3,490
Views
305
CrossRef citations to date
0
Altmetric
Review Article

Inorganic and metal nanoparticles and their antimicrobial activity in food packaging applications

, &
Pages 161-181 | Received 19 Jul 2016, Accepted 16 May 2017, Published online: 03 Jun 2017

References

  • Akhavan O. 2009. Lasting antibacterial activities of AgTiO2/Ag/a-TiO2 nanocomposite thin film photocatalysts under solar light irradiation. J Colloid Interface Sci. 336:117–124.
  • Akhavan O, Ghaderi E. 2009. Bactericidal effects of Ag nanoparticles immobilized on surface of SiO2 thin film with high concentration. Curr Appl Phys. 9:1381–1385.
  • Akhavan O, Ghaderi E. 2010. Self-accumulated Ag nanoparticles on mesoporous TiO2 thin film with high bactericidal activities. Surf Coat Technol. 204:3676–3683.
  • Al-Hazmi F, Alnowaiser F, Al-Ghamdi A, Al-Ghamdi AA, Aly M, Al-Tuwirqi RM, El-Tantawy F. 2012. A new large-scale synthesis of magnesium oxide nanowires: structural and antibacterial properties. Superlattices Microstruct. 52:200–209.
  • Aliakbar N, Roghayeh AG, Seyed AN, Majidreza A, Sharareh H, Masoud A, Shahla S, Mehran H, Mahdi A, Fereshteh J. 2016. Evaluation of the antimicrobial activity of silver nanoparticles on antibiotic-resistant Pseudomonas aeruginosa. Int J Basic Sci Med. 1:25–28.
  • Anbarasu R, Selvan G, Baskar S, Raja V. 2016. Synthesis of Evolvulus alsinoides derived gold nanoparticles for medical applications. Int J Adv Scientific Res. 2:38–44.
  • Anbukkarasi V, Srinivasan R, Elangovan N. 2015. Antimicrobial activity of green synthesized Zinc Oxide nanoparticles from Emblica Officinalis. Int J Pharm Sci Rev Res. 33:110–115.
  • Anzano MN. 2009. Research and development of new products and processes: reclamation of a manufacturing waste [Ph.D. thesis]. Milan, Italy: Milano-Bicocca University.
  • Appendini P, Hotchkiss JH. 2002. Review of antimicrobial food packaging. Innov Food Sci Emerg Technol. 3:113–126.
  • Arfat YA, Ahmed J, Hiremath N, Auras R, Joseph A. 2017. Thermo-mechanical, rheological, structural and antimicrobial properties of bionanocomposite films based on fish skin gelatin and silver-copper nanoparticles. Food Hydrocoll. 62:191–202.
  • Arfat YA, Ejaz M, Jacob H, Ahmed J. 2017. Deciphering the potential of guar gum/Ag-Cu nanocomposite films as an active food packaging material. Carbohydr Polym. 157:65–71.
  • Ariyarathna IR, Rajakaruna R, Karunaratne DN. 2017. The rise of inorganic nanomaterial implementation in food applications: a review. Food Control. 77:251–259.
  • Armelao L, Barreca D, Bottaro G, Gasparotto A, Maccato C, Maragno C, Tondello E, Štangar UL, Bergant M, Mahne D. 2007. Photocatalytic and antibacterial activity of TiO2 and Au/TiO2 nanosystems. Nanotechnology. 18:375709.
  • Asare N, Instanes C, Sandberg WJ, Refsnes M, Schwarze P, Kruszewski M, Brunborg G. 2012. Cytotoxic and genotoxic effects of silver nanoparticles in testicular cells. Toxicology. 291:65–72.
  • Atmaca S, Gul K, Clcek R. 1998. The effect of zinc on microbial growth. Turk J Med Sci. 28:595–597.
  • Balakumaran M, Ramachandran R, Balashanmugam P, Mukeshkumar D, Kalaichelvan P. 2016. Mycosynthesis of silver and gold nanoparticles: optimization, characterization and antimicrobial activity against human pathogens. Microbiol Res. 182:8–20.
  • Barthomeuf M, Raymond P, Castel X, LeGendre L, Denis M, Pissavin C. 2015. Bactericidal efficiency of UV-active TiO2 thin films on adhesion and viability of food-borne bacteria. Iowa State University library. 26:195–199.
  • Bavykin DV, Friedrich JM, Walsh FC. 2006. Protonated titanates and TiO2 nanostructured materials: synthesis, properties, and applications. Adv Mater. 18:2807–2824.
  • Beigmohammadi F, Peighambardoust SH, Hesari J, Azadmard-Damirchi S, Peighambardoust SJ, Khosrowshahi NK. 2016. Antibacterial properties of LDPE nanocomposite films in packaging of UF cheese. LWT-Food Sci Technol. 65:106–111.
  • Blake DM, Maness PC, Huang Z, Wolfrum EJ, Huang J, Jacoby WA. 1999. Application of the photocatalytic chemistry of titanium dioxide to disinfection and the killing of cancer cells. Separ Purif Method. 28:1–50.
