1,430
Views
77
CrossRef citations to date
0
Altmetric
Review Article

Etiology of bacterial vaginosis and polymicrobial biofilm formation

, , , &
Pages 651-667 | Received 10 Jun 2016, Accepted 02 Feb 2017, Published online: 30 Mar 2017

References

  • Africa CWJ, Nel J, Stemmet M. (2014). Anaerobes and bacterial vaginosis in pregnancy: virulence factors contributing to vaginal colonisation. Int J Environ Res Public Health 11:6979–7000.
  • Al-Mushrif S, Eley A, Jones BM. (2000). Inhibition of chemotaxis by organic acids from anaerobes may prevent a purulent response in bacterial vaginosis. J Med Microbiol 49:1023–30.
  • Alves P, Castro J, Sousa C, et al. (2014). Gardnerella vaginalis outcompetes 29 other bacterial species isolated from patients with bacterial vaginosis, using in an in vitro biofilm formation model. J Infect Dis 210:593–6.
  • Aroutcheva AA, Simoes JA, Behbakht K, Faro S. (2001). Gardnerella vaginalis isolated from patients with bacterial vaginosis and from patients with healthy vaginal ecosystems. Clin Infect Dis 33:1022–7.
  • Aroutcheva AA, Simoes JA, Faro S. (2001). Antimicrobial protein produced by vaginal Lactobacillus acidophilus that inhibits Gardnerella vaginalis. Infect Dis Obstet Gynecol 9:33–9.
  • Austin MN, Rabe LK, Srinivasan S, et al. (2015). Anaerobe Mageeibacillus indolicus gen. nov., sp. nov.: a novel bacterium isolated from the female genital tract. Anaerobe 32:37–42.
  • Bartlett JG, Onderdonk AB, Drude E, et al. (1977). Quantitative bacteriology of the vaginal flora. J Infect Dis 136:271–7.
  • Bartlett JG, Polk BF. (1984). Bacterial flora of the vagina: quantitative study. Rev Infect Dis 6:S67–S72.
  • Begum A, Nilufar S, Akther K, et al. (2003). Prevalence of selected reproductive tract infections among pregnant women attending an urban childcare unit in Dhaka, Bangladesh. J Heal Popul Nutr 21:112–16.
  • Beigi RH, Wiesenfeld HC, Hillier SL, et al. (2005). Factors associated with absence of H2O2-producing Lactobacillus among women with bacterial vaginosis. J Infect Dis 191:924–9.
  • Bertran T, Brachet P, Vareille-Delarbre M, et al. (2016). Slight pro-inflammatory immunomodulation properties of dendritic cells by Gardnerella vaginalis: the “invisible man” of bacterial vaginosis? J Immunol Res 2016:1–13.
  • Blanchard A, Razin S, Kenny GE, Barile MF. (1988). Characteristics of Ureaplasma urealyticum urease. J Bacteriol 170:2692–7.
  • Borlee BR, Goldman AD, Murakami K, et al. (2010). Pseudomonas aeruginosa uses a cyclic-di-GMP-regulated adhesin to reinforce the biofilm extracellular matrix. Mol Microbiol 75:827–42.
  • Boskey ER, Cone RA, Whaley KJ, Moench TR. (2001). Origins of vaginal acidity: high D/L lactate ratio is consistent with bacteria being the primary source. Hum Reprod 16:1809–13.
  • Boskey ER, Telsch KM, Whaley KJ, et al. (1999). Acid production by vaginal flora in vitro is consistent with the rate and extent of vaginal acidification. Infect Immun 67:5170–5.
  • Botta GA, Eftimiadi C, Costa A, et al. (1985). Influence of volatile fatty acids on human granulocyte chemotaxis. FEMS Microbiol Lett 27:69–72.
  • Bradshaw CS, Tabrizi SN, Fairley CK, et al. (2006). The association of Atopobium vaginae and Gardnerella vaginalis with bacterial vaginosis and recurrence after oral metronidazole therapy. J Infect Dis 194:828–36.
  • Breshears LM, Edwards VL, Ravel J, Peterson ML. (2015). Lactobacillus crispatus inhibits growth of Gardnerella vaginalis and Neisseria gonorrhoeae on a porcine vaginal mucosa model. BMC Microbiol 15:276.
  • Briselden AM, Moncla BJ, Stevens CE, Hillier SL. (1992). Sialidases (neuraminidases) in bacterial vaginosis and bacterial vaginosis-associated microflora. J Clin Microbiol 30:663–6.
  • Cassini MA, Pilloni A, Condò SG, et al. (2013). Periodontal bacteria in the genital tract: are they related to adverse pregnancy outcome?. Int J Immunopathol Pharmacol 26:931–9.
  • Castro J, Alves P, Sousa C, et al. (2015). Using an in-vitro biofilm model to assess the virulence potential of bacterial vaginosis or non-bacterial vaginosis Gardnerella vaginalis isolates. Sci Rep 5:1–10.
  • Castro J, Cerca N. (2015). BV and non-BV associated Gardnerella vaginalis establish similar synergistic interactions with other BV-associated microorganisms in dualspecies biofilms. Anaerobe 36:56–9.
