344
Views
3
CrossRef citations to date
0
Altmetric
Review Article

The proteasome of the differently-diverged eukaryote Giardia lamblia and its role in remodeling of the microtubule-based cytoskeleton

&
Pages 481-492 | Received 01 Aug 2016, Accepted 15 Nov 2016, Published online: 30 Dec 2016

References

  • Adam RD. (2001). Biology of Giardia lamblia. Clin Microbiol Rev 14:447–75.
  • Aminake MN, Arndt HD, Pradel G. (2012). The proteasome of malaria parasites: a multi-stage drug target for chemotherapeutic intervention?. Int J Parasitol Drugs Drug Resistance 2:1–10.
  • Ankarklev J, Jerlstrom-Hultqvist J, Ringqvist E, et al. (2010). Behind the smile: cell biology and disease mechanisms of Giardia species. Nat Rev Microbiol 8:413–22.
  • Ansell BR, McConville MJ, Ma'ayeh SY, et al. (2015). Drug resistance in Giardia duodenalis. Biotechnol Adv 33:888–901.
  • Benchimol M, Piva B, Campanati L, de Souza W. (2004). Visualization of the funis of Giardia lamblia by high-resolution field emission scanning electron microscopy – new insights. J Struct Biol 147:102–15.
  • Bhattacharyya S, Yu H, Mim C, Matouschek A. (2014). Regulated protein turnover: snapshots of the proteasome in action. Nat Rev Mol Cell Biol 15:122–33.
  • Carmena M, Earnshaw WC. (2003). The cellular geography of aurora kinases. Nat Rev Mol Cell Biol 4:842–54.
  • Chen CZ, Kulakova L, Southall N, et al. (2011). High-throughput Giardia lamblia viability assay using bioluminescent ATP content measurements. Antimicrob Agents Chemother 55:667–75.
  • Cole DG. (2003). The intraflagellar transport machinery of Chlamydomonas reinhardtii. Traffic (Copenhagen, Denmark) 4:435–42.
  • D'Arcy P, Linder S. (2012). Proteasome deubiquitinases as novel targets for cancer therapy. Int J Biochem Cell Biol 44:1729–38.
  • Dambacher CM, Worden EJ, Herzik MA, et al. (2016). Atomic structure of the 26S proteasome lid reveals the mechanism of deubiquitinase inhibition. eLife 5:e13027.
  • Davids BJ, Williams S, Lauwaet T, et al. (2008). Giardia lamblia aurora kinase: a regulator of mitosis in a binucleate parasite. Int J Parasitol 38:353–69.
  • Dawson SC. (2010). An insider's guide to the microtubule cytoskeleton of Giardia. Cell Microbiol 12:588–98.
  • Dawson SC, House SA. (2010a). Imaging and analysis of the microtubule cytoskeleton in giardia. Methods Cell Biol 97:307–39.
  • Dawson SC, House SA. (2010b). Life with eight flagella: flagellar assembly and division in Giardia. Curr Opin Microbiol 13:480–90.
  • Dawson SC, Sagolla MS, Mancuso JJ, et al. (2007). Kinesin-13 regulates flagellar, interphase, and mitotic microtubule dynamics in Giardia intestinalis. Eukaryotic Cell 6:2354–64.
  • Elmendorf HG, Dawson SC, McCaffery JM. (2003). The cytoskeleton of Giardia lamblia. Int J Parasitol 33:3–28.
  • Fletcher DA, Mullins RD. (2010). Cell mechanics and the cytoskeleton. Nature 463:485–92.
  • Fort P, Kajava AV, Delsuc F, Coux O. (2015). Evolution of proteasome regulators in eukaryotes. Genome Biol Evol 7:1363–79.
  • Fry AM, O'Regan L, Sabir SR, et al. (2012). Cell cycle regulation by the NEK family of protein kinases. J Cell Sci 125:4423–33.
  • Gerhardt C, Leu T, Lier JM, Ruther U. (2016). The cilia-regulated proteasome and its role in the development of ciliopathies and cancer. Cilia 5:14
  • Gerhardt C, Lier JM, Burmuhl S, et al. (2015). The transition zone protein Rpgrip1l regulates proteasomal activity at the primary cilium. J Cell Biol 210:115–33.