  • Bodaghi H, Mostofi Y, Oromiehie A, Zamani Z, Ghanbarzadeh B, Costa C, Conte A, Del Nobile MA. 2013. Evaluation of the photocatalytic antimicrobial effects of a TiO2 nanocomposite food packaging film by in vitro and in vivo tests. LWT-Food Sci Technol.50:702–706.
  • Boholm M, Arvidsson R. 2016. A definition framework for the terms nanomaterial and nanoparticle. NanoEthics.10:25–40.
  • Bourcet A. 2011. Biological assessment of medical devices containing nanomaterials. (Scientific Report; no.) France: AFSSAPS.
  • Brandelli A, Brum LFW, dos Santos JHZ. 2016. Nanobiotechnology methods to incorporate bioactive compounds in food packaging. In: Nanoscience in food and agriculture 2. Berlin: Springer; p. 27–58.
  • Cakić M, Glišić S, Nikolić G, Nikolić GM, Cakić K, Cvetinov M. 2016. Synthesis, characterization and antimicrobial activity of dextran sulphate stabilized silver nanoparticles. J Mol Struct. 1110:156–161.
  • Cano A, Cháfer M, Chiralt A, González-Martínez C. 2016. Development and characterization of active films based on starch-PVA, containing silver nanoparticles. Food Packaging Shelf Life. 10:16–24.
  • Cekmez U. 2010. Isolation of antimicrobial molecules from agricultural biomass and utilization in xylan-based biodegradable films [MSc. Thesis]. Ankara: Middle East Technical University.
  • Cha DS, Chinnan MS. 2004. Biopolymer-based antimicrobial packaging: a review. Crit Rev Food Sci Nutr. 44:223–237.
  • Chatzitakis A, Berberidou C, Paspaltsis I, Kyriakou G, Sklaviadis T, Poulios I. 2008. Photocatalytic degradation and drug activity reduction of Chloramphenicol. Water Res. 42:386–394.
  • Chaudhry Q, Scotte M, Blackburn J, Ross B, Boxall A, Castle L. 2008. Applications and implications of nanotechnologies for the food sector. Food Addit Contam Part A Chem Anal Control Expo Risk Assess. 25:241–258.
  • Chauhan I, Mohanty P. 2015. In situ decoration of TiO2 nanoparticles on the surface of cellulose fibers and study of their photocatalytic and antibacterial activities. Cellulose. 22:507–519.
  • Chawengkijwanich C, Hayata Y. 2008. Development of TiO2 powder-coated food packaging film and its ability to inactivate Escherichia coli in vitro and in actual tests. Int J Food Microbiol. 123:288–292.
  • Chernousova S, Epple M. 2013. Silver as antibacterial agent: ion, nanoparticle, and metal. Angew Chem Int Ed Engl. 52:1636–1653.
  • Commission E. 2011. Commission Regulation (EU) No 10/2011 of 14 January 2011 on plastic materials and articles intended to come into contact with food. Off J Eur Comm. 50:1–89.
  • Cui Y, Zhao Y, Tian Y, Zhang W, Lü X, Jiang X. 2012. The molecular mechanism of action of bactericidal gold nanoparticles on Escherichia coli. Biomaterials. 33:2327–2333.
  • Damm C, Münstedt H, Rösch A. 2008. The antimicrobial efficacy of polyamide 6/silver-nano- and microcomposites. Mater Chem Phys. 108:61–66.
  • Dastjerdi R, Montazer M. 2010. A review on the application of inorganic nano-structured materials in the modification of textiles: focus on anti-microbial properties. Colloids Surf B Biointerfaces. 79:5–18.
  • Devi P, Patil SD, Jeevanandam P, Navani NK, Singla M. 2014. Synthesis, characterization and bactericidal activity of silica/silver core-shell nanoparticles. J Mater Sci Mater Med. 25:1267–1273.
  • Dhapte V, Kadam S, Pokharkar V, Khanna PK, Dhapte V. 2014. Versatile SiO2 nanoparticles@ polymer composites with pragmatic properties. ISRN Inorganic Chem. 2014:8.
  • Divya K, Kurian LC, Vijayan S, Manakulam Shaikmoideen J. 2016. Green synthesis of silver nanoparticles by Escherichia coli: analysis of antibacterial activity. J Water Environ Nanotechnol. 1:63–74.
  • Dobrovolskaia MA, McNeil SE. 2007. Immunological properties of engineered nanomaterials. Nature Nanotech. 2:469–478.
  • Duncan TV. 2011. Applications of nanotechnology in food packaging and food safety: barrier materials, antimicrobials and sensors. J Colloid Interface Sci. 363:1–24.
  • Durán N, Durán M, de Jesus MB, Seabra AB, Fávaro WJ, Nakazato G. 2016. Silver nanoparticles: a new view on mechanistic aspects on antimicrobial activity. Nanomedicine. 12:789–799.
  • Durán N, Marcato PD, De Souza GIH, Alves OL, Esposito E. 2007. Antibacterial effect of silver nanoparticles produced by fungal process on textile fabrics and their effluent treatment. J Biomed Nanotechnol. 3:203–208.
