1,147
Views
78
CrossRef citations to date
0
Altmetric
Review Article

Microbial exopolysaccharide-mediated synthesis and stabilization of metal nanoparticles

ORCID Icon, &
Pages 731-752 | Received 16 Jul 2016, Accepted 10 Mar 2017, Published online: 25 Apr 2017

References

  • Abdel-Halim ES, Alanazi HH, Al-Deyab SS. 2015. Utilization of hydroxypropyl carboxymethyl cellulose in synthesis of silver nanoparticles. Int J Biol Macromol. 75:467–473.
  • Abdel-Mohsen AM, Abdel-Rahman RM, Fouda MMG, Vojtova L, Uhrova L, Hassan AF, Al-Deyab SS, El-Shamy IE, Jancar J. 2014. Preparation, characterization and cytotoxicity of schizophyllan/silver nanoparticle composite. Carbohydr Polym. 102:238–245.
  • Ahmed KBA, Kalla D, Uppuluri KB, Anbazhagan V. 2014. Green synthesis of silver and gold nanoparticles employing levan, a biopolymer from Acetobacter xylinum NCIM 2526, as a reducing agent and capping agent. Carbohydr Polym. 112:539–545.
  • Ahmed S, Ahmad M, Swami BL, Ikram S. 2016. A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: a green expertise. J Adv Res. 7:17–28.
  • Alves VD, Ferreira AR, Costa N, Freitas F, Reis MAM, Coelhoso IM. 2011. Characterization of biodegradable films from the extracellular polysaccharide produced by Pseudomonas oleovorans grown on glycerol byproduct. Carbohydr Polym. 83:1582–1590.
  • Arias S, del Moral A, Ferrer MR, Tallon R, Quesada E, Béjar V. 2003. Mauran, an exopolysaccharide produced by the halophilic bacterium Halomonas maura, with a novel composition and interesting properties for biotechnology. Extremophiles. 7:319–326.
  • Bae A-H, Numata M, Yamada S, Shinkai S. 2007. New approach to preparing one-dimensional Au nanowires utilizing a helical structure constructed by schizophyllan. New J Chem. 31:618–622.
  • Balachandran YL, Panarin AY, Khodasevich IA, Terekhov SN, Gutleb AC, Girijaa S. 2015. Environmentally friendly preparation of gold and silver nanoparticles for SERS applications using biopolymer Pectin. J Appl Spectros. 81:962–968.
  • Banerjee SS, Chen D-H. 2007. Magnetic nanoparticles grafted with cyclodextrin for hydrophobic drug delivery. Chem Mater. 19:6345–6349.
  • Bankura KP, Maity D, Mollick MMR, Mondal D, Bhowmick B, Bain MK, Chakraborty A, Sarkar J, Acharya K, Chattopadhyay D, et al. 2012. Synthesis, characterization and antimicrobial activity of dextran stabilized silver nanoparticles in aqueous medium. Carbohydr Polym. 89:1159–1165.
  • Basu A, Kunduru KR, Abtew E, Domb AJ. 2015. Polysaccharide-based conjugates for biomedical applications. Bioconjugate Chem. 26:1396–1312.
  • Berry CC, Wells S, Charles S, Curtis ASG. 2003. Dextran and albumin derivatised iron oxide nanoparticles: influence on fibroblasts in vitro. Biomaterials. 24:4551–4557.
  • Bhumkar DR, Joshi HM, Sastry M, Pokharkar VB. 2007. Chitosan reduced gold nanoparticles as novel carriers for transmucosal delivery of insulin. Pharm Res. 24:1415–1426.
  • Buzea C, Pacheco II, Robbie K. 2007. Nanomaterials and nanoparticles: sources and toxicity. Biointerphases. 2:MR17–MR71.
  • Calvo C, Silva-Castro GA, Uad I, García Fandiño C, Laguna J, González-López J. 2008. Efficiency of the EPS emulsifier produced by Ochrobactrum anthropi in different hydrocarbon bioremediation assays. J Ind Microbiol Biotechnol. 35:1493–1401.
  • Camargo PHC, Satyanarayana KG, Wypych F. 2009. Nanocomposites: synthesis, structure, properties and new application opportunities. Mater Res. 12:1–39.
  • Cao G, Wang Y. 2012. Nanostructures and Nanomaterials. 2nd Ed. New Jersey: World Scientific Publishing Co. Inc.
  • Chan CS, De Stasio G, Welch SA, Girasole M, Frazer BH, Nesterova MV, Fakra S, Banfield JF. 2004. Microbial polysaccharides template assembly of nanocrystal fibers. Science. 303:1656–1658.
  • Chau NTT, Handjani S, Guegan J-P, Guerrero M, Monflier E, Philippot K, Denicourt-Nowicki A, Roucoux A. 2013. Methylated β-cyclodextrin-capped ruthenium nanoparticles: synthesis strategies, characterization, and application in hydrogenation reactions. ChemCatChem. 5:1497–1403.
  • Chen J, Wang J, Zhang X, Jin Y. 2008. Microwave-assisted green synthesis of silver nanoparticles by carboxymethyl cellulose sodium and silver nitrate. Mater Chem Phys. 108:421–424.
  • Chen Z, Wang Z, Chen X, Xu H, Liu J. 2013. Chitosan-capped gold nanoparticles for selective and colorimetric sensing of heparin. J Nanopart Res. 15:1–9.