  • Ghosh S, Frisardi M, Rogers R, Samuelson J. (2001). How Giardia swim and divide. Infect Immun 69:7866–72.
  • Gourguechon S, Holt LJ, Cande WZ. (2013). The Giardia cell cycle progresses independently of the anaphase-promoting complex. J Cell Sci 126:2246–55.
  • Guo CW, Liu G, Xiong S, et al. (2011). The C-terminus of MIP-T3 protein is required for ubiquitin-proteasome-mediated degradation in human cells. FEBS Lett 585:1350–6.
  • Halliez MC, Buret AG. (2013). Extra-intestinal and long term consequences of Giardia duodenalis infections. World J Gastroenterol 19:8974–85.
  • Hames RS, Crookes RE, Straatman KR, et al. (2005). Dynamic recruitment of Nek2 kinase to the centrosome involves microtubules, PCM-1, and localized proteasomal degradation. Mol Biol Cell 16:1711–24.
  • Henty-Ridilla JL, Rankova A, Eskin JA, et al. (2016). Accelerated actin filament polymerization from microtubule plus ends. Science 352:1004–9.
  • Hernández-Bolio GI, Torres-Tapia LW, Moo-Puc R, Peraza-Sánchez SR. (2015). Antigiardial activity of flavonoids from leaves of Aphelandra scabra. Rev Brasil Farmacogn 25:233–7.
  • Honda K, Mihara H, Kato Y, et al. (2000). Degradation of human Aurora2 protein kinase by the anaphase-promoting complex-ubiquitin-proteasome pathway. Oncogene 19:2812–19.
  • House SA, Richter DJ, Pham JK, Dawson SC. (2011). Giardia flagellar motility is not directly required to maintain attachment to surfaces. PLoS Pathog 7:e1002167.
  • Huang K, Diener DR, Rosenbaum JL. (2009). The ubiquitin conjugation system is involved in the disassembly of cilia and flagella. J Cell Biol 186:601–13.
  • Jerlstrom-Hultqvist J, Stadelmann B, Birkestedt S, et al. (2012). Plasmid vectors for proteomic analyses in Giardia: purification of virulence factors and analysis of the proteasome. Eukaryotic Cell 11:864–73.
  • Khan IA, Avery MA, Burandt CL, et al. (2000). Antigiardial activity of isoflavones from Dalbergia frutescens bark. J Nat Prod 63:1414–16.
  • Kim J, Nagami S, Lee KH, Park SJ. (2014). Characterization of microtubule-binding and dimerization activity of Giardia lamblia end-binding 1 protein. PLoS One 9:e97850
  • Kim J, Sim S, Kim J, et al. (2008). Giardia lamblia EB1 is a functional homolog of yeast Bim1p that binds to microtubules. Parasitol Int 57:465–71.
  • Kisselev AF, van der Linden WA, Overkleeft HS. (2012). Proteasome inhibitors: an expanding army attacking a unique target. Chem Biol 19:99–115.
  • Kurepa J, Wang S, Smalle J. (2012). The role of 26S proteasome-dependent proteolysis in the formation and restructuring of microtubule networks. Plant Signal Behav 7:1289–95.
  • Lane S, Lloyd D. (2002). Current trends in research into the waterborne parasite Giardia. Crit Rev Microbiol 28:123–47.
  • Langousis G, Shimogawa MM, Saada EA, et al. (2016). Loss of the BBSome perturbs endocytic trafficking and disrupts virulence of Trypanosoma brucei. Proc Natl Acad Sci U S A 113:632–7.
  • Lauwaet T, Andersen Y, Van de Ven L, et al. (2010). Rapid detachment of Giardia lamblia trophozoites as a mechanism of antimicrobial action of the isoflavone formononetin. J Antimicrob Chemother 65:531–4.
  • Leitsch D. (2015). Drug resistance in the microaerophilic parasite Giardia lamblia. Curr Tropic Med Rep 2:128–35.
  • Lenaghan SC, Davis CA, Henson WR, et al. (2011). High-speed microscopic imaging of flagella motility and swimming in Giardia lamblia trophozoites. Proc Natl Acad Sci USA, 108:E550–8.