  • Dworniczek E, Franiczek R, Kowal K, Buzalewicz I, Podbielska H, Tofail SA, Bauer J. 2016. Photocatalytic and antimicrobial activity of Titania nanoparticles. In: Electrically active materials for medical devices. Singapore: World Scientific; p. 193–208.
  • Egger S, Lehmann RP, Height MJ, Loessner MJ, Schuppler M. 2009. Antimicrobial properties of a novel silver-silica nanocomposite material. Appl Environ Microbiol. 75:2973–2976.
  • Elmolla ES, Chaudhuri M. 2011. The feasibility of using combined TiO2 photocatalysis-SBR process for antibiotic wastewater treatment. Desalination. 272:218–224.
  • Emami-Karvani Z, Chehrazi P. 2011. Antibacterial activity of ZnO nanoparticle on gram-positive and gram-negative bacteria. Afr J Microbiol Res. 5:1368–1373.
  • Emamifar A, Kadivar M, Shahedi M, Soleimanian-Zad S. 2010a. Effect of nanocomposite packaging containing Ag and ZnO on inactivation of Lactobacillus plantarum in orange juice. Food Control. 22:408–413.
  • Emamifar A, Kadivar M, Shahedi M, Soleimanian-Zad S. 2010b. Evaluation of nanocomposite packaging containing Ag and ZnO on shelf life of fresh orange juice. Innov Food Sci Emerg Technol. 11:742–748.
  • Esfanjani AF, Jafari SM. 2016. Biopolymer nano-particles and natural nano-carriers for nano-encapsulation of phenolic compounds. Colloids Surf B Biointerfaces. 146:532–543.
  • Feng QL, Kim TN, Wu J, Park ES, Kim JO, Lim DY, Cui FZ. 1998. Antibacterial effects of Ag-HAp thin films on alumina substrates. Thin Solid Films. 335:214–219.
  • Feng QL, Wu J, Chen GQ, Cui FZ, Kim TN, Kim JO. 2000. A mechanistic study of the antibacterial effect of silver ions on E. coli and Staphylococcus aureus. J Biomed Mater Res. 52:662–668.
  • Fronzi M, Daly W, Nolan M. 2016. Reactivity of metal oxide nanocluster modified rutile and anatase TiO2: oxygen vacancy formation and CO2 interaction. Appl Catal A Gen. 521:240–249.
  • Fujishima A, Honda K. 1972. Electrochemical photolysis of water at a semiconductor electrode. Nature. 238:37–39.
  • Ghavami Nejad A, Park CH, Kim CS. 2016. In situ synthesis of antimicrobial silver nanoparticles within antifouling zwitterionic hydrogels by catecholic redox chemistry for wound healing application. Biomacromolecules. 17:1213–1223.
  • Ghosh S, Kaushik R, Nagalakshmi K, Hoti SL, Menezes GA, Harish BN, Vasan HN. 2010. Antimicrobial activity of highly stable silver nanoparticles embedded in agar-agar matrix as a thin film. Carbohydr Res. 345:2220–2227.
  • González-Sánchez MI, Perni S, Prokopovich P. 2015. 9 Antimicrobial polymers. Biol Pharm Appl Nanomater. 215.
  • Goodburn C, Wallace CA. 2013. The microbiological efficacy of decontamination methodologies for fresh produce: a review. Food Control. 32:418–427.
  • Ha S-D. 2016. Bactericidal activity of Calcium Oxide (CaO, Heated Scallop-Shell Powder) against Listeria monocytogenes biofilms on egg shell and stainless steel surfaces. Proceedings of the IAFP 2016 Annual Meeting; Des Moines (IA): IAFP.
  • Hashimoto K, Wasada K, Osaki M, Shono E, Adachi K, Toukai N, Kominami H, Kera Y. 2001. Photocatalytic oxidation of nitrogen oxide over titania-zeolite composite catalyst to remove nitrogen oxides in the atmosphere. Appl Catals B Environ. 30:429–436.
  • Heinlaan M, Ivask A, Blinova I, Dubourguier H-C, Kahru A. 2008. Toxicity of nanosized and bulk ZnO, CuO and TiO2 to bacteria Vibrio fischeri and crustaceans Daphnia magna and Thamnocephalus platyurus. Chemosphere. 71:1308–1316.
  • Hetrick EM, Shin JH, Paul HS, Schoenfisch MH. 2009. Anti-biofilm efficacy of nitric oxide-releasing silica nanoparticles. Biomaterials. 30:2782–2789.
  • Hosseinkhani P, Zand AM, Imani S, Rezayi M, Rezaei Zarchi S. 2011. Determining the antibacterial effect of ZnO nanoparticle against the pathogenic bacterium, Shigella dysenteriae (type 1). Int J Nano Dimension. 1:279–285.
  • Hosseinnejad M, Jafari SM. 2016. Evaluation of different factors affecting antimicrobial properties of chitosan. Int J Biol Macromol. 85:467–475.
  • Hou X, Ma H, Liu F, Deng J, Ai Y, Zhao X, Mao D, Li D, Liao B. 2015. Synthesis of Ag ion-implanted TiO2 thin films for antibacterial application and photocatalytic performance. J Hazard Mater. 299:59–66.
