1,179
Views
26
CrossRef citations to date
0
Altmetric
Review Article

Brucella central carbon metabolism: an update

, , , , , , , , , & show all
Pages 182-211 | Received 04 Nov 2016, Accepted 16 May 2017, Published online: 12 Jun 2017

References

  • Alcantara RB, Read RDA, Valderas MW, Brown TD, Roop RM. 2004. Intact purine biosynthesis pathways are required for wild-type virulence of Brucella abortus 2308 in the BALB/c Mouse Model. Infect Immun. 72:4911–4917.
  • Al Dahouk S, Jubier-Maurin VR, Neubauer H, hler SK. 2013. Quantitative analysis of the Brucella suis proteome reveals metabolic adaptation to long-term nutrient starvation. BMC Microbiol. 13:1–1.
  • Al Dahouk S, Jubier-Maurin V, Scholz HC, Tomaso H, Karges W, Neubauer H, et al. 2008. Quantitative analysis of the intramacrophagic Brucella suis proteome reveals metabolic adaptation to late stage of cellular infection. Proteomics. 8:3862–3870.
  • Al Dahouk S, Loisel-Meyer S, Scholz HC, Tomaso H, Kersten M, Harder A, Köhler S, Jubier-Maurin V. 2009. Proteomic analysis of Brucella suis under oxygen deficiency reveals flexibility in adaptive expression of various pathways. Proteomics. 9:3011–3021.
  • Altenbern RA, Housewright RD. 1951. Alanine synthesis and carbohydrate oxidation by smooth Brucella abortus. J Bacteriol. 62:97–105.
  • Alton GG, Johns LM, Angus RD, Verger JM. 1988. Techniques for the Brucellosis Laboratory., eds. I. N. de la Recherche Agronomique Paris and France.
  • Alvarez-Martinez MT, Machold J, Weise C, Schmidt-Eisenlohr H, Baron C, Rouot B. 2001. The Brucella suis homologue of the Agrobacterium tumefaciens chromosomal virulence Operon chvE is essential for sugar utilization but not for survival in macrophages. J Bacteriol. 183:5343–5351.
  • Anderson JD, Smith H. 1965. The metabolism of erythritol by Brucella abortus. J Gen Microbiol. 38:109–124.
  • Battaglia FC, Meschia G. 1978. Principal substrates of fetal metabolism. Physiol Rev. 58:499–527.
  • Barbier T. 2014. Revision of the erythritol catabolic pathway and of the central metabolism of the pathogen Brucella. Thesis Unamur. (50):1–241.
  • Barbier T, Collard F, Zúñiga-Ripa A, Moriyón I, Godard T, Becker J, Wittmann C, Van Schaftingen E, Letesson JJ. 2014. Erythritol feeds the pentose phosphate pathway via three new isomerases leading to D-erythrose-4-phosphate in Brucella. Proc Natl Acad Sci USA. 111:17815–17820.
  • Barbier T, Nicolas C, Letesson J-J. 2011. Brucella adaptation and survival at the crossroad of metabolism and virulence. FEBS Lett. 585:2929–2934.
  • Barquero-Calvo E, Chaves-Olarte E, Weiss DS, Guzmán-Verri C, Chacón-Díaz C, Rucavado A, Moriyón I, Moreno E. 2007. Brucella abortus uses a stealthy strategy to avoid activation of the innate immune system during the onset of infection. PLoS One. 2:e631.
  • Barquero-Calvo E, Conde-Alvarez R, Chacón-Díaz C, Quesada-Lobo L, Martirosyan A, Guzmán-Verri C, Iriarte M, Mancek-Keber M, Jerala R, et al. 2009. The differential interaction of Brucella and Ochrobactrum with innate immunity reveals traits related to the evolution of stealthy pathogens. PLoS One. 4:e5893.
  • Becker A, Overlöper A, Schlüter J-P, Reinkensmeier J, Robledo M, Giegerich R, Narberhaus F, Evguenieva-Hackenberg E. 2014. Riboregulation in plant-associated α-proteobacteria. RNA Biol. 11:550–562.
  • Boutte CC, Henry JT, Crosson S. 2011. ppGpp and polyphosphate modulate cell cycle progression in caulobacter crescentus. J Bacteriol. 194:28–35.
  • Bringhurst RM, Gage DJ. 2002. Control of Inducer accumulation plays a key role in succinate-mediated catabolite repression in Sinorhizobium meliloti. J Bacteriol. 184:5385–5392.
  • Brown DR, Barton G, Pan Z, Buck M, Wigneshweraraj S. 2014. Nitrogen stress response and stringent response are coupled in Escherichia coli. Nat Comms. 5:1–8.