  • Castro J, Henriques A, Machado A, et al. (2013). Reciprocal interference between Lactobacillus spp. and Gardnerella vaginalis on initial adherence to epithelial cells. Int J Med Sci 10:1193–8.
  • Castro J, Machado D, Cerca N. (2016). Escherichia coli and Enterococcus faecalis are able to incorporate and enhance a pre-formed Gardnerella vaginalis biofilm. Pathog Dis 74:ftw007.
  • Cauci S, Culhane JF, Di Santolo M, McCollum K. (2008). Among pregnant women with bacterial vaginosis, the hydrolytic enzymes sialidase and prolidase are positively associated with interleukin-1. Am J Obstet Gynecol 198:132.e1–e7.
  • Cauci S, Guaschino S, Driussi S, et al. (2002). Correlation of local interleukin-8 with immunoglobulin A against Gardnerella vaginalis hemolysin and with prolidase and sialidase levels in women with bacterial vaginosis. J Infect Dis 185:1614–20.
  • Chen KCS, Forsyth PS, Buchanan TM, Holmes KK. (1979). Amine content of vaginal fluid from untreated and treated patients with nonspecific vaginitis. J Clin Invest 63:828–35.
  • Cherpes TL, Hillier SL, Meyn LA, et al. (2008). A delicate balance: risk factors for acquisition of bacterial vaginosis include sexual activity, absence of hydrogen peroxide-producing lactobacilli, black race, and positive herpes simplex virus type 2 serology. Sex Transm Dis 35:78–83.
  • Cherpes TL, Meyn LA, Krohn MA, et al. (2003). Association between acquisition of herpes simplex virus type 2 in women and bacterial vaginosis. Clin Infect Dis 37:319–25.
  • Costello J, Blaize J, L’Amoreaux WJ, McCoy EC. (2007). Ultrastructure of the pathogenic bacteria Mobiluncus mulieris. MAM 13:336–7.
  • Coudeyras S, Jugie G, Vermerie M, Forestier C. (2008). Adhesion of human probiotic Lactobacillus rhamnosus to cervical and vaginal cells and interaction with vaginosisassociated pathogens. Infect Dis Obstet Gynecol 2008:549640. doi:10.1155/2008/549640
  • Danielsson D, Teigen PK, Moi H. (2011). The genital econiche:focus on microbiota and bacterial vaginosis. Ann N Y Acad Sci 1230:48–58.
  • De Backer E, Verhelst R, Verstraelen H, et al. (2007). Quantitative determination by real-time PCR of four vaginal Lactobacillus species, Gardnerella vaginalis and Atopobium vaginae indicates an inverse relationship between L. gasseri and L. iners. BMC Microbiol 7:115.
  • De Boer JM, Plantema FHF. (1988). Ultrastructure of the in situ adherence of Mobiluncus to vaginal epithelial cells. Can J Microbiol 34:757–66.
  • De Silva NS, Quinn PA. (1986). Endogenous activity of phospholipases A and C in Ureaplasma urealyticum. J Clin Microbiol 23:354–9.
  • Döderlein A. (1892). Das Scheidensekret und seine Bedeutung für das Puerperalfieber [The vaginal secretion and its meaning for the puerperal fever]. Leipzig: Verlag von Eduard Besold.
  • Doerflinger SY, Throop AL, Herbst-Kralovetz MM. (2014). Bacteria in the vaginal microbiome alter the innate immune response and barrier properties of the human vaginal epithelia in a species-specific manner. J Infect Dis 209:1989–99.
  • Donders GGG, Vereecken A, Bosmans E, et al. (2002). Definition of a type of abnormal vaginal flora that is distinct from bacterial vaginosis: aerobic vaginitis. BJOG 109:34–43.
  • Donelli G, Vuotto C, Cardines R, Mastrantonio P. (2012). Biofilm-growing intestinal anaerobic bacteria. FEMS Immunol Med Microbiol 65:318–25.
  • Ezaki T, Kawamura Y, Li N, et al. (2001). Proposal of the genera Anaerococcus gen. nov., Peptoniphilus gen. nov. and Gallicola gen. nov for members of the genus Peptostreptococcus. Int J Syst Evol Microbiol 51:1521–8.
  • Ferris MJ, Masztal A, Aldridge KE, et al. (2004). Association of Atopobium vaginae, a recently described metronidazole resistant anaerobe, with bacterial vaginosis. BMC Infect Dis 4:5.
  • Ferris MJ, Norori J, Zozaya-Hinchliffe M, Martin DH. (2007). Cultivation-independent analysis of changes in bacterial vaginosis flora following metronidazole treatment. J Clin Microbiol 45:1016–18.
  • Fethers K, Twin J, Fairley CK, et al. (2012). Bacterial vaginosis (BV) candidate bacteria: associations with BV and behavioural practices in sexually-experienced and inexperienced women. PLoS One 7:e30633.
  • Fichorova RN, Buck OR, Yamamoto HS, et al. (2013). The villain team-up or how Trichomonas vaginalis and bacterial vaginosis alter innate immunity in concert. Sex Transm Infect 89:460–6.
  • Fredricks DN, Fiedler TL, Marrazzo JM. (2005). Molecular identification of bacteria associated with bacterial vaginosis. N Engl J Med 353:1899–911.
