], [CROSSREF]
  • Hartke A., Bouche S., Giard J. C., Benachour A., Boutibonnes P., Auffray Y. The lactic acid stress response of Lactococcus lactis subsp. lactis. Curr. Microbiol. 1996; 33: 194–199, [CSA], [CROSSREF]
  • Hecker M., Schumann W., Volker U. Heat shock and general stress response in Bacillus. Subtilis. Mol. Microbiol. 1996; 19: 417–428, [CSA], [CROSSREF]
  • Horwitz J. α -Crystallin can function as a molecular chaperone. Proc. Natl. Acad. Sci. USA 1992; 89: 10449–10453, [CSA]
  • Jobin M. B., Delmas F., Garmyn D., Diviès C., Guzzo J. Molecular characterization of the gene encoding an 18-kilodalton small heat shock protein associated with the membrane of Leuconostoc. oenos. Appl. Environ. Microbiol. 1997; 63: 609–614, [CSA]
  • Jobin M. P., Garmyn D., Diviès C., Guzzo J. Expression of the Oenococcus oeni trxA gene is induced by hydrogen peroxide and heat shock. Microbiol. 1999a; 145: 1245–1251, [CSA]
  • Jobin M. P., Garmyn D., Divies C., Guzzo J. The Oenococcus oeni clpX homologue is a heat shock gene preferentially expressed in exponential growth phase. J. Bacteriol. 1999b; 181: 6634–6641, [CSA]
  • Karata K., Inagawa T., Wilkinson A. J., Tatsuta T., Ogura T. Dissecting the role of a conserved motif (the second region of homology) in the AAA family of ATPases. J. Biol. Chem. 1999; 274: 26225–26232, [CSA], [CROSSREF]
  • Kleerebezem M., Boekhorst J., Kranenburg R., et al. Complete genome sequence of Lactobacillus plantarum WCFS1. Proc. Natl. Acad. Sci. USA 2003; 100: 1990–1995, [CSA], [CROSSREF]
  • Kruger E., Zuhlke D., Witt E., Ludwig H., Hecker M. Clp-mediated proteolysis in Gram-positive bacteria is autoregulated by the stability of a repressor. EMBO J. 2001; 20: 852–863, [CSA], [CROSSREF]
  • Kunst F. N., Ogasawara Moszer I., et al. The complete genome sequence of the Gram-positive bacterium. Bacillus. subtilis. Nature 1997; 390: 249–256, [CSA], [CROSSREF]
  • Langer T. AAA proteases: Cellular machines for degrading membrane proteins. Trends. Biochem. Sci. 2000; 25: 247–251, [CSA], [CROSSREF]
  • Lemos J. A., Chen Y. Y., Burne R. A. Genetic and physiologic analysis of the groE operon and role of the HrcA repressor in stress gene regulation and acid tolerance in Streptococcus mutans. J. Bacteriol. 2001; 183: 6074–6084, [CSA], [CROSSREF]
  • Lim E. M., Ehrlich S. D., Maguin E. Identification of stress-inducible proteins in Lactobacillus delbrueckii subsp. bulgaricus. Electrophoresis. 2000; 21: 2557–2561, [CSA], [CROSSREF]
  • Liu S. -Q., Davies C. R., Brooks J. D. Growth and metabolism of selected lactic acid bacteria in synthetic wine. American J. Enol. Viticul. 1995; 46: 166–174, [CSA]
  • Liu S. -Q., Pilone G. J. A review: Arginine metabolism in wine lactic acid bacteria and its practical significance. J. Appl. Microbiol. 1998; 84: 315–327, [CSA], [CROSSREF]
  • Liu S. -Q. Malolactic fermentation in wine–beyond deacidification. J. Appl. Microbiol. 2002; 92: 589–601, [CSA], [CROSSREF]
  • Lonvaud-Funel A. Microbiology of malolactic fermentation: Molecular aspects. FEMS Microbiol. Lett. 1995; 126: 209–214, [CSA]
  • Lonvaud-Funel A. Lactic acid bacteria in the quality improvement and depreciation of wine. Antonie Van Leeuwenhoek 1999; 76: 317–333, [CSA], [CROSSREF]
  • Molenaar D., Bringel F., Schuren F. H., de Vos W. M., Siezen R. J., Kleerebezem M. Exploring Lactobacillus plantarum genome diversity by using Microarrays. Microbiology. 2005; 187: 6119–6127, [CSA]