  • Cheng D, Han W, Yang K, Song Y, Jiang M, Song E. 2014. One-step facile synthesis of hyaluronic acid functionalized fluorescent gold nanoprobes sensitive to hyaluronidase in urine specimen from bladder cancer patients. Talanta. 130:408–414.
  • Cheng F, Betts JW, Kelly SM, Schaller J, Heinze T. 2013. Synthesis and antibacterial effects of aqueous colloidal solutions of silver nanoparticles using aminocellulose as a combined reducing and capping reagent. Green Chem. 15:989–998.
  • Coseri S, Spatareanu A, Sacarescu L, Rimbu C, Suteu D, Spirk S, Harabagiu V. 2015. Green synthesis of the silver nanoparticles mediated by pullulan and 6-carboxypullulan. Carbohydr Polym. 116:9–17.
  • Courtois A, Berthou C, Guézennec J, Boisset C, Bordron A. 2014. Exopolysaccharides isolated from hydrothermal vent bacteria can modulate the complement system. PLoS One. 9:e94965
  • Dahoumane SA, Yéprémian C, Djédiat C, Couté A, Fiévet F, Coradin T, Brayner R. 2014. A global approach of the mechanism involved in the biosynthesis of gold colloids using micro-algae. J Nanopart Res. 16:1–12.
  • de Moura MR, Mattoso LHC, Zucolotto V. 2012. Development of cellulose-based bactericidal nanocomposites containing silver nanoparticles and their use as active food packaging. J Food Eng. 109:520–524.
  • de Oliveira MR, da Silva RSSF, Buzato JB, Celligoi MAPC. 2007. Study of levan production by Zymomonas mobilis using regional low-cost carbohydrate sources. Biochem Eng J. 37:177–183.
  • Delbarre-Ladrat C, Sinquin C, Lebellenger L, Zykwinska A, Colliec-Jouault S. 2014. Exopolysaccharides produced by marine bacteria and their applications as glycosaminoglycan-like molecules. Front Chem. 2:85.
  • Dhadge VL, Morgado PI, Freitas F, Reis MA, Azevedo A, Aires-Barros R, Roque ACA. 2014. An extracellular polymer at the interface of magnetic bioseparations. J R Soc Interface. 11:20140743.
  • Dhar S, Mali V, Bodhankar S, Shiras A, Prasad BLV, Pokharkar V. 2011. Biocompatible gellan gum-reduced gold nanoparticles: cellular uptake and subacute oral toxicity studies. J Appl Toxicol. 31:411–420.
  • Dhar S, Reddy EM, Prabhune A, Pokharkar V, Shiras A, Prasad BL. 2011b. Cytotoxicity of sophorolipid-gellan gum-gold nanoparticle conjugates and their doxorubicin loaded derivatives towards human glioma and human glioma stem cell lines. Nanoscale. 3:575–580.
  • Dhar S, Murawala P, Shiras A, Pokharkar V, Prasad BLV. 2012. Gellan gum capped silver nanoparticle dispersions and hydrogels: cytotoxicity and in vitro diffusion studies. Nanoscale. 4:563–567.
  • El-Naggar ME, Shaheen TI, Fouda MMG, Hebeish AA. 2016. Eco-friendly microwave-assisted green and rapid synthesis of well-stabilized gold and core–shell silver–gold nanoparticles. Carbohydr Polym. 136:1128–1136.
  • El-Rafie MH, Ahmed HB, Zahran MK. 2014. Facile Precursor for Synthesis of Silver Nanoparticles Using Alkali Treated Maize Starch. Int Sch Res Notices. 2014:702396.
  • Emam HE, Ahmed HB. 2016. Polysaccharides templates for assembly of nanosilver. Carbohydr Polym. 135:300–307.
  • Engelbrekt C, Sørensen KH, Zhang J, Welinder AC, Jensen PS, Ulstrup J. 2009. Green synthesis of gold nanoparticles with starch-glucose and application in bioelectrochemistry. J Mater Chem. 19:7839–7847.
  • Fakayode BOJ, Oladipo AO, Oluwafemi OS, Songca SP. 2016. Biopolymer-mediated Green Synthesis of Noble Metal Nanostructures. In: Parveen FK, editor. Recent Advances in Biopolymers. 1st Ed. Croatia: InTech; p. 19–44.
  • Fan G, Cang L, Qin W, Zhou C, Gomes HI, Zhou D. 2013. Surfactants-enhanced electrokinetic transport of xanthan gum stabilized nanoPd/Fe for the remediation of PCBs contaminated soils. Sep Purif Technol. 114:64–72.
  • Feynman R. 1991. There's plenty of room at the bottom. Science. 254:1300–1301.
  • Gan PP, Li SFY. 2012. Potential of plant as a biological factory to synthesize gold and silver nanoparticles and their applications. Rev Environ Sci Biotechnol. 11:169–106.
  • Gericke M, Pinches A. 2006. Biological synthesis of metal nanoparticles. Hydrometallurgy. 83:132–140.
  • Gholampoor N, Emtiazi G, Emami Z. 2015. The influence of Microbacterium hominis and Bacillus licheniformis extracellular polymers on silver and iron oxide nanoparticles production; Green biosynthesis and mechanism of bacterial nano production. J Nanomater Mol Nanotechnol. 4:1000160.