  • Gajer P, Brotman RM, Bai G, et al. (2012). Temporal dynamics of the human vaginal microbiota. Sci Transl Med 4:132ra52.
  • Ganderton L, Chawla J, Winters C, et al. (1992). Scanning electron microscopy of bacterial biofilms on indwelling bladder catheters. Eur J Clin Microbiol Infect Dis 11:789–96.
  • Gardner H, Dukes C. (1955). Haemophilus vaginalis vaginitis: a newly defined specific infection previously classified “nonspecific” vaginitis. Am J Obstet Gynecol 69:962–76.
  • Gardner HL, Dukes CD. (1954). New etiologic agent in nonspecific bacterial vaginitis. Science 120:853.
  • Geißdörfer W, Böhmer C, Pelz K, et al. (2003). Tuboovarian abscess caused by Atopobium vaginae following transvaginal oocyte recovery. J Clin Microbiol 41:2788–90.
  • Gilbert NM, Lewis WG, Lewis AL. (2013). Clinical features of bacterial vaginosis in a murine model of vaginal infection with Gardnerella vaginalis. PLoS One 8:e59539.
  • Greenwood JR, Pickett MJ. (1979). Salient features of Haemophilus vaginalis. J Clin Microbiol 9:200–4.
  • Greenwood JR, Pickett MJ. (1980). Transfer of Haemophilus vaginalis Gardner and Dukes to a new genus, Gardnerella: G. vaginalis (Gardner and Dukes) comb. nov. Int J Syst Bacteriol 30:170–8.
  • Haggerty CL, Hillier SL, Bass DC, Ness RB. (2004). Bacterial vaginosis and anaerobic bacteria are associated with endometritis. Clin Infect Dis 39:990–5.
  • Haggerty CL, Totten PA, Ferris M, et al. (2009). Clinical characteristics of bacterial vaginosis among women testing positive for fastidious bacteria. Sex Transm Infect 85:242–8.
  • Hardy L, Jespers V, Abdellati S, et al. (2016). A fruitful alliance: the synergy between Atopobium vaginae and Gardnerella vaginalis in bacterial vaginosis-associated biofilm. Sex Transm Infect 92:487–91.
  • Harwich MD, Alves JM, Buck GA, et al. (2010). Drawing the line between commensal and pathogenic Gardnerella vaginalis through genome analysis and virulence studies. BMC Genomics 11:375.
  • Harwich MD, Serrano MG, Fettweis JM, et al. (2012). Genomic sequence analysis and characterization of Sneathia amnii sp. nov. BMC Genomics 13:S4.
  • Hawes SE, Hillier SL, Benedetti J, et al. (1996). Hydrogen peroxide-producing lactobacilli and acquisition of vaginal infections. J Infect Dis 174:1058–63.
  • Herbst-Kralovetz MM, Pyles RB, Ratner AJ, et al. (2016). New systems for studying intercellular interactions in bacterial vaginosis. J Infect Dis 214:S6–S13.
  • Hillier SL, Krohn MA, Rabe LK, et al. (1993). The normal vaginal flora, H2O2-producing lactobacilli, and bacterial vaginosis in pregnant women. Clin Infect Dis 16:S273–S81.
  • Hillier SL, Nugent RP, Eschenbach DA, et al. (1995). Association between bacterial vaginosis and preterm delivery of low-birth-weight infant. N Engl J Med 333:1737–42.
  • Holzman C, Leventhal JM, Qiu H, et al. (2001). Factors linked to bacterial vaginosis in nonpregnant women. Am J Public Health 91:1664–70.
  • Hooton TM, Fennell CL, Clark AM, Stamm WE. (1991). Nonoxynol-9: differential antibacterial activity and enhancement of bacterial adherence to vaginal epithelial cells. J Infect Dis 164:1216–19.
  • Hovhannisyan HG, Grigoryan GG. (2014). A new sustainable symbiotic association of lactic acid cocci and bacilli for colonization/recolonization of vagina and prevention of bacterial vaginosis. AJBIO 2:84–8.
  • Hyman RW, Fukushima M, Diamond L, et al. (2005). Microbes on the human vaginal epithelium. Proc Natl Acad Sci U S A 102:7952–7.
  • Hymes SR, Randis TM, Sun TY, Ratner AJ. (2013). DNase inhibits Gardnerella vaginalis biofilms in vitro and in vivo. J Infect Dis 207:1491–7.
  • Jayaprakash TP, Schellenberg JJ, Hill JE. (2012). Resolution and characterization of distinct cpn60-based subgroups of Gardnerella vaginalis in the vaginal microbiota. PLoS One 7:e43009.
  • Johnson AP, Davies HA. (1984). Demonstration by electron microscopy of pili on Gardnerella vaginalis. Br J Vener Dis 60:396–7.
  • Jordan SJ, Perni S, Glenn S, et al. (2008). Listeria monocytogenes biofilm-associated protein (BapL) may contribute to surface attachment of L. monocytogenes but is absent from many field isolates. Appl Environ Microbiol 74:5451–6.
  • Jovita MR, Collins MD, Sjödén B, Falsen E. (1999). Characterization of a novel Atopobium isolate from the human vagina: description of Atopobium vaginae sp. nov. Int J Syst Bacteriol 49:1573–6.