  • Huang X, Chen X, Chen Q, Yu Q, Sun D, Liu J. 2016. Investigation of functional selenium nanoparticles as potent antimicrobial agents against superbugs. Acta Biomater. 30:397–407.
  • Huang Z-H, Yin Y-N, Zhang Y. 2016. Preparation of a novel positively charged nanofiltration composite membrane incorporated with silver nanoparticles for pharmaceuticals and personal care product rejection and antibacterial properties. Water Sci Technol. 73:1910–1919.
  • Ibrahim SA, Yang H, Seo CW. 2008. Antimicrobial activity of lactic acid and copper on growth of Salmonella and Escherichia coli O157: H7 in laboratory medium and carrot juice. Food Chem. 109:137–143.
  • Jaiswal S, Duffy B, Jaiswal AK, Stobie N, McHale P. 2010. Enhancement of the antibacterial properties of silver nanoparticles using β-cyclodextrin as a capping agent. Int J Antimicrob Agents. 36:280–283.
  • Jamuna-Thevi K, Bakar SA, Ibrahim S, Shahab N, Toff MRM. 2011. Quantification of silver ion release, in vitro cytotoxicity and antibacterial properties of nanostuctured Ag doped TiO2 coatings on stainless steel deposited by RF magnetron sputtering. Vacuum. 86:235–241.
  • Jebel FS, Almasi H. 2016. Morphological, physical, antimicrobial and release properties of ZnO nanoparticles-loaded bacterial cellulose films. Carbohydr Polym. 149:8–19.
  • Jin T, He Y. 2011. Antibacterial activities of magnesium oxide (MgO) nanoparticles against food borne pathogens. J Nanopart Res. 13:6877–6885.
  • Jin T, Sun D, Su JY, Zhang H, Sue H-J. 2009. Antimicrobial efficacy of zinc oxide quantum dots against Listeria monocytogenes, Salmonella enteritidis, and Escherichia coli O157:H7. J Food Sci. 74:46–52.
  • Jones N, Ray B, Ranjit KT, Manna AC. 2008. Antibacterial activity of zno nanoparticle suspensions on a broad spectrum of microorganisms. FEMS Microbiol Lett. 279:71–76.
  • Kalatehjari P, Yousefian M, Khalilzadeh MA. 2015. Assessment of antifungal effects of copper nanoparticles on the growth of the fungus Saprolegnia sp. on white fish (Rutilus frisii kutum) eggs. Egypt J Aquat Res. 41:303–306.
  • Kaplan R, Erjavec B, Dražić G, Grdadolnik J, Pintar A. 2016. Simple synthesis of anatase/rutile/brookite TiO 2 nanocomposite with superior mineralization potential for photocatalytic degradation of water pollutants. Appl Catal B Environ. 181:465–474.
  • Katouzian I, Jafari SM. 2016. Nano-encapsulation as a promising approach for targeted delivery and controlled release of vitamins. Trends Food Sci Technol. 53:34–48.
  • Khiralla GM, El-Deeb BA. 2015. Antimicrobial and antibiofilm effects of selenium nanoparticles on some foodborne pathogens. LWT-Food Sci Technol. 63:1001–1007.
  • Kikuchi Y, Sunada K, Iyoda T, Hashimoto K, Fujishima A. 1997. Photocatalytic bactericidal effect of TiO2 thin films: dynamic view of the active oxygen species responsible for the effect. J Photochem Photobiol A Chem. 106:51–56.
  • Kim JS, Kuk E, Yu KN, Kim JH, Park SJ, Lee HJ, Kim SH, Park YK, Park YH, Hwang CY, et al. 2007. Antimicrobial effects of silver nanoparticles. Nanomedicine. 3:95–101.
  • Krishnamoorthy K, Manivannan G, Kim SJ, Jeyasubramanian K, Premanathan M. 2012. Antibacterial activity of MgO nanoparticles based on lipid peroxidation by oxygen vacancy. J Nanopart Res. 14:1–10.
  • Kubacka A, Cerrada ML, Serrano C, Fernandez-Garcia M, Ferrer M, Fernández-Garcia M. 2009. Plasmonic nanoparticle/polymer nanocomposites with enhanced photocatalytic antimicrobial properties. J Phys Chem C. 113:9182–9190.
  • Kumar R, Münstedt H. 2005. Silver ion release from antimicrobial polyamide/silver composites. Biomaterials. 26:2081–2088.
  • Li LH, Deng JC, Deng HR, Liu ZL, Li XL. 2010. Preparation, characterization and antimicrobial activities of chitosan/Ag/ZnO blend films. Chem Eng J. 160:378–382.
  • Li Q, Mahendra S, Lyon DY, Brunet L, Liga MV, Li D, Alvarez PJJ. 2008. Antimicrobial nanomaterials for water disinfection andmicrobial control: potential applications and implications. Water Res. 42:4591–4602.
  • Liu Y, Wang X, Yang F, Yang X. 2008. Excellent antimicrobial properties of mesoporous anatase TiO2 and Ag/TiO2 composite films. Microporous Mesoporous Mater. 114:431–439.