  • Gomaa EZ. 2016. Exopolysaccharide-mediated silver nanoparticles produced by Lactobacillus brevis NM101-1 as antibiotic adjuvant. Microbiology. 85:207–219.
  • Gupta V. 2006. Synthesis of metallic nanoparticles and their applications (Electronic thesis and dissertation), University of Cincinnati.
  • Harish BS, Uppuluri KB, Anbazhagan V. 2015. Synthesis of fibrinolytic active silver nanoparticle using wheat bran xylan as a reducing and stabilizing agent. Carbohydr Polym. 132:104–110.
  • He F, Zhao D. 2005. Preparation and characterization of a new class of starch-stabilized bimetallic nanoparticles for degradation of chlorinated hydrocarbons in water. Environ Sci Technol. 39:3314–3320.
  • He J, Kunitake T, Nakao A. 2003. Facile in situ synthesis of noble metal nanoparticles in porous cellulose fibers. Chem Mater. 15:4401–4406.
  • Hebeish AA, El-Rafie MH, Abdel-Mohdy FA, Abdel-Halim ES, Emam HE. 2010. Carboxymethyl cellulose for green synthesis and stabilization of silver nanoparticles. Carbohydr Polym. 82:933–941.
  • Hebeish A, Hashem M, El-Hady MMA, Sharaf S. 2013. Development of CMC hydrogels loaded with silver nano-particles for medical applications. Carbohydr Polym. 92:407–413.
  • Hu Y, He L, Ding J, Sun D, Chen L, Chen X. 2016. One-pot synthesis of dextran decorated reduced graphene oxide nanoparticles for targeted photo-chemotherapy. Carbohydr Polym. 144:223–229.
  • Huang H, Yang X. 2004. Synthesis of polysaccharide-stabilized gold and silver nanoparticles: A green method. Carbohydr Res. 339:2627–2631.
  • Huang T, Meng F, Qi L. 2009. Facile synthesis and one-dimensional assembly of cyclodextrin-capped gold nanoparticles and their applications in catalysis and surface-enhanced Raman scattering. J Phys Chem C. 113:13636–13642.
  • Hulkoti NI, Taranath TC. 2014. Biosynthesis of nanoparticles using microbes: a review. Colloids Surf B Biointerfaces. 121:474–483.
  • Hussain MA, Shah A, Jantan I, Shah MR, Tahir MN, Ahmad R, Bukhari SNA. 2015. Hydroxypropylcellulose as a novel green reservoir for the synthesis, stabilization, and storage of silver nanoparticles. Int J Nanomed. 10:2079–2088.
  • Im S-A, Wang W, Lee C-K, Lee YN. 2010. Activation of macrophages by exopolysaccharide produced by MK1 bacterial strain isolated from neungee mushroom, Sarcodon aspratus. Immune Netw. 10:230–238.
  • Iravani S, Korbekandi H, Mirmohammadi SV, Zolfaghari B. 2014. Synthesis of silver nanoparticles: chemical, physical and biological methods. Res Pharm Sci. 9:385–306.
  • Jain R, Jordan N, Weiss S, Foerstendorf H, Heim K, Kacker R, Hübner R, Kramer H, van Hullebusch ED, Farges F, Lens PN. 2015. Extracellular polymeric substances govern the surface charge of biogenic elemental selenium nanoparticles. Environ Sci Technol. 49:1713–1720.
  • Jaiswal S, Bhattacharya K, McHale P, Duffy B. 2015. Dual effects of β-cyclodextrin-stabilised silver nanoparticles: enhanced biofilm inhibition and reduced cytotoxicity. J Mater Sci Mater Med. 25:52.
  • Jang HY, Zhang K, Chon BH, Choi HJ. 2015. Enhanced oil recovery performance and viscosity characteristics of polysaccharide xanthan gum solution. J Ind Eng Chem. 21:741–745.
  • Kang F, Alvarez PJ, Zhu D. 2014. Microbial extracellular polymeric substances reduce Ag+ to silver nanoparticles and antagonize bactericidal activity. Environ Sci Technol. 48:316–322.
  • Kanmani P, Lim ST. 2013a. Synthesis and characterization of pullulan-mediated silver nanoparticles and its antimicrobial activities. Carbohydr Polym. 97:421–428.
  • Kanmani P, Lim ST. 2013b. Synthesis and structural characterization of silver nanoparticles using bacterial exopolysaccharide and its antimicrobial activity against food and multidrug resistant pathogens. Process Biochem. 48:1099–1006.
  • Karlapudi AP, Kodali VP, Kota KP, Shaik SS, Sampath Kumar NS, Dirisala VR. 2016. Deciphering the effect of novel bacterial exopolysaccharide-based nanoparticle cream against Propionibacterium acnes. 3 Biotech. 6:4.
  • Karthikeyeni S, Siva Vijayakumar T, Vasanth S, Ganesh A, Vignesh V, Akalya J, Thirumurugan R, Subramanian P. 2013. Decolourisation of direct orange S dye by ultra-sonication using iron oxide nanoparticles. J Exp Nanosci. 10:199–108.
  • Kemp MM, Kumar A, Clement D, Ajayan P, Mousa S, Linhardt RJ. 2009a. Hyaluronan- and heparin-reduced silver nanoparticles with antimicrobial properties. Nanomedicine (Lond). 4:421–429.