  • Kageyama A, Benno Y, Nakase T. (1999). Phylogenetic evidence for the transfer of Eubacterium lentum to the genus Eggerthella as Eggerthella lenta gen. nov., comb. nov. Int J Syst Bacteriol 49:1725–32.
  • Kapatral V, Anderson I, Ivanova N, et al. (2005). Genome sequence and analysis of the oral bacterium Fusobacterium nucleatum strain ATCC 25586. J Bacteriol 184:2005–18.
  • Kaplan CW, Lux R, Haake SK, Shi W. (2009). The Fusobacterium nucleatum outer membrane protein RadD is an arginine-inhibitable adhesin required for inter-species adherence and the structured architecture of multispecies biofilm. Mol Microbiol 71:35–47.
  • Karczewski J, Troost FJ, Konings I, et al. (2010). Regulation of human epithelial tight junction proteins by Lactobacillus plantarum in vivo and protective effects on the epithelial barrier. Am J Physiol - Gastrointest Liver Physiol 298:851–9.
  • Kenyon C, Colebunders R, Crucitti T. (2013). The global epidemiology of bacterial vaginosis: a systematic review. Am J Obstet Gynecol 209:505–23.
  • Kiliç AO, Pavlova SI, Alpay S, et al. (2001). Comparative study of vaginal Lactobacillus phages isolated from women in the United States and Turkey: prevalence, morphology, host range, and DNA homology. Clin Diagn Lab Immunol 8:31–9.
  • Kim TK, Thomas SM, Ho M, et al. (2009). Heterogeneity of vaginal microbial communities within individuals. J Clin Microbiol 47:1181–9.
  • Klebanoff MA, Schwebke JR, Zhang J, et al. (2004). Vulvovaginal symptoms in women with bacterial vaginosis. Obstet Gynecol 104:267–72.
  • Klebanoff SJ, Hillier SL, Eschenbaeh DA, Waltersdorph AM. (1991). Control of the microbial flora of the vagina by H2O2-generating lactobacilli. J Infect Dis 164:94–100.
  • Koumans EH, Sternberg M, Bruce C, et al. (2007). The prevalence of bacterial vaginosis in the United States, 2001-2004; associations with symptoms, sexual behaviors, and reproductive health. Sex Transm Dis 34:864–9.
  • Kubota H, Senda S, Nomura N, et al. (2008). Biofilm formation by lactic acid bacteria and resistance to environmental stress. J Biosci Bioeng 106:381–6.
  • Kurita-Ochiai T, Ochiai K, Fukushima K. (1998). Volatile fatty acid, metabolic byproduct of periodontopathic bacteria, induces apoptosis in WEHI 231 and RAJI B lymphoma cells and splenic B cells. Infect Immun 66:2587–94.
  • Lee H-W, Koh YM, Kim J, et al. (2008). Capacity of multidrug-resistant clinical isolates of Acinetobacter baumannii to form biofilm and adhere to epithelial cell surfaces. Clin Microbiol Infect 14:49–54.
  • Leppäluoto PA. (2011). Bacterial vaginosis: what is physiological in vaginal bacteriology? An update and opinion. Acta Obstet Gynecol Scand 90:1302–6.
  • Lewis AL, Lewis WG. (2012). Host sialoglycans and bacterial sialidases: a mucosal perspective. Cell Microbiol 14:1174–82.
  • Lewis WG, Robinson LS, Perry J, et al. (2012). Hydrolysis of secreted sialoglycoprotein immunoglobulin A (IgA) in ex vivo and biochemical models of bacterial vaginosis. J Biol Chem 287:2079–89.
  • Libby EK, Pascal KE, Mordechai E, et al. (2008). Atopobium vaginae triggers an innate immune response in an in vitro model of bacterial vaginosis. Microbes Infect 10:439–46.
  • Ling Z, Kong J, Liu F, et al. (2010). Molecular analysis of the diversity of vaginal microbiota associated with bacterial vaginosis. BMC Genomics 11:488.
  • Lopes Dos Santos Santiago G, Deschaght P, El Aila N, et al. (2011). Gardnerella vaginalis comprises three distinct genotypes of which only two produce sialidase. Am J Obstet Gynecol 204:450.e1–e7.
  • Lubbe MM, Stanley K, Chalkley LJ. (1999). Prevalence of nim genes in anaerobic/facultative anaerobic bacteria isolated in South Africa. FEMS Microbiol Lett 172:79–83.
  • Machado A, Cerca N. (2015). Influence of biofilm formation by Gardnerella vaginalis and other anaerobes on bacterial vaginosis. J Infect Dis 212:1856–61.
  • Machado A, Jefferson KK, Cerca N. (2013). Interactions between Lactobacillus crispatus and bacterial vaginosis (BV)-associated bacterial species in initial attachment and biofilm formation. Int J Mol Sci 14:12004–12.
  • Machado A, Salgueiro D, Harwich M, et al. (2013). Quantitative analysis of initial adhesion of bacterial vaginosis-associated anaerobes to ME-180 cells. Anaerobe 23:1–4.
  • Macklaim JM, Fernandes AD, Di Bella JM, et al. (2013). Comparative meta-RNA-seq of the vaginal microbiota and differential expression by Lactobacillus iners in health and dysbiosis. Microbiome 1:12.