  • Morel F., Delmas F., Jobin M. P., Divies C., Guzzo J. Improved acid tolerance of a recombinant strain of Escherichia coli expressing genes from the acidophilic bacterium Oenococcus. oeni. Lett. Appl. Microbiol. 2001; 33: 126–130, [CSA], [CROSSREF]
  • Mira de Orduña R., Patchett M. L., Liu S. -Q., Pilone G. J. Growth and arginine metabolism of the wine lactic acid bacteria Lactobacillus buchneri and Oenococcus oeni at different pH values and arginine concentrations. Appl. Environ. Microbiol. 2001; 67: 1657–1662, [CSA], [CROSSREF]
  • Mishra P. Tolerance of fungi to ethanol. Stress tolerance of fungi, D. H. Jennings. Marcel Dekker, New York, N.Y. 1993
  • Narberhaus F. α -Crystallin-Type heat shock proteins: Socializing minichaperones in the context of a multichaperone network. Microbiol. Mol. Biol. Rev. 2002; 66: 64–93, [CSA], [CROSSREF]
  • Osman Y. A., Ingram L. O. Mechanism of ethanol inhibition of fermentation in Zymomonas mobilis CP4. J. Bacteriol. 1985; 164: 173–180, [CSA]
  • Park H., Bakalinsky A. T. SSU1 mediates sulphite efflux in Saccharomyces cerevisiae. Yeast. 2000; 16: 881–888, [CSA], [CROSSREF]
  • Phadtare S., Tyagi S., Inouye M., Severinov K. Three amino acids in Escherichia coli CspE surface-exposed aromatic patch are critical for nucleic acid melting activity leading to transcription antitermination and cold acclimation of cells. J. Biol. Chem. 2002; 277: 46706–46711, [CSA]
  • Porankiewicz J., Clarke A. K. Induction of the heat shock protein ClpB affects cold acclimation in the cyanobacterium Synechococcus sp. strain PCC 7942. J. Bacteriol. 1997; 179: 5111–5117, [CSA]
  • Pridmore R. D., Berger B., Desiere F., et al. The genome sequence of the probiotic intestinal bacterium Lactobacillus johnsonii NCC 533. Proc. Natl. Acad. Sci. USA 2004; 101: 2512–2517, [CSA], [CROSSREF]
  • Rosen R., Ron E. Z. Proteome analysis in the study of the bacterial heat shock response. Mass. Spectr. Reviews. 2002; 21: 244–265, [CSA], [CROSSREF]
  • Segal G., Ron E. Z. Heat shock activation of the groESL operon of Agrobacterium tumefaciens and the regulatory roles of the inverted repeat. J. Bacteriol. 1996; 178: 3634–3640, [CSA]
  • Spano G., Beneduce L., Tarantino D., Zapparoli G., Massa S. Characterization of Lactobacillus plantarum from wine must by PCR species-specific and RAPD-PCR. Lett. Appl. Microbiol. 2002a; 35: 370–374, [CSA], [CROSSREF]
  • Spano G., Beneduce L., Tarantino D., Giammanco G. M., Massa S. Preliminary characterization of wine lactobacilli able to degrade arginine. W. J. Microbiol. Biotech. 2002b; 18: 821–825, [CSA], [CROSSREF]
  • Spano G., Chieppa G., Beneduce L., Massa S. Expression analysis of putative arcA, arcB and arcC genes partially cloned from Lactobacillus plantarum isolated from wine. J. Appl. Microbiol. 2004a; 96: 185–190, [CSA], [CROSSREF]
  • Spano G., Vernile A., Beneduce L., Massa S. (2004b) The heat shock response of wine Lactobacillus plantarum is differently regulated by sulphite stress. Society of General Microbiology 155th Meeting. September, 6–92004. Trinity College Dublin, Ireland
  • Spano G., Capozzi V., Vernile A., Massa S. Cloning, molecular characterization and expression analysis of two small heat shock genes isolated from wine Lactobacillus plantarum. J. Appl. Microbiol. 2004c; 97: 774–782, [CSA], [CROSSREF]