  • Long M, Wang J, Zhuang H, Zhang Y, Wu H, Zhang J. 2014. Performance and mechanism of standard nano-TiO2 (P-25) in photocatalytic disinfection of foodborne microorganisms–Salmonella typhimurium and Listeria monocytogenes. Food Control.39:68–74.
  • Lu P, Campbell CT, Xia Y. 2013. A sinter-resistant catalytic system fabricated by maneuvering the selectivity of SiO2 deposition onto the TiO2 surface versus the Pt nanoparticle surface. Nano Lett. 13:4957–4962.
  • Ma N, Fan X, Quan X, Zhang Y. 2009. Ag-TiO2/HAP/Al2O3 bioceramic composite membrane: fabrication, characterization and bactericidal activity. J Membr Sci. 336:109–117.
  • Maneerat C, Hayata Y. 2006. Antifungal activity of TiO2 photocatalysis against Penicillium expansum in vitro and in fruit tests. Int J Food Microbiol.107:99–103.
  • Manke A, Wang L, Rojanasakul Y. 2013. Mechanisms of nanoparticle-induced oxidative stress and toxicity. BioMed Res Int. 2013:15.
  • Maráková N, Humpolíček P, Kašpárková V, Capáková Z, Martinková L, Bober P, Trchová M, Stejskal J. 2017. Antimicrobial activity and cytotoxicity of cotton fabric coated with conducting polymers, polyaniline or polypyrrole, and with deposited silver nanoparticles. Appl Surf Sci. 396:169–176.
  • Maurer-Jones MA, Gunsolus IL, Meyer BM, Christenson CJ, Haynes CL. 2013. Impact of TiO2 nanoparticles on growth, biofilm formation, and flavin secretion in Shewanella oneidensis. Anal Chem. 85:5810–5818.
  • Meichtry JM, Dillert R, Bahnemann DW, Litter MI. 2015. Application of the stopped flow technique to the TiO2-heterogeneous photocatalysis of hexavalent chromium in aqueous suspensions: comparison with O2 and H2O2 as electron acceptors. Langmuir. 31:6229–6236.
  • Mennini N, Furlanetto S, Cirri M, Mura P. 2012. Quality by design approach for developing chitosan-Ca-alginate microspheres for colon delivery of celecoxib-hydroxypropyl-β-cyclodextrin-PVP complex. Eur J Pharm Biopharm. 80:67–75.
  • Mirhosseini M. 2016. Evaluation of antibacterial effect of magnesium oxide nanoparticles with nisin and heat in milk. Nanomed J. 3:135–142.
  • Mirzajani F, Ghassempour A, Aliahmadi A, Esmaeili MA. 2011. Antibacterial effect of silver nanoparticles on Staphylococcus aureus. Res Microbiol. 162:542–549.
  • Mittal AK, Thanki K, Jain S, Banerjee UC. 2016. Comparative studies of anticancer and antimicrobial potential of bioinspired silver and silver-selenium nanoparticles. Appl Nanomed. 1:1–6.
  • Mohammad G, Mishra VK, Pandey HP. 2008. Antioxidant properties of some nanoparticle may enhance wound healing in T2DM patient. Dig J Nanomater Biostruct. 3:159–162.
  • Mohammed Sadiq I, Pakrashi S, Chandrasekaran N, Mukherjee A. 2011. Studies on toxicity of aluminum oxide (Al2O3) nanoparticles to microalgae species: Scenedesmus sp. and Chlorella sp. J Nanopart Res. 13:3287–3299.
  • Molina J, Sanchez-Salas JL, Zuniga C, Mendoza E, Cuahtecontzi R, Garcia-Perez G, Gutierrez E, Bandala ER. 2014. Low-temperature processing of thin films based on rutile TiO2 nanoparticles for UV photocatalysis and bacteria inactivation. J Mater Sci. 49:786–793.
  • Mondal K, Sharma A. 2014. Photocatalytic oxidation of pollutant dyes in wastewater by TiO2 and ZnO nano-materials—a mini-review. In: Nanoscience & technology for mankind. Allahabad: The National Academy of Sciences, India; p. 36–72.
  • Montazer M, Behzadnia A, Pakdel E, Rahimi MK, Moghadam MB. 2011. Photo induced silver on nano titanium dioxide as an enhanced antimicrobial agent for wool. J Photochem Photobiol B Biol. 103:207–214.
  • Mukherjee A, Mohammad sadiq I, Prathna TC, Chandrasekaran N. 2011. Antimicrobial activity of aluminium oxide nanoparticles for potential clinical applications. In: Science against microbial pathogens: communicating current research and technological advances. Spain: Formatex Research Center; p. 245–251.
  • Mureinik R, Guy R. 2003. Magnesium as a dietary supplement. Innovations in Food Technology Magazine; August 16–17. Sect. Section|:Start Page| (col. Column)|.
  • Nawaz HR, Solangi BA, Zehra B, Nadeem U. 2011. Preparation of nano zinc oxide and its application in leather as a retanning and antibacterial agent. Can J Sci Ind Res. 2:164–170.
  • Nayak D, Ashe S, Rauta PR, Kumari M, Nayak B. 2016. Bark extract mediated green synthesis of silver nanoparticles: evaluation of antimicrobial activity and antiproliferative response against osteosarcoma. Mater Sci Eng C. 58:44–52.