  • Marconi C, Cruciani F, Vitali B, Donders GGG. (2012). Correlation of Atopobium vaginae amount with bacterial vaginosis markers. J Low Genit Tract Dis 16:127–32.
  • Marconi C, Donders GG, Parada CMGL, et al. (2013). Do Atopobium vaginae, Megasphaera sp. and Leptotrichia sp. change the local innate immune response and sialidase activity in bacterial vaginosis?. Sex Transm Infect 89:167–73.
  • Marrazzo JM, Thomas KK, Fiedler TL, et al. (2008). Relationship of specific vaginal bacteria and bacterial vaginosis treatment failure in women who have sex with women. Ann Intern Med 149:20–8.
  • Marrs CN, Knobel SM, Zhu WQ, et al. (2012). Evidence for Gardnerella vaginalis uptake and internalization by squamous vaginal epithelial cells: implications for the pathogenesis of bacterial vaginosis. Microbes Infect 14:500–8.
  • Martín R, Soberón N, Escobedo S, Suárez JE. (2009). Bacteriophage induction versus vaginal homeostasis: role of H2O2 in the selection of Lactobacillus defective prophages. Int Microbiol 12:131–6.
  • Masover GK, Razin S, Hayflick L. (1977). Effects of carbon dioxide, urea, and ammonia on growth of Ureaplasma urealyticum (T-strain mycoplasma). J Bacteriol 130:292–6.
  • Mattsby-Baltzer I, Platz-Christensen JJ, Hosseini N, Rosen P. (1998). IL-1_, IL-6, TNFα, fetal fibronectin, and endotoxin in the lower genital tract of pregnant women with bacterial vaginosis. Acta Obstet Gynecol Scand 77:701–6.
  • Mayer BT, Srinivasan S, Fiedler TL, et al. (2015). Rapid and profound shifts in the vaginal microbiota following antibiotic treatment for bacterial vaginosis. J Infect Dis 212:793–802.
  • McCormack WM, Braun P, Lee Y-H, et al. (1973). The genital mycoplasmas. N Engl J Med 288:78–89.
  • McMillan A, Dell M, Zellar MP, et al. (2011). Disruption of urogenital biofilms by lactobacilli. Colloids Surf B Biointerfaces 86:58–64.
  • McMillan A, Macklaim JM, Burton JP, Reid G. (2012). Adhesion of Lactobacillus iners AB-1 to human fibronectin: a key mediator for persistence in the vagina?. Reprod Sci 20:791–6.
  • Mendes-Soares H, Krishnan V, Settles ML, et al. (2015). Finescale analysis of 16S rRNA sequences reveals a high level of taxonomic diversity among vaginal Atopobium spp. Pathog Dis 73:ftv020.
  • Mirmonsef P, Zariffard MR, Gilbert D, et al. (2012). Short-chain fatty acids induce pro-inflammatory cytokine production alone and in combination with Toll-like receptor ligands. Am J Reprod Immunol 67:391–400.
  • Muli FW, Struthers JK. (1998). The growth of Gardnerella vaginalis and Lactobacillus acidophilus in Sorbarod biofilms. J Med Microbiol 47:401–5.
  • Muzny CA, Schwebke JR. (2013). Gardnerella vaginalis: still a prime suspect in the pathogenesis of bacterial vaginosis. Curr Infect Dis Rep 15:130–5.
  • Muzny CA, Schwebke JR. (2015). Biofilms: an underappreciated mechanism of treatment failure and recurrence in vaginal infections. Clin Infect Dis 61:601–6.
  • Muzny CA, Sunesara IR, Griswold ME, et al. (2014). Association between BVAB1 and high Nugent scores among women with bacterial vaginosis. Diagn Microbiol Infect Dis 80:321–3.
  • Nagaoka S, Hojo K, Murata S, et al. (2008). Interactions between salivary Bifidobacterium adolescentis and other oral bacteria: in vitro coaggregation and coadhesion assays. FEMS Microbiol Lett 281:183–9.
  • Nagy E, Petterson M, Mårdh PA. (1991). Antibiosis between bacteria isolated from the vagina of women with and without signs of bacterial vaginosis. APMIS 99:739–44.
  • Ness RB, Hillier SL, Richter HE, et al. (2002). Douching in relation to bacterial vaginosis, lactobacilli, and facultative bacteria in the vagina. Obstet Gynecol 100:765–72.
  • Ness RB, Kip KE, Hillier SL, et al. (2005). A cluster analysis of bacterial vaginosis-associated microflora and pelvic inflammatory disease. Am J Epidemiol 162:585–90.
  • Nikolaitchouk N, Andersch B, Falsen E, et al. (2008). The lower genital tract microbiota in relation to cytokine-, SLPI- and endotoxin levels: application of checkerboard DNA-DNA hybridization (CDH). APMIS 116:263–77.
  • O’Hanlon DE, Moench TR, Cone RA. (2013). Vaginal pH and microbicidal lactic acid when lactobacilli dominate the microbiota. PLoS One 8:1–8.
  • Oakley BB, Fiedler TL, Marrazzo JM, Fredricks DN. (2008). Diversity of human vaginal bacterial communities and associations with clinically defined bacterial vaginosis. Appl Environ Microbiol 74:4898–909.