  • Brzoska P, Boos W. 1988. Characteristics of a ugp-encoded and phoB-dependent glycerophosphoryl diester phosphodiesterase which is physically dependent on the ugp transport system of Escherichia coli. J Bacteriol. 170:4125–4135.
  • Burkhardt S, Jiménez de Bagüés MP, Liautard J-P, Köhler S. 2005. Analysis of the behavior of eryC mutants of Brucella suis attenuated in macrophages. Infect Immun. 73:6782–6790.
  • Cashel D, Gentry VJ, Hernandez D. Vinella. 1996. The stringent response. In: Neidhardt FC editor. Escherichia coli and Salmonella: cellular and molecular biology. Washington, DC: American Society for Microbiology, 1458–1496.
  • Castañeda-Roldán EI, Ouahrani-Bettache S, Saldaña Z, Avelino F, Rendón MA, Dornand J, Girón JA. 2006. Characterization of SP41, a surface protein of Brucella associated with adherence and invasion of host epithelial cells. Cell Microbiol. 8:1877–1887.
  • Caswell CC, Gaines JM, Ciborowski P, Smith D, Borchers CH, Roux CM, Sayood K, Dunman PM, Roop Ii RM 2012. Identification of two small regulatory RNAs linked to virulence in Brucella abortus 2308. Mol Microbiol. 85:345–360.
  • Chain PSG, Comerci DJ, Tolmasky ME, Larimer FW, Malfatti SA, Vergez LM, Aguero F, Land ML, Ugalde RA, Garcia E. 2005. Whole-genome analyses of speciation events in pathogenic brucellae. Infect Immun. 73:8353–8361.
  • Chang D-E, Smalley DJ, Conway T. 2002. Gene expression profiling of Escherichia coli growth transitions: an expanded stringent response model. Mol Microbiol. 45:289–306.
  • Chatterji D, Ojha AK. 2001. Revisiting the stringent response, ppGpp and starvation signaling. Curr Opin Microbiol. 4:160–165.
  • Chavarria M, Kleijn RJ, Sauer U, Pflüger-Grau K, de Lorenzo V. 2012. Regulatory tasks of the phosphoenolpyruvate-phosphotransferase system of Pseudomonas putida in central carbon metabolism. mBio. 3:e00028–12–e00028–12.
  • Chubukov V, Uhr M, Le Chat L, Kleijn RJ, Jules M, Link H, Aguero F, Land ML, Ugalde RA, Garcia E. 2013. Transcriptional regulation is insufficient to explain substrate-induced flux changes in Bacillus subtilis. Mol Syst Biol. 9:1–13.
  • Corbel MJ, Alton GG, Banai M, Díaz R, Dranovskaia, Elberg SS, et al. 2006. Brucellosis in humans and animals. Geneva: WHO Press.
  • Crasta OR, Folkerts O, Fei Z, Mane SP, Evans C, Martino-Catt S, Bricker B, Yu G, Du L, Sobral BW. 2008. Genome Sequence of Brucella abortus Vaccine Strain S19 compared to virulent strains yields candidate virulence genes. PLoS One. 3:e2193.
  • Crawford RM, Van De Verg L, Yuan L, Hadfield TL, Warren RL, Drazek ES, Houng HH, Hammack C, Sasala K, Polsinelli T, et al. 1996. Deletion of purE attenuates Brucella melitensis infection in mice. Infect Immun. 64:2188–2192.
  • Cui M, Wang T, Xu J, Ke Y, Du X, Yuan X, Wang Z, Gong C, Zhuang Y, Lei S, et al. 2013. Impact of Hfq on global gene expression and intracellular survival in Brucella melitensis. PLoS One. 8:e71933.
  • De Bolle X, Crosson S, Matroule J-Y, Letesson J-J. 2015. Brucella abortus Cell Cycle and Infection are coordinated. Trends Microbiol. 23:812–821.
  • de Carvalho LPS, Fischer SM, Marrero J, Nathan C, Ehrt S, Rhee KY. 2010. Metabolomics of Mycobacterium tuberculosis reveals compartmentalized co-catabolism of carbon substrates. Chem Biol. 17:1122–1131.
  • de Lorenzo V. 2014. From the selfish gene to selfish metabolism: revisiting the central dogma. Bioessays. 36:226–235.
  • del Castillo T, Duque E, Ramos JL. 2008. A set of activators and repressors control peripheral glucose pathways in Pseudomonas putida to yield a common central intermediate. J Bacteriol. 190:2331–2339.