  • Kemp MM, Kumar A, Mousa S, Park TJ, Ajayan P, Kubotera N, Mousa SA, Linhardt RJ. 2009b. Synthesis of gold and silver nanoparticles stabilized with glycosaminoglycans having distinctive biological activities. Biomacromolecules. 10:589–595.
  • Khalkhali M, Sadighian S, Rostamizadeh K, Khoeini F, Naghibi M, Bayat N, Habibizadeh M, Hamidi M. 2015. Synthesis and characterization of dextran coated magnetite nanoparticles for diagnostics and therapy. BioImpacts. 5:141–150.
  • Khan SS, Mukherjee A, Chandrasekaran N. 2011. Impact of exopolysaccharides on the stability of silver nanoparticles in water. Water Res. 45:5184–5190.
  • Khazaei A, Rahmati S, Hekmatian Z, Saeednia S. 2013. A green approach for the synthesis of palladium nanoparticles supported on pectin: application as a catalyst for solvent-free Mizoroki–Heck reaction. J Mol Catal A Chem. 372:160–166.
  • Kim BH, Hackett MJ, Park J, Hyeon T. 2014. Synthesis, characterization, and application of ultrasmall nanoparticles. Chem Mater. 26:59–71.
  • Kim H-S, Jun SH, Koo YK, Cho S, Park Y. 2013. Green synthesis and nanotopography of heparin-reduced gold nanoparticles with enhanced anticoagulant activity. J Nanosci Nanotechnol. 13:2068–2076.
  • Kiran GS, Selvin J, Manilal A, Sujith S. 2011. Biosurfactants as green stabilizers for the biological synthesis of nanoparticles. Crit Rev Biotechnol. 31:354–364.
  • Kiran G, Dhasayan A, Lipton A, Selvin J, Arasu M, Al-Dhabi N. 2014. Melanin-templated rapid synthesis of silver nanostructures. J Nanobiotechnol. 12:13.
  • Kiran GS, Priyadharshini S, Anitha K, Gnanamani E, Selvin J. 2015. Characterization of an exopolysaccharide from probiont Enterobacter faecalis MSI12 and its effect on the disruption of Candida albicans biofilm. RSC Adv. 5:71573–71585.
  • Krishna Rao KSV, Ramasubba Reddy P, Madusudhana Rao K, Pradeep Kumar S. 2015. A green approach to synthesize silver nanoparticles from natural polymer for biomedical application. Ind J Adv Chem Sci. 3:340–344.
  • Kroll A, Behra R, Kaegi R, Sigg L. 2014. Extracellular polymeric substances (EPS) of freshwater biofilms stabilize and modify CeO2 and Ag nanoparticles. PLoS One. 9:e110709.
  • Kwon C, Park B, Kim H, Jung S. 2009. Green synthesis of silver nanoparticles by sinorhizobial octasaccharide isolated from Sinorhizobium meliloti. Bull Korean Chem Soc. 30:1651–1654.
  • Leung TC-Y, Wong CK, Xie Y. 2010. Green synthesis of silver nanoparticles using biopolymers, carboxymethylated-curdlan and fucoidan. Mater Chem Phys. 121:402–405.
  • Li L, Sun X, Yang Y, Guan N, Zhang F. 2006. Synthesis of anatase TiO2 nanoparticles with beta-cyclodextrin as a supramolecular shell. Chem Asian J. 1:664–668. 6
  • Li S-W, Zhang X, Sheng G-P. 2016. Silver nanoparticles formation by extracellular polymeric substances (EPS) from electroactive bacteria. Environ Sci Pollut Res Int. 23:8627–8633.
  • Li S, Huang R, Shah NP, Tao X, Xiong Y, Wei H. 2014. Antioxidant and antibacterial activities of exopolysaccharides from Bifidobacterium bifidum WBIN03 and Lactobacillus plantarum R315. J Dairy Sci. 97:7334–7343.
  • Li S, Zhang Y, Xu X, Zhang L. 2011. Triple helical polysaccharide-induced good dispersion of silver nanoparticles in water. Biomacromolecules. 12:2864–2871.
  • Liang J, Zeng F, Zhang M, Pan Z, Chen Y, Zeng Y, Xu Y, Xu Q, Huang Y. 2015. Green synthesis of hyaluronic acid-based silver nanoparticles and their enhanced delivery to CD44+ cancer cells. RSC Adv. 5:43733–43740.
  • Liu S-B, Chen X-L, He H-L, Zhang X-Y, Xie B-B, Yu Y, Chen B, Zhou B-C, Zhang Y-Z. 2013. Structure and ecological roles of a novel exopolysaccharide from the Arctic sea ice bacterium Pseudoalteromonas sp. strain SM20310. Appl Environ Microbiol. 79:224–230.
  • Lloyd JR. 2003. Microbial reduction of metals and radionuclides. FEMS Microbiol Rev. 27:411–425.
  • Lord MS, Tsoi B, Gunawan C, Teoh WY, Amal R, Whitelock JM. 2013. Anti-angiogenic activity of heparin functionalised cerium oxide nanoparticles. Biomaterials. 34:8808–8818.