  • Okuda T, Kokubu E, Kawana T, et al. (2012). Synergy in biofilm formation between Fusobacterium nucleatum and Prevotella species. Anaerobe 18:110–16.
  • Olmsted SS, Meyn LA, Rohan LC, Hillier SL. (2003). Glycosidase and proteinase activity of anaerobic Gram-negative bacteria isolated from women with bacterial vaginosis. Sex Transm Dis 30:257–61.
  • Patterson JL. (2010). Characterization of adherence, cytotoxicity and biofilm formation by Gardnerella vaginalis [dissertation]. Richmond (VA), USA: Virginia Commonwealth University.
  • Patterson JL, Girerd PH, Karjane NW, Jefferson KK. (2007). Effect of biofilm phenotype on resistance of Gardnerella vaginalis to hydrogen peroxide and lactic acid. Am J Obstet Gynecol 197:170.e1–e7.
  • Patterson JL, Stull-Lane A, Girerd PH, Jefferson KK. (2010). Analysis of adherence, biofilm formation and cytotoxicity suggests a greater virulence potential of Gardnerella vaginalis relative to other bacterial-vaginosis-associated anaerobes. Microbiology (Reading, Engl) 156:392–9.
  • Pavlova SI, Kiliç AO, Mou SM, Tao L. (1997). Phage infection in vaginal lactobacilli: an in vitro study. Infect Dis Obstet Gynecol 5:36–44.
  • Pavlova SI, Tao L. (2000). In vitro inhibition of commercial douche products against vaginal microflora. Infect Dis Obstet Gynecol 8:99–104.
  • Peeters M, Piot P. (1985). Adhesion of Gardnerella vaginalis to vaginal epithelial cells: variables affecting adhesion and inhibition by metronidazole. Genitourin Med 61:391–5.
  • Periasamy S, Kolenbrander PE. (2009). Aggregatibacter actinomycetemcomitans builds mutualistic biofilm communities with Fusobacterium nucleatum and Veillonella species in saliva. Infect Immun 77:3542–51.
  • Piot P, Van Dyck E, Godts P, Vanderheyden J. (1982). The vaginal microbial flora in non-specific vaginitis. Eur J Clin Microbiol 1:301–6.
  • Piot P, van Dyck E, Peeters M, et al. (1984). Biotypes of Gardnerella vaginalis. J Clin Microbiol 20:677–9.
  • Pybus V, Onderdonk AB. (1996). The effect of pH on growth and succinate production by Prevotella bivia. Microb Ecol Health Dis 9:19–25.
  • Pybus V, Onderdonk AB. (1997). Evidence for a commensal, symbiotic relationship between Gardnerella vaginalis and Prevotella bivia involving ammonia: potential significance for bacterial vaginosis. J Infect Dis 175:406–13.
  • Pybus V, Onderdonk AB. (1998). A commensal symbiosis between Prevotella bivia and Peptostreptococcus anaerobius involves amino acids: potential significance to the pathogenesis of bacterial vaginosis. FEMS Immunol Med Microbiol 22:317–27.
  • Ralph SG, Rutherford AJ, Wilson JD. (1999). Influence of bacterial vaginosis on conception and miscarriage in the first trimester: cohort study. BMJ 319:220–3.
  • Randis TM, Zaklama J, LaRocca TJ, et al. (2013). Vaginolysin drives epithelial ultrastructural responses to Gardnerella vaginalis. Infect Immun 81:4544–50.
  • Ravel J, Gajer P, Abdo Z, et al. (2011). Vaginal microbiome of reproductive-age women. Proc Natl Acad Sci USA 108:4680–7.
  • Rickard AH, Gilbert P, High NJ, et al. (2003). Bacterial coaggregation: an integral process in the development of multi-species biofilms. Trends Microbiol 11:94–100.
  • Roberton AM, Wiggins R, Horner PJ, et al. (2005). A novel bacterial mucinase, glycosulfatase, is associated with bacterial vaginosis. J Clin Microbiol 43:5504–8.
  • Robertson JA, Stemler ME, Stemke GW. (1984). Immunoglobulin A protease activity of Ureaplasma urealyticum. J Clin Microbiol 19:255–8.
  • Sapi E, Bastian SL, Mpoy CM, et al. (2012). Characterization of biofilm formation by Borrelia burgdorferi in vitro. PLoS One 7:1–11.
  • Sauer K, Camper AK, Ehrlich GD, et al. (2002). Pseudomonas aeruginosa displays multiple phenotypes during development as a biofilm. J Bacteriol 184:1140–54.
  • Schwebke JR, Desmond R. (2007). Natural history of asymptomatic bacterial vaginosis in a high-risk group of women. Sex Transm Dis 34:876–7.
  • Schwebke JR, Flynn MS, Rivers CA. (2014a). Prevalence of Gardnerella vaginalis among women with Lactobacillus-predominant vaginal flora. Sex Transm Infect 90:61–3.
  • Schwebke JR, Muzny CA, Josey WE. (2014b). Role of Gardnerella vaginalis in the pathogenesis of bacterial vaginosis: a conceptual model. J Infect Dis 210:338–43.