  • Ngo YH, Li D, Simon GP, Garnier G. 2011. Paper surfaces functionalized by nanoparticles. Adv Colloid Interface Sci.163:23–38.
  • Otoni CG, Espitia PJ, Avena-Bustillos RJ, McHugh TH. 2016. Trends in antimicrobial food packaging systems: emitting sachets and absorbent pads. Food Res Int. 83:60–73.
  • Padmavathy N, Vijayaraghavan R. 2008. Enhanced bioactivity of ZnO nanoparticles-an antimicrobial study. Sci Technol Adv Mater. 9:1–7.
  • Pagno CH, Costa TM, de Menezes EW, Benvenutti EV, Hertz PF, Matte CR, Tosati JV, Monteiro AR, Rios AO, Flôres SH. 2015. Development of active biofilms of quinoa (Chenopodium quinoa W.) starch containing gold nanoparticles and evaluation of antimicrobial activity. Food Chem. 173:755–762.
  • Pal S, Tak YK, Song JM. 2007. Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli. Appl Environ Microbiol. 73:1712–1720.
  • Pant HR, Pandeya DR, Nam KT, Baek W-I, Hong ST, Kim HY. 2011. Photocatalytic and antibacterial properties of a TiO2/nylon-6 electrospun nanocomposite mat containing silver nanoparticles. J Hazard Mater. 189:465–471.
  • Park SJ, Park YC, Lee SW, Jeong MS, Yu KN, Jung H, Lee JK, Kim JS, Cho MH. 2011. Comparing the toxic mechanism of synthesized zinc oxide nanomaterials by physicochemical characterization and reactive oxygen species properties. Toxicol Lett. 207:197–203.
  • Petica A, Gavriliu S, Lungu M, Buruntea N, Panzaru C. 2008. Colloidal silver solutions with antimicrobial properties. Mater Sci Eng B.152:22–27.
  • Piruthiviraj P, Margret A, Krishnamurthy PP. 2016. Gold nanoparticles synthesized by Brassica oleracea (Broccoli) acting as antimicrobial agents against human pathogenic bacteria and fungi. Appl Nanosci. 6:467–473.
  • Pleskova S, Golubeva I, Verevkin Y. 2016. Bactericidal activity of titanium dioxide ultraviolet-induced films. Mater Sci Eng C. 59:807–817.
  • Prabhu Y, Rao KV, Kumari BS, Pavani T. 2015. Decoration of magnesium oxide nanoparticles on O-MWCNTs and its antibacterial studies. Rend Fis Acc Lincei. 26:263–270.
  • Pulizzi F. 2016. Nanotechnology in food: silver-lined packaging. Nat Nanotechnol. 18:5.
  • Rai VR, Bai AJ. 2011. Nanoparticles and their potential application as antimicrobials. In: Science against microbial pathogens: communicating current research and technological advances. Spain: Formatex Research Center; p. 197–209.
  • Rajeshkumar S, Malarkodi C. 2014. In vitro antibacterial activity and mechanism of silver nanoparticles against foodborne pathogens. Bioinorganic Chem Appl. 2014:10.
  • Ramesh S, Sivasamy A, Rhee K, Park S, Hui D. 2015. Preparation and characterization of maleimide–polystyrene/SiO2–Al2O3 hybrid nanocomposites by an in situ sol–gel process and its antimicrobial activity. Composites Part B: Eng. 75:167–175.
  • Rao NH, Lakshmidevi N, Pammi S, Kollu P, Ganapaty S, Lakshmi P. 2016. Green synthesis of silver nanoparticles using methanolic root extracts of Diospyros paniculata and their antimicrobial activities. Mater Sci Eng: C. 62:553–557.
  • Rathnayake IU, Ismail H, De Silva CR, Darsanasiri ND, Bose I. 2015. Antibacterial effect of Ag-doped TiO2 nanoparticles incorporated natural rubber latex foam under visible light conditions. Iran Polym J. 24:1057–1068.
  • Ravichandran V, Vasanthi S, Shalini S, Shah SAA, Harish R. 2016. Green synthesis of silver nanoparticles using Atrocarpus altilis leaf extract and the study of their antimicrobial and antioxidant activity. Mater Lett. 180:264–267.
  • Ravishankar RV, Jamuna BA. 2011. Nanoparticles and their potential application as antimicrobials. Science against microbial pathogens, communicating current research and technological advances. Badajoz: Formatex; p. 197–209.
  • Reidy B, Haase A, Luch A, Dawson KA, Lynch I. 2013. Mechanisms of silver nanoparticle release, transformation and toxicity: a critical review of current knowledge and recommendations for future studies and applications. Materials. 6:2295–2350.
  • Reidy DJ, Holmes JD, Morris MA. 2006. Preparation of a highly thermally stable Titania anatase phase by addition of mixed zirconia and silica dopants. Ceram Int. 32:235–239.
  • Rincón A-G, Pulgarin C. 2007a. Absence of E. coli regrowth after Fe3+ and TiO2 solar photoassisted disinfection of water in CPC solar photoreactor. Catal Today. 124:204–214.