  • Spano G., Beneduce L., Perrotta C., Massa S. Cloning and characterization of the hsp 18.55 gene, a new member of the small heat shock genes family isolated from wine Lactobacillus plantarum. Research Microbiol. 2005a; 156: 219–224, [CSA]
  • Spano G., Vernile A., Beneduce L., Tarantino D., De Palma L., Massa S. Characterization of wine Lactobacillus plantarum by PCR-DGGE and RAPD-PCR analysis and identification of Lactobacillus plantarum strains able to degrade arginine. World Journal of Microbiology and Biotechnology 2005b, in press[CSA]
  • Suokko A., Savijoki K., Malinen E., Palva A., Varmanen P. Characterization of a mobile clpL gene from Lactobacillus rhamnosus. Appl. Environ. Microbiol. 2005; 71: 2061–2069, [CSA], [CROSSREF]
  • Teixeira H., Goncalves M. G., Rozes N., Ramos A., San Romao M. V. Lactobacillic acid accumulation in the plasma membrane of Oenococcus oeni: A response to ethanol stress?. Microb. Ecol. 2002; 43: 146–153, [CSA], [CROSSREF]
  • Tonon T., Lonvaud-Funel A. Metabolism of arginine and its positive effect on growth and revival of Oenococccus oeni. J. Appl. Microbiol. 2000; 89: 526–531, [CSA], [CROSSREF]
  • Török Z., Horváth I., Goloubinoff P., Kovács E., Glatz A., Balogh G., Vígh L. Evidence for a lipochaperonin: Association of active protein folding GroESL oligomers with lipids can stabilize membranes under heat shock conditions. Proc. Natl. Acad. Sci. USA 1997; 94: 2192–2197, [CSA], [CROSSREF]
  • van de Guchte M., Serror P., Chervaux C., Smokvina T., Ehrlich S. D., Maguin E. Stress responses in lactic acid bacteria. Antonie Van Leeuwenhoek 2002; 82: 187–216, [CSA], [CROSSREF]
  • van Vuuren H. J.J., Dicks L. M.T. Leuconostoc oenos: A Review. Am. J. Enol. Vitic. 1993; 44: 99–112, [CSA]
  • Varmanen P., Ingmer H., Vogensen F. K. ctsR of Lactococcus lactis encodes a negative regulator of clp gene expression. Microbiol. 2000; 146: 1447–1455, [CSA]
  • Versari A., Parpinello G. P., Cattaneo M. Leuconostoc oenos and malolactic fermentation in wine: A review. J. Ind. Microbiol. Biotech. 1999; 23: 447–455, [CSA], [CROSSREF]
  • Villarreal L., Heredia N. L., Garcia S. Changes in protein synthesis and acid tolerance in Clostridium perfringens type A in response to acid shock. Int. Microbiol. 2000; 3: 113–116, [CSA]
  • Wilkins J. C., Homer K. A., Beighton D. Analysis of Streptococcus mutans proteins modulated by culture under acidic conditions. Appl. Environ. Microbiol. 2002; 68: 2382–2390, [CSA], [CROSSREF]
  • Wouters J. A., Jeynov B., Rombouts F. M., De Vos W. M., Kuipers O. P., Abee T. Analysis of the role of 7 kDa cold-shock proteins of Lactococcus lactis MG1363 in cryoprotection. Microbiology. 1999; 145: 3185–3194, [CSA]
  • Wouters J. A., Mailhes M., Rombouts F. M., de Vos M. W., Kuipers O. P., Abee T. Cold shock proteins of Lactococcus lactis MG 1363 are involved in cryoprotection and in the production of cold induced proteins. Appl. Environ. Microbiol. 2001; 65: 5171–5178, [CSA], [CROSSREF]
  • Xu Y., Zhao G., Pan H., Li J. Effects of inhibitory environmental factors on growth of Oenococcus oeni CCSYU2068 for malolactic fermentation of cider production. J. Inst. Brew. 2005; 111: 223–228, [CSA]
  • Yuan G., Wong S. L. Regulation of groE expression in Bacillus subtilis: The involvement of the sigma A-like promoter and the roles of the inverted repeat sequence. J. Bacteriol. 1995; 177: 5427–5433, [CSA]

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.