  • Singh R, Ray P, Das A, Sharma M. (2010). Penetration of antibiotics through Staphylococcus aureus and Staphylococcus epidermidis biofilms. J Antimicrob Chemother 65:1955–8.
  • Sobel JD, Schneider J, Kaye D, Levison ME. (1981). Adherence of bacteria to vaginal epithelial cells at various times in the menstrual cycle. Infect Immun 32:194–7.
  • Spiegel CA. (1991). Bacterial vaginosis. Clin Microbiol Rev 4:458–502.
  • Spiegel CA, Amsel R, Eschenbach D, et al. (1980). Anaerobic bacteria in nonspecific vaginitis. N Engl J Med 303:601–7.
  • Spiegel CA, Davick P, Totten PA, et al. (1983). Gardnerella vaginalis and anaerobic bacteria in the etiology of bacterial (nonspecific) vaginosis. Scand J Infect Dis 40:41–6.
  • Spiegel CA, Roberts M. (1984). Mobiluncus gen. nov., Mobiluncus curtisii subsp. curtisii sp. nov., Mobiluncus curtisii subsp. holmesii subsp. nov., and Mobiluncus mulieris sp. nov., curved rods from the human vagina. Int J Syst Bacteriol 34:177–84.
  • Srinivasan S, Fredricks DN. (2008). The human vaginal bacterial biota and bacterial vaginosis. Interdiscip Perspect Infect Dis 2008:750479.
  • Srinivasan S, Hoffman NG, Morgan MT, et al. (2012). Bacterial communities in women with bacterial vaginosis: high resolution phylogenetic analyses reveal relationships of microbiota to clinical criteria. PLoS One 7:e37818.
  • Srinivasan S, Morgan MT, Fiedler TL, et al. (2015). Metabolic signatures of bacterial vaginosis. MBio 6:1–16.
  • Stålhammar-Carlemalm M, Stenberg L, Lindahl G. (1993). Protein Rib: a novel group B streptococcal cell surface protein that confers protective immunity and is expressed by most strains causing invasive infections. J Exp Med 177:1593–603.
  • Stoodley P, Wilson S, Hall-Stoodley L, et al. (2001). Growth and detachment of cell clusters from mature mixed-species biofilms. Appl Environ Microbiol 67:5608–13.
  • Sturm-Ramirez K, Gaye-Diallo A, Eisen G, et al. (2000). High levels of tumor necrosis factor-α and interleukin-1β in bacterial vaginosis may increase susceptibility to human immunodeficiency virus. J Infect Dis 182:467–73.
  • Swidsinski A, Dörffel Y, Loening-Baucke V, et al. (2011). Response of Gardnerella vaginalis biofilm to 5 days of moxifloxacin treatment. FEMS Immunol Med Microbiol 61:41–6.
  • Swidsinski A, Loening-baucke V, Mendling W, et al. (2014). Infection through structured polymicrobial Gardnerella biofilms (StPM-GB). Histol Histopathol 29:567–87.
  • Swidsinski A, Loening-Baucke V, Swidsinski S, Verstraelen H. (2015). Polymicrobial Gardnerella biofilm resists repeated intravaginal antiseptic treatment in a subset of women with bacterial vaginosis: a preliminary report. Arch Gynecol Obstet 291:605–9.
  • Swidsinski A, Mendling W, Loening-Baucke V, et al. (2005). Adherent biofilms in bacterial vaginosis. Obstet Gynecol 106:1013–23.
  • Swidsinski A, Mendling W, Loening-baucke V, et al. (2008). An adherent Gardnerella vaginalis biofilm persists on the vaginal epithelium after standard therapy with oral metronidazole. Am J Obstet Gynecol 198:97.e1–.e6.
  • Swidsinski A, Verstraelen H, Loening-Baucke V, et al. (2013). Presence of a polymicrobial endometrial biofilm in patients with bacterial vaginosis. PLoS One 8:e53997.
  • Tao F, Swarup S, Zhang LH. (2010). Quorum sensing modulation of a putative glycosyltransferase gene cluster essential for Xanthomonas campestris biofilm formation. Environ Microbiol 12:3159–70.
  • Tao L, Pavlova SI, Mou SM, et al. (1997). Analysis of Lactobacillus products for phages and bacteriocins that inhibit vaginal lactobacilli. Infect Dis Obstet Gynecol 5:244–51.
  • Taylor-Robinson AW, Borriello SP, Taylor-Robinson D. (1993). Identification and preliminary characterization of a cytotoxin isolated from Mobiluncus spp. Int J Exp Pathol 74:357–66.
  • Terraf MCL, Mendoza LM, Tomás MSJ, et al. (2014). Phenotypic surface properties (aggregation, adhesion and biofilm formation) and presence of related genes in beneficial vaginal lactobacilli. J Appl Microbiol 117:1761–72.
  • Theilacker C, Sava I, Sanchez-Carballo P, et al. (2011). Deletion of the glycosyltransferase bgsB of Enterococcus faecalis leads to a complete loss of glycolipids from the cell membrane and to impaired biofilm formation. BMC Microbiol 11:67.
  • Theron MM, Janse van Rensburg MN, Chalkley LJ. (2004). Nitroimidazole resistance genes (nimB) in anaerobic Gram-positive cocci (previously Peptostreptococcus spp.). J Antimicrob Chemother 54:240–2.