  • Mafuné F, Kohno J-Y, Takeda Y, Kondow T. 2002. Full physical preparation of size-selected gold nanoparticles in solution: laser ablation and laser-induced size control. J Phys Chem B. 106:7575–7577.
  • Makarov VV, Love AJ, Sinitsyna OV, Makarova SS, Yaminsky IV, Taliansky ME, Kalinina NO. 2014. ‘Green’ nanotechnologies: synthesis of metal nanoparticles using plants. Acta Naturae. 6:35–44.
  • Mandal D, Bolander ME, Mukhopadhyay D, Sarkar G, Mukherjee P. 2006. The use of microorganisms for the formation of metal nanoparticles and their application. Appl Microbiol Biotechnol. 69:485–492.
  • Manivasagan P, Kang K-H, Kim DG, Kim S-K. 2015. Production of polysaccharide-based bioflocculant for the synthesis of silver nanoparticles by Streptomyces sp. Int J Biol Macromol. 77:159–167.
  • Manivasagan P, Nam SY, Oh J. 2016a. Marine microorganisms as potential biofactories for synthesis of metallic nanoparticles. Crit Rev Microbiol. 42:1007–1019.
  • Manivasagan P, Venkatesan J, Sivakumar K, Kim S-K. 2016b. Actinobacteria mediated synthesis of nanoparticles and their biological properties: a review. Crit Rev Microbiol. 42:209–221.
  • Manno D, Filippo E, Di Giulio M, Serra A. 2008. Synthesis and characterization of starch-stabilized Ag nanostructures for sensors applications. J Non-Cryst Solids. 354:5515–5520.
  • Masala O, Seshadri R. 2004. Synthesis routes for large volumes of nanoparticles. Annu Rev Mater Res. 34:41–81.
  • Mazzola L. 2003. Commercializing nanotechnology. Nat Biotechnol. 21:1137–1143.
  • Mehta A, Sidhu C, Pinnaka AK, Roy Choudhury A. 2014. Extracellular polysaccharide production by a novel osmotolerant marine strain of Alteromonas macleodii and its application towards biomineralization of silver. PLoS One. 9:e98798.
  • Miao L, Wang C, Hou J, Wang P, Ao Y, Li Y, Lv B, Yang Y, You G, Xu Y, et al. 2015. Enhanced stability and dissolution of CuO nanoparticles by extracellular polymeric substances in aqueous environment. J Nanopart Res. 17:12.
  • Mizrahy S, Peer D. 2012. Polysaccharides as building blocks for nanotherapeutics. Chem Soc Rev. 41:2623–2640.
  • Mohan S, Oluwafemi OS, Songca SP, Jayachandran VP, Rouxel D, Joubert O, Kalarikkal N, Thomas S. 2016. Synthesis, antibacterial, cytotoxicity and sensing properties of starch-capped silver nanoparticles. J Mol Liq. 213:75–81.
  • Mohanty S, Mishra S, Jena P, Jacob B, Sarkar B, Sonawane A. 2012. An investigation on the antibacterial, cytotoxic, and antibiofilm efficacy of starch-stabilized silver nanoparticles. Nanomed Nanotechnol. 8:916–924.
  • Moharana B, Preetha SP, Selvasubramanian S, Malathi S, Balasubramanian S. 2015. Effect of pectin capped silver nanoparticles on expression of BCL -2, BAX and GAL-3 in cancer cells. Indo Am J Pharm Res. 5:3242–3248.
  • Moharana B, Preetha SP, Selvasubramanian S, Malathi S, Balasubramanian S. 2014. Synthesis and characterization of pectin capped silver nanoparticles and exploration of its anticancer potentials in experimental carcinogenesis in vitro. Indo Am J Pharm Res. 4:5576–5583.
  • Moosavi A, Karbassi A. 2010. Bioconversion of sugar-beet molasses into xantun gum. J Food Process Preserv. 34:316–322.
  • More TT, Yadav JSS, Yan S, Tyagi RD, Surampalli RY. 2014. Extracellular polymeric substances of bacteria and their potential environmental applications. J Environ Manage. 144:1–25.
  • Morsy FM, Nafady NA, Abd-Alla MH, Elhady DA. 2014. Green synthesis of silver nanoparticles by water soluble fraction of the extracellular polysaccharides/matrix of the cyanobacterium Nostoc commune and its application as a potent fungal surface sterilizing agent of seed crops. Univ J Microbiol Res. 2:36–43.
  • Narayanan KB, Sakthivel N. 2010. Biological synthesis of metal nanoparticles by microbes. Adv Colloid Interface Sci. 156:1–13.
  • Nguyen VT, Gidley MJ, Dykes GA. 2008. Potential of a nisin-containing bacterial cellulose film to inhibit Listeria monocytogenes on processed meats. Food Microbiol. 25:471–478.
  • Nikhil RS. 2012. Advancement in nanotechnology and its major issues. Paper presented at IEEE International Conference on Engineering education: Innovative practices and future trends (AICERA), 19–21 July; p. 1–6.
  • Nwodo UU, Green E, Okoh AI. 2012. Bacterial exopolysaccharides: functionality and prospects. Int J Mol Sci. 13:14002–14015.
  • Ottenbrite RM, Wall JS, Siddiqui JA. 2000. Self-catalyzed synthesis of organo-silica nanoparticles. J Am Ceram Soc. 83:3214–3215.