  • Liu YP, Tsai IC, Morleo M, et al. (2014). Ciliopathy proteins regulate paracrine signaling by modulating proteasomal degradation of mediators. J Clin Invest 124:2059–70.
  • Long H, Wang Q, Huang K. (2015). Ciliary/flagellar protein ubiquitination. Cells 4:474–82.
  • Lujan HD, Svärd S. (2011). Giardia: a model organism. Vienna; Springer.
  • Micale N, Ettari R, Lavecchia A, et al. (2013). Development of peptidomimetic boronates as proteasome inhibitors. Eur J Med Chem 64:23–34.
  • Midlej V, Benchimol M. (2009). Giardia lamblia behavior during encystment: how morphological changes in shape occur. Parasitol Int 58:72–80.
  • Miyamoto Y, Eckmann L. (2015). Drug development against the major diarrhea-causing parasites of the small intestine, Cryptosporidium and Giardia. Front Microbiol 6:1208.
  • Müller J, Hemphill A, Müller N. (2011). Treatment of giardiasis and drug resistance. In: Lujan HD, Svärd S, eds. Giardia: a model organism. Wien, New York: Springer-Verlag.
  • Nino CA, Chaparro J, Soffientini P, et al. (2013). Ubiquitination dynamics in the early-branching eukaryote Giardia intestinalis. MicrobiologyOpen 2:525–39.
  • Nooka AK, Kastritis E, Dimopoulos MA, Lonial S. (2015). Treatment options for relapsed and refractory multiple myeloma. Blood 125:3085–99.
  • Peth A, Boettcher JP, Dubiel W. (2007). Ubiquitin-dependent proteolysis of the microtubule end-binding protein 1, EB1, is controlled by the COP9 signalosome: possible consequences for microtubule filament stability. J Mol Biol 368:550–63.
  • Shim SH. (2011). 20S proteasome inhibitory activity of flavonoids isolated from Spatholobus suberectus. Phytother Res 25:615–18.
  • Sinha A, Datta SP, Ray A, Sarkar S. (2015). A reduced VWA domain-containing proteasomal ubiquitin receptor of Giardia lamblia localizes to the flagellar pore regions in microtubule-dependent manner. Parasit Vectors 8:120
  • Smith AJ, Lauwaet T, Davids BJ, Gillin FD. (2012). Giardia lamblia Nek1 and Nek2 kinases affect mitosis and excystation. Int J Parasitol 42:411–19.
  • Stefanic S, Palm D, Svard SG, Hehl AB. (2006). Organelle proteomics reveals cargo maturation mechanisms associated with Golgi-like encystation vesicles in the early-diverged protozoan Giardia lamblia. J Biol Chem 281:7595–604.
  • Sterk M, Muller J, Hemphill A, Muller N. (2007). Characterization of a Giardia lamblia WB C6 clone resistant to the isoflavone formononetin. Microbiology 153:4150–8.
  • Tejman-Yarden N, Miyamoto Y, Leitsch D, et al. (2013). A reprofiled drug, auranofin, is effective against metronidazole-resistant Giardia lamblia. Antimicrob Agents Chemother 57:2029–35.
  • Teicher BA, Tomaszewski JE. (2015). Proteasome inhibitors. Biochem Pharmacol 96:1–9.
  • Tomko RJ, Jr, Hochstrasser M. (2013). Molecular architecture and assembly of the eukaryotic proteasome. Annu Rev Biochem 82:415–45.
  • Voloshin O, Gocheva Y, Gutnick M, et al. (2010). Tubulin chaperone E binds microtubules and proteasomes and protects against misfolded protein stress. Cell Mol Life Sci 67:2025–38.
  • Woessner DJ, Dawson SC. (2012). The Giardia median body protein is a ventral disc protein that is critical for maintaining a domed disc conformation during attachment. Eukaryotic Cell 11:292–301.
  • Yang H, Landis-Piwowar KR, Chen D, et al. (2008). Natural compounds with proteasome inhibitory activity for cancer prevention and treatment. Curr Protein Pept Sci 9:227–39.
  • Zwickl P, Baumeister W. (2002). The proteasome – ubiquitin protein degradation pathway. Berlin, Heidelberg: Springer Berlin Heidelberg. Available from: http://public.eblib.com/choice/publicfullrecord.aspx?p=3092735.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.