  • Thomas S. (1928). Döderlein’s bacillus: Lactobacillus acidophilus. J Infect Dis 43:218–27.
  • Thurlow LR, Hanke ML, Fritz T, et al. (2011). Staphylococcus aureus biofilms prevent macrophage phagocytosis and attenuate inflammation in vivo. J Immunol 186:6585–96.
  • Turovskiy Y, Noll KS, Chikindas ML. (2011). The aetiology of bacterial vaginosis. J Appl Microbiol 110:1105–28.
  • Trama JP, Pascal KE, Zimmerman J, et al. (2008). Rapid detection of Atopobium vaginae and association with organisms implicated in bacterial vaginosis. Mol Cell Probes 22:96–102.
  • Udayalaxmi J, Bhat G, Kotigadde S, Kotian S. (2012). Effect of pH on the adherence, surface hydrophobicity and the biofilm formation of Gardnerella vaginalis. J Clin Diagnostic Res 6:967–9.
  • Udayalaxmi J, Bhat GK, Kotigadde S. (2011). Biotypes and virulence factors of Gardnerella vaginalis isolated from cases of bacterial vaginosis. Indian J Med Microbiol 29:165–8.
  • Vallor AC, Antonio MA, Hawes SE, Hillier SL. (2001). Factors associated with acquisition of, or persistent colonization by, vaginal lactobacilli: role of hydrogen peroxide production. J Infect Dis 184:1431–6.
  • Velraeds MMC, Van der Mei HC, Reid G, Busscher HJ. (1996). Inhibition of initial adhesion of uropathogenic Enterococcus faecalis by biosurfactants from Lactobacillus isolates. Appl Environ Microbiol 62:1958–63.
  • Ventolini G, Mitchell E, Salazar M. (2015). Biofilm formation by vaginal Lactobacillus in vivo. Med Hypotheses 84:417–420.
  • Verhelst R, Verstraelen H, Claeys G, et al. (2004). Cloning of 16S rRNA genes amplified from normal and disturbed vaginal microflora suggests a strong association between Atopobium vaginae, Gardnerella vaginalis and bacterial vaginosis. BMC Microbiol 4:16.
  • Verstraelen H, Verhelst R, Claeys G, et al. (2004). Cultureindependent analysis of vaginal microflora: the unrecognized association of Atopobium vaginae with bacterial vaginosis. Am J Obstet Gynecol 191:1130–2.
  • Wang X, Li X, Zhao C, et al. (2012). Correlation between composition of the bacterial community and concentration of volatile fatty acids in the rumen during the transition period and ketosis in dairy cows. Appl Environ Microbiol 78:2386–92.
  • Whitchurch CB, Tolker-Nielsen T, Ragas PC, Mattick JS. (2002). Extracellular DNA required for bacterial biofilm formation. Science 295:1487.
  • Whittaker CJ, Klier CM, Kolenbrander PE. (1996). Mechanisms of adhesion by oral bacteria. Annu Rev Microbiol 50:513–52.
  • Wilson JD, Ralph SG, Rutherford AJ. (2002). Rates of bacterial vaginosis in women undergoing in vitro fertilisation for different types of infertility. BJOG 109:714–17.
  • Witkin SS, Linhares IM, Giraldo P. (2007). Bacterial flora of the female genital tract: function and immune regulation. Best Pract Res Clin Obstet Gynaecol 21:347–54.
  • Wolrath H, Forsum U, Larsson PG, Borén H. (2001). Analysis of bacterial vaginosisrelated amines in vaginal fluid by gas chromatography and mass spectrometry. J Clin Microbiol 39:4026–31.
  • Xia Q, Cheng L, Zhang H, et al. (2016). Identification of vaginal bacteria diversity and it’s association with clinically diagnosed bacterial vaginosis by denaturing gradient gel electrophoresis and correspondence analysis. Infect Genet Evol 44:479–86.
  • Yeganegi M, Watson CS, Martins A, et al. (2009). Effect of Lactobacillus rhamnosus GR-1 supernatant and fetal sex on lipopolysaccharide-induced cytokine and prostaglandin-regulating enzymes in human placental trophoblast cells: implications for treatment of bacterial vaginosis and prevention of p. Am J Obstet Gynecol 200:532.e1–8.
  • Yeoman CJ, Yildirim S, Thomas SM, et al. (2010). Comparative genomics of Gardnerella vaginalis strains reveals substantial differences in metabolic and virulence potential. PLoS One 5:e12411.
  • Yoshimura K, Morotomi N, Fukuda K, et al. (2011). Intravaginal microbial flora by the 16S rRNA gene sequencing. Am J Obstet Gynecol 205:235.e1–e9.
  • Zhou X, Bent SJ, Schneider MG, et al. (2004). Characterization of vaginal microbial communities in adult healthy women using cultivation-independent methods. Microbiology (Reading, Engl) 150:2565–73.
  • Zozaya-Hinchliffe M, Lillis R, Martin DH, Ferris MJ. (2010). Quantitative PCR assessments of bacterial species in women with and without bacterial vaginosis. J Clin Microbiol 48:1812–29.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.