  • Paniagua-Michel J d J, Olmos-Soto J, Morales-Guerrero ER. 2014. Algal and microbial exopolysaccharides: New insights as biosurfactants and bioemulsifiers. Adv Food Nutr Res. 73:221–257.
  • Park Y, Hong YN, Weyers A, Kim YS, Linhardt RJ. 2011. Polysaccharides and phytochemicals: a natural reservoir for the green synthesis of gold and silver nanoparticles. IET Nanobiotechnol. 5:69–78.
  • Patel V, Berthold D, Puranik P, Gantar M. 2015. Screening of cyanobacteria and microalgae for their ability to synthesize silver nanoparticles with antibacterial activity. Biotechnol Reports. 5:112–119.
  • Polarz S, Roy A, Merz M, Halm S, Schröder D, Schneider L, Bacher G, Kruis FE, Driess M. 2005. Chemical vapor synthesis of size-selected zinc oxide nanoparticles. Small. 1:540–552.
  • Poli A, Anzelmo G, Nicolaus B. 2010. Bacterial exopolysaccharides from extreme marine habitats: production, characterization and biological activities. Mar Drugs. 8:1779–1702.
  • Poli A, Di Donato P, Abbamondi GR, Nicolaus B. 2011. Synthesis, production, and biotechnological applications of exopolysaccharides and polyhydroxyalkanoates by Archaea. Archaea. 2011:693253.
  • Pooja D, Panyaram S, Kulhari H, Rachamalla SS, Sistla R. 2014. Xanthan gum stabilized gold nanoparticles: Characterization, biocompatibility, stability and cytotoxicity. Carbohydr Polym. 110:1–9.
  • Pradeepa, Vidya SM, Mutalik S, Udaya Bhat K, Huilgol P, Avadhani K. 2016. Preparation of gold nanoparticles by novel bacterial exopolysaccharide for antibiotic delivery. Life Sci. 153:171–179.
  • Premkumar T, Geckeler KE. 2014. Facile synthesis of silver nanoparticles using unmodified cyclodextrin and their surface-enhanced Raman scattering activity. New J Chem. 38:2847–2855.
  • Raj R, Dalei K, Chakraborty J, Das S. 2016. Extracellular polymeric substances of a marine bacterium mediated synthesis of CdS nanoparticles for removal of cadmium from aqueous solution. J Colloid Interface Sci. 462:166–175.
  • Rasulov BA, Pattaeva MA, Yili A, Aisa HA. 2016. Polysaccharide-based bioflocculant template of a diazotrophic Bradyrhizobium japonicum 36 for controlled assembly of AgCl nanoparticles. Int J Biol Macromol. 89:682–688.
  • Raveendran S, Poulose AC, Yoshida Y, Maekawa T, Kumar DS. 2013. Bacterial exopolysaccharide based nanoparticles for sustained drug delivery, cancer chemotherapy and bioimaging. Carbohydr Polym. 91:22–32.
  • Raveendran S, Chauhan N, Palaninathan V, Nagaoka Y, Yoshida Y, Maekawa T, Kumar DS. 2015. Extremophilic polysaccharide for biosynthesis and passivation of gold nanoparticles and photothermal ablation of cancer cells. Part Part Syst Charact. 32:54–64.
  • Rehm BHA. 2010. Bacterial polymers: biosynthesis, modifications and applications. Nat Rev Microbiol. 8:578–592.
  • Rhim J-W, Kanmani P. 2015. Synthesis and characterization of biopolymer agar mediated gold nanoparticles. Mater Lett. 141:114–117.
  • Roca C, Alves VD, Freitas F, Reis MAM. 2015. Exopolysaccharides enriched in rare sugars: bacterial sources, production, and applications. Front Microbiol. 6:288.
  • Rodríguez-Carmona E, Villaverde A. 2010. Nanostructured bacterial materials for innovative medicines. Trends Microbiol. 18:423–430.
  • Saha S, Pal A, Pande S, Sarkar S, Panigrahi S, Pal T. 2009. Alginate gel-mediated photochemical growth of mono- and bimetallic gold and silver nanoclusters and their application to surface-enhanced Raman scattering. J Phys Chem C. 113:7553–7560.
  • Saha S, Pal A, Kundu S, Basu S, Pal T. 2010. Photochemical green synthesis of calcium-alginate-stabilized Ag and Au nanoparticles and their catalytic application to 4-nitrophenol reduction. Langmuir. 26:2885–2893.
  • Saini R, Saini S, Sharma S. 2010. Nanotechnology: the future medicine. J Cutan Aesthet Surg. 3:32–33.
  • Salata O. 2004. Applications of nanoparticles in biology and medicine. J Nanobiotechnol. 2:3. doi: 10.1186/1477-3155-2-3
  • Santoshi kumari A, Venkatesham M, Ayodhya D, Veerabhadram G. 2015. Green synthesis, characterization and catalytic activity of palladium nanoparticles by xanthan gum. Appl Nanosci. 2014;5:315–320.
  • Sathiyanarayanan G, Kiran GS, Selvin J. 2013. Synthesis of silver nanoparticles by polysaccharide bioflocculant produced from marine Bacillus subtilis MSBN17. Colloids Surf B Biointerfaces. 102:13–20.