  • Rincón A-G, Pulgarin C. 2007b. Fe3+ and TiO2 solar-light-assisted inactivation of E. coli at field scale implications in solar disinfection at low temperature of large quantities of water. Catal Today. 122:128–136.
  • Rizwan W, Amrita M, Soon-Il Y, Young-Soon K, Hyung-Shik S. 2010. Antibacterial activity of ZnO nanoparticles prepared via non-hydrolytic solution route. Appl Microbiol Biotechnol. 87:1917–1925.
  • Rizzo L, Meric S, Kassinos D, Guida M, Russo F, Belgiorno V. 2009. Degradation of diclofenac by TiO2 photocatalysis: UV absorbance kinetics and process evaluation through a set of toxicity bioassays. Water Res. 43:979–988.
  • Ro EY, Ko YM, Yoon KS. 2015. Survival of pathogenic enterohemorrhagic Escherichia coli (EHEC) and control with calcium oxide in frozen meat products. Food Microbiol. 49:203–210.
  • Roco MC, Mirkin CA, Hersam MC. 2010. Nanotechnology research directions for societal needs in 2020. Berlin: Springer.
  • Roy A, Gauri SS, Bhattacharya M, Bhattacharya J. 2013. Antimicrobial activity of CaO nanoparticles. J Biomed Nanotechnol. 9:1570–1578.
  • Salunke BK, Sawant SS, Lee SI, Kim BS. 2016. Microorganisms as efficient biosystem for the synthesis of metal nanoparticles: current scenario and future possibilities. World J Microbiol Biotechnol. 32:1–16.
  • Sangsuwan J, Rattanapanone N, Rachtanapun P. 2008. Effect of chitosan/methyl cellulose films on microbial and quality characteristics of fresh-cut cantaloupe and pineapple. Postharvest Biol Technol. 49:403–410.
  • Sawai J. 2003. Quantitative evaluation of antibacterial activities of metallic oxide powders (ZnO, MgO and CaO) by conductimetric assay. J Microbiol Method. 54:177–182.
  • Selvam S, Sundrarajan M. 2012. Functionalization of cotton fabric with PVP/ZnO nanoparticles for improved reactive dyeability and antibacterial activity. Carbohydr Polym. 87:1419–1424.
  • Shakibaie M, Forootanfar H, Golkari Y, Mohammadi-Khorsand T, Shakibaie MR. 2015. Anti-biofilm activity of biogenic selenium nanoparticles and selenium dioxide against clinical isolates of Staphylococcus aureus, Pseudomonas aeruginosa, and Proteus mirabilis. J Trace Elem Med Biol. 29:235–241.
  • Shankar S, Rhim JW. 2014. Effect of copper salts and reducing agents on characteristics and antimicrobial activity of copper nanoparticles. Mater Lett. 132:307–311.
  • Shankar S, Rhim J-W. 2016. Tocopherol-mediated synthesis of silver nanoparticles and preparation of antimicrobial PBAT/silver nanoparticles composite films. LWT-Food Sci Technol. 72:149–156.
  • Sharma VK, Johnson N, Cizmas L, McDonald TJ, Kim H. 2016. A review of the influence of treatment strategies on antibiotic resistant bacteria and antibiotic resistance genes. Chemosphere. 150:702–714.
  • Sharma VK, Yngard RA, Lin Y. 2009. Silver nanoparticles: green synthesis and their antimicrobial activities. Adv Colloid Interface Sci. 145:83–96.
  • Shaw IC. 1999. Gold-based therapeutic agents. Chem Rev. 99:2589–2600.
  • Shokri M, Jodat A, Modirshahla N, Behnajady MA. 2013. Photocatalytic degradation of chloramphenicol in an aqueous suspension of silver-doped TiO2 nanoparticles. Environ Technol. 34:1161–1166.
  • Siddiqi KS, Husen A. 2016. Fabrication of metal nanoparticles from fungi and metal salts: scope and application. Nanoscale Res Lett. 11:1.
  • Sirelkhatim A, Mahmud S, Seeni A, Kaus NHM, Ann LC, Bakhori SKM, Hasan H, Mohamad D. 2015. Review on zinc oxide nanoparticles: antibacterial activity and toxicity mechanism. Nano-Micro Lett. 7:219–242.
  • Sondi I, Salopek-Sondi B. 2004. Silver nanoparticles as antimicrobial agent: a case study on E.coli as a model for Gram-negative bacteria. J Colloid Interface Sci. 275:177–182.
  • Sreekanth T, Nagajyothi P, Supraja N, Prasad T. 2015. Evaluation of the antimicrobial activity and cytotoxicity of phytogenic gold nanoparticles. Appl Nanosci. 5:595–602.
  • Sun SQ, Sun B, Zhang W, Wang D. 2008. Preparation and antibacterial activity of Ag-TiO2 composite film by liquid phase deposition (LPD) method. Bull Mater Sci. 31:61–66.
  • Syed B, Prasad NM, Satish S. 2016. Endogenic mediated synthesis of gold nanoparticles bearing bactericidal activity. J Microsc Ultrastruct. 4:162–166.