  • Sathiyanarayanan G, Vignesh V, Saibaba G, Vinothkanna A, Dineshkumar K, Viswanathan MB, Selvin J. 2014. Synthesis of carbohydrate polymer encrusted gold nanoparticles using bacterial exopolysaccharide: a novel and greener approach. RSC Adv. 4:22817–22827.
  • Sathiyanarayanan G, Yi D-H, Bhatia SK, Kim J-H, Seo HM, Kim Y-G, Park S-H, Jeong D, Jung S, Jung J-Y, et al. 2015. Exopolysaccharide from psychrotrophic Arctic glacier soil bacterium Flavobacterium sp. ASB 3-3 and its potential applications. RSC Adv. 5:84492–84402.
  • Sathiyanarayanan G, Bhatia SK, Kim HJ, Kim J-H, Jeon J-M, Kim Y-G, Park S-H, Lee S-H, Lee YK, Yang Y-H. 2016. Metal removal and reduction potential of an exopolysaccharide produced by Arctic psychrotrophic bacterium Pseudomonas sp. PAMC 28620. RSC Adv. 6:96870–96881.
  • Sayem SM, Manzo E, Ciavatta L, Tramice A, Cordone A, Zanfardino A, De Felice M, Varcamonti M. 2011. Anti-biofilm activity of an exopolysaccharide from a sponge-associated strain of Bacillus licheniformis. Microb Cell Fact. 10:12.
  • Schröfel A, Kratošová G, Šafařík I, Šafaříková M, Raška I, Shor LM. 2014. Applications of biosynthesized metallic nanoparticles - a review. Acta Biomaterialia. 10:4023–4042.
  • Selvakumar R, Aravindh S, Ashok AM, Balachandran YL. 2014. A facile synthesis of silver nanoparticle with SERS and antimicrobial activity using Bacillus subtilis exopolysaccharides. J Exp Nanosci. 9:1075–1087.
  • Sen IK, Mandal AK, Chakraborti S, Dey B, Chakraborty R, Islam SS. 2013. Green synthesis of silver nanoparticles using glucan from mushroom and study of antibacterial activity. Int J Biol Macromol. 62:439–449.
  • Shah U, Gani A, Ashwar BA, Shah A, Ahmad M, Gani A, Wani IA, Masoodi FA, Yildiz F. 2015. A review of the recent advances in starch as active and nanocomposite packaging films. Cogent Food Agri. 1:1115640.
  • Sharma D, Kanchi S, Bisetty K. 2015. Biogenic synthesis of nanoparticles: a review. Arab J Chem. (doi:10.1016/j.arabjc.2015.11.002)
  • Shukla MK, Singh RP, Reddy CRK, Jha B. 2012. Synthesis and characterization of agar-based silver nanoparticles and nanocomposite film with antibacterial applications. Bioresour Technol. 107:295–300.
  • Silva MF, Fornari RCG, Mazutti MA, de Oliveira D, Padilha FF, Cichoski AJ, Cansian RL, Di Luccio M, Treichel H. 2009. Production and characterization of xantham gum by Xanthomonas campestris using cheese whey as sole carbon source. J Food Eng. 90:119–123.
  • Sirajunnisa AR, Surendhiran D. 2014. Nanosilver fabrication mediated by exopolysaccharides from Pseudomonas fluorescens and its biological activities. Am J Pharm Tech Res. 4:727–742.
  • Sivakumar B, Aswathy RG, Sreejith R, Nagaoka Y, Iwai S, Suzuki M, Fukuda T, Hasumura T, Yoshida Y, Maekawa T, et al. 2014. Bacterial exopolysaccharide based magnetic nanoparticles: A versatile nanotool for cancer cell imaging, targeted drug delivery and synergistic effect of drug and hyperthermia mediated cancer therapy. J Biomed Nanotechnol. 10:885–899.
  • Strimbu L, Liu J, Kaifer AE. 2003. Cyclodextrin-capped palladium nanoparticles as catalysts for the Suzuki reaction. Langmuir. 19:483–485.
  • Suárez-Cerda J, Nuñez GA, Espinoza-Gómez H, Flores-López LZ. 2014. A comparative study of the effect of α-, β-, and γ-cyclodextrins as stabilizing agents in the synthesis of silver nanoparticles using a green chemistry method. Mater Sci Eng C. 43:21–26.
  • Sudheer Khan S, Mukherjee A, Chandrasekaran N. 2011. Interaction of colloidal silver nanoparticles (SNPs) with exopolysaccharides (EPS) and its adsorption isotherms and kinetics. Colloid Surf A. 381:99–05.
  • Sun I-C, Na JH, Jeong SY, Kim D-E, Kwon IC, Choi K, Ahn C-H, Kim K. 2014. Biocompatible glycol chitosan-coated gold nanoparticles for tumor-targeting CT imaging. Pharm Res. 31:1418–1425.
  • Suresh Kumar A, Mody K, Jha B. 2007. Bacterial exopolysaccharides-a perception. J Basic Microbiol. 47:103–117.
  • Tagad CK, Rajdeo KS, Kulkarni A, More P, Aiyer RC, Sabharwal S. 2014. Green synthesis of polysaccharide stabilized gold nanoparticles: chemo catalytic and room temperature operable vapor sensing application. RSC Adv. 4:24014–24019.
  • Taniguchi N. 1974. On the basic concept of nano-technology. Paper presented at International Conference on Production Engineering, Tokyo.
  • Taton TA. 2002. Nanostructures as tailored biological probes. Trends Biotechnol. 20:277–279.
  • Thakkar KN, Mhatre SS, Parikh RY. 2010. Biological synthesis of metallic nanoparticles. Nanomedicine. 6:257–262.
  • Tran HV, Tran LD, Ba CT, Vu HD, Nguyen TN, Pham DG, Nguyen PX. 2010. Synthesis, characterization, antibacterial and antiproliferative activities of monodisperse chitosan- based silver nanoparticles. Colloid Surf A. 360:32–40.
  • Usman MS, Ibrahim NA, Shameli K, Zainuddin N, Yunus WMZW. 2012. Copper nanoparticles mediated by chitosan: Synthesis and characterization via chemical methods. Molecules. 17:14928
  • Valodkar M, Bhadoria A, Pohnerkar J, Mohan M, Thakore S. 2010. Morphology and antibacterial activity of carbohydrate-stabilized silver nanoparticles. Carbohydr Res. 345:1767–1773.
  • Venkatesham M, Ayodhya D, Madhusudhan A, Babu NV, Veerabhadram G. 2014. A novel green one-step synthesis of silver nanoparticles using chitosan: catalytic activity and antimicrobial studies. Appl Nanosci. 4:113–119.
  • Venkatpurwar V, Pokharkar V. 2011. Green synthesis of silver nanoparticles using marine polysaccharide: Study of in-vitro antibacterial activity. Mater Lett. 65:999–902.
  • Vignesh V, Sathiyanarayanan G, Sathishkumar G, Parthiban K, Sathish-Kumar K, Thirumurugan R. 2015. Formulation of iron oxide nanoparticles using exopolysaccharide: evaluation of their antibacterial and anticancer activities. RSC Adv. 5:27794–27704.
  • Vijayaraghavan K, Nalini SPK. 2010. Biotemplates in the green synthesis of silver nanoparticles. Biotechnol J. 5:1098–1110.
  • Wang H, Fu Y-Y, Zhang X, Yu C, Sun S-K. 2015. Hyaluronic acid-mediated one-pot facile synthesis of a sensitive and biocompatible Gd2O3 nanoprobe for MR imaging in vivo. RSC Adv. 5:93041–93047.
  • Wang Y, Xia Y. 2004. Bottom-up and top-down approaches to the synthesis of monodispersed spherical colloids of low melting-point metals. Nano Lett. 4:2047–2050.
  • Wei D, Sun W, Qian W, Ye Y, Ma X. 2009. The synthesis of chitosan-based silver nanoparticles and their antibacterial activity. Carbohydr Res. 344:2375–2382.
  • Wu J, Zhang F, Zhang H. 2012. Facile synthesis of carboxymethyl curdlan-capped silver nanoparticles and their application in SERS. Carbohydr Polym. 90:261–269.
  • Xiong R, Lu C, Zhang W, Zhou Z, Zhang X. 2013. Facile synthesis of tunable silver nanostructures for antibacterial application using cellulose nanocrystals. Carbohydr Polym. 95:214–219.
  • Xue D, Sethi R. 2012. Viscoelastic gels of guar and xanthan gum mixtures provide long-term stabilization of iron micro- and nanoparticles. J Nanopart Res. 14:1239. doi: 10.1007/s11051-012-1239-0
  • Yan J-K, Cai P-F, Cao X-Q, Ma H-L, Zhang Q, Hu N-Z, Zhao Y-Z. 2013. Green synthesis of silver nanoparticles using 4-acetamido-TEMPO-oxidized curdlan. Carbohydr Polym. 97:391–397.
  • Yang G, Prestwich GD, Mann BK. 2011. Thiolated carboxymethyl-hyaluronic-acid-based biomaterials enhance wound healing in rats, dogs, and horses. ISRN Vet Sci. 2011:7.
  • Yu X, Tong S, Ge M, Zuo J, Cao C, Song W. 2013. One-step synthesis of magnetic composites of cellulose-iron oxide nanoparticles for arsenic removal. J Mater Chem A. 1:959–965.
  • Zahran MK, Ahmed HB, El-Rafie MH. 2014a. Alginate mediate for synthesis controllable sized AgNPs. Carbohydr Polym. 111:10–17.
  • Zahran MK, Ahmed HB, El-Rafie MH. 2014b. Facile size-regulated synthesis of silver nanoparticles using pectin. Carbohydr Polym. 111:971–978.
  • Zaki S, Etarahony M, Elkady M, Abd-El-Haleem D. 2014. The use of bioflocculant and bioflocculant-producing Bacillus mojavensis strain 32A to synthesize silver nanoparticles. J Nanomater. 2014:431089.
  • Zhang R, Edgar KJ. 2014. Properties, chemistry, and applications of the bioactive polysaccharide curdlan. Biomacromolecules. 15:1079–1096.
  • Zhao X, Xia Y, Li Q, Ma X, Quan F, Geng C, Han Z. 2014. Microwave-assisted synthesis of silver nanoparticles using sodium alginate and their antibacterial activity. Colloid Surf A. 444:180–188.
  • Zhu Y, Liao L. 2015. Applications of nanoparticles for anticancer drug delivery: a review. J Nanosci Nanotechnol. 15:4753–4773.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.