  • Tang XZ, Li X, Cao Z, Yang J, Wang H, Pu X, Yu ZZ. 2013. Synthesis of graphene decorated with silver nanoparticles by simultaneous reduction of graphene oxide and silver ions with glucose. Carbon. 59:93–99.
  • Teli MD, Kale RD. 2011. Polyester nanocomposite fibers with antibacterial properties. Adv Appl Sci Res. 2:491–502.
  • Thiruvenkatachari R, Vigneswaran S, Moon IS. 2008. A review on UV/TiO2 photocatalytic oxidation process. Korean J Chem Eng. 25:64–72.
  • Tian F, Zhu R, Song K, Ouyang F, Cao G. 2016. Synergistic photocatalytic degradation of phenol using precious metal supported titanium dioxide with hydrogen peroxide. Environ Eng Sci. 33:185–192.
  • Tikariha S, Singh S, Banerjee S, Vidyarthi A. 2012. Biosynthesis of gold nanoparticles, scope and application: a review. Int J Pharm Sci Res. 3:1603.
  • Tran PA, Webster TJ. 2013. Antimicrobial selenium nanoparticle coatings on polymeric medical devices. Nanotechnology. 24:155101.
  • Tuncer M. 2007. Effects of chloride ion and the types of oxides on the antibacterial activities of inorganic oxide supported Ag materials [MSc. Thesis]. Urla: İzmir Institute of Technology.
  • Umamaheswari G, Sanuja S, John VA, Kanth SV, Umapathy M. 2015. Preparation, characterization and anti-bacterial activity of Zinc Oxide-gelatin nanocomposite film for food packaging applications. Polym Polym Composit. 23:199.
  • Uykun N, Ergal İ, Kurt H, Gökçeören AT, Göcek İ, Kayaoğlu BK, Akarsubaşı AT, Sarac AS. 2014. Electrospun antibacterial nanofibrous polyvinylpyrrolidone/cetyltrimethylammonium bromide membranes for biomedical applications. J Bioact Compat Appl. 29:382–397.
  • Vanderroost M, Ragaert P, Devlieghere F, De Meulenaer B. 2014. Intelligent food packaging: the next generation. Trends Food Sci Technol. 9:47–62.
  • Vera P, Echegoyen Y, Canellas E, Nerín C, Palomo M, Madrid Y, Cámara C. 2016. Nano selenium as antioxidant agent in a multilayer food packaging material. Anal Bioanal Chem. 408:6659–6670.
  • Vidic J, Stankic S, Haque F, Ciric D, Le Goffic R, Vidy A, Jupille J, Delmas B. 2013. Selective antibacterial effects of mixed ZnMgO nanoparticles. J Nanopart Res. 15:1–10.
  • Wesley SJ, Raja P, Raj AA, Tiroutchelvamae D. 2014. Review on-nanotechnology applications in food packaging and safety. IJER Res. 3:645–651.
  • Xie Y, He Y, Irwin PL, Jin T, Shi X. 2011. Antibacterial activity and mechanism of action of Zinc Oxide nanoparticles against Campylobacter jejuni. Appl Environ Microbiol. 77:2325–2331.
  • Xiong L, Tong ZH, Chen JJ, Li LL, Yu HQ. 2015. Morphology-dependent antimicrobial activity of Cu/CuxO nanoparticles. Ecotoxicology. 24:2067–2072.
  • Yadav HM, Kim JS, Pawar SH. 2016. Developments in photocatalytic antibacterial activity of nano TiO2: a review. Korean J Chem Eng. 33:1989–1998.
  • Yao N, Yeung KL. 2011. Investigation of the performance of TiO2 photocatalytic coatings. Chem Eng J. 167:13–21.
  • Yin HQ, Langford R, Burrell RE. 1999. Comparative evaluation of the antimicrobial activity of Acticoat antimicrobial barrier dressing. J Burn Care Rehabil. 20:195–200.
  • Yoksan R, Chirachanchai S. 2010. Silver nanoparticle-loaded chitosan-starch based films: fabrication and evaluation of tensile, barrier and antimicrobial properties. Mater Sci Eng C. 30:891–897.
  • Zhang W, Zou L, Wang L. 2009. Photocatalytic TiO2/adsorbent nanocomposites prepared via wet chemical impregnation for wastewater treatment: a review. Applied Catalysis A General. 371:1–9.
  • Zhang Y, Zhou L, Zhang Y. 2014. Investigation of UV–TiO2 photocatalysis and its mechanism in Bacillus subtilis spore inactivation. J Environ Sci. 26:1943–1948.
  • Zhu L, Elguindi J, Rensing C, Ravishankar S. 2012. Antimicrobial activity of different copper alloy surfaces against copper resistant and sensitive Salmonella enterica. Food Microbiol. 30:303–310.
  • Zhu X, Wu D, Wang W, Tan F, Wong PK, Wang X, Qiu X, Qiao X. 2016. Highly effective antibacterial activity and synergistic effect of Ag-MgO nanocomposite against Escherichia coli. J Alloy Compound. 684:282–290.
  • Zou L, Zhu B. 2007. Enhancing the reuse of treated effluent by photocatalytic process. J Adv Oxid Technol. 10:273–281.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.