  • del Val C, Romero-Zaliz R, Torres-Quesada O, Peregrina A, Toro N, Jiménez-Zurdo JI. 2012. A survey of sRNA families in a-proteobacteria. RNA Biol. 9:1–11.
  • Delrue RM, Martinez-Lorenzo M, Lestrate P, Danese I, Bielarz V, Mertens P, De Bolle X, Tibor A, Gorvel JP, Letesson JJ. 2001. Identification of Brucella spp. genes involved in intracellular trafficking. Cell Microbiol. 3:487–497.
  • Delrue R-M. 2002. Contribution à l'analyse des mécanismes moléculaires impliqués dans le trafic intracellulaire de Brucella melitensis 16M. Namur: Presses Universitaires de Namur.
  • Delrue R-M, Deschamps C, Léonard S, Nijskens C, Danese I, Schaus J-M, Uzureau S, Ferooz J. 2005. A quorum-sensing regulator controls expression of both the type IV secretion system and the flagellar apparatus of Brucella melitensis. Cell Microbiol. 7:1151–1161.
  • Delrue R-M, Lestrate P, Tibor A, Letesson J-J, De Bolle X. 2004. Brucella pathogenesis, genes identified from random large-scale screens. FEMS Microbiol Lett. 231:1–12.
  • Deutscher J, Francke C, Postma PW. 2006. How phosphotransferase system-related protein phosphorylation regulates carbohydrate metabolism in bacteria. Microbiol Mol Biol Rev. 70:939–1031.
  • Dong H, Liu W, Peng X, Jing Z, Wu Q. 2013. The effects of MucR on expression of type IV secretion system, quorum sensing system and stress responses in Brucella melitensis. Vet Microbiol. 166:535–542.
  • Douglas JT, Rosenberg EY, Nikaido H, Verstreate DR, Winter AJ. 1984. Porins of Brucella species. Infect Immun. 44:16–21.
  • Dozot M, Poncet S, Nicolas C, Copin R, Bouraoui H, Mazé A, Deutscher J, De Bolle X, Letesson JJ. 2010. Functional characterization of the incomplete phosphotransferase system (PTS) of the intracellular pathogen Brucella melitensis. PLoS One. 5:1–16.
  • Eisenreich W, Dandekar T, Heesemann J, Goebel W. 2010. Carbon metabolism of intracellular bacterial pathogens and possible links to virulence. Nat Rev Microbiol. 8:401–412.
  • Eisenreich W, Heuner K. 2016. The life stage-specific pathometabolism of Legionella pneumophila. FEBS Lett. 590:3868–3886.
  • Eskra L, Canavessi A, Carey M, Splitter G. 2001. Brucella abortus genes identified following constitutive growth and macrophage infection. Infect Immun. 69:7736–7742.
  • Essenberg RC, Candler C, Nida SK. 1997. Brucella abortus strain 2308 putative glucose and galactose transporter gene: cloning and characterization. Microbiology (Reading, Engl.). 143 (Pt 5): 1549–1555.
  • Essenberg RC, Seshadri R, Nelson K, Paulsen I. 2002. Sugar metabolism by Brucellae. Vet Microbiol. 90:249–261.
  • Foulongne V, Bourg G, Cazevieille C, Michaux-Charachon S, O'Callaghan D. 2000. Identification of Brucella suis genes affecting intracellular survival in an in vitro human macrophage infection model by signature-tagged transposon mutagenesis. Infect Immun. 68:1297–1303.
  • Foulongne V, Walravens K, Bourg G, Boschiroli ML, Godfroid J, Ramuz M, O'Callaghan D. 2001. Aromatic compound-dependent Brucella suis is attenuated in both cultured cells and mouse models. Infect Immun. 69:547–550.
  • Foster G, Osterman BS, Godfroid J, Jacques I, Cloeckaert A. 2007. Brucella ceti sp. nov. and Brucella pinnipedialis sp. nov. for Brucella strains with cetaceans and seals as their preferred hosts. Int J Syst Evol Microbiol. 57:2688–2693.
  • Freer E, Moreno E, Moriyon I, Pizarro-Cerda J, Weintraub A, Gorvel JP. 1996. Brucella-Salmonella lipopolysaccharide chimeras are less permeable to hydrophobic probes and more sensitive to cationic peptides and EDTA than are their native Brucella sp. counterparts. J Bacteriol. 178:5867–5876.
  • Fuhrer T, Fischer E, Sauer U. 2005. Experimental Identification and Quantification of Glucose Metabolism in Seven Bacterial Species. J Bacteriol. 187:1581–1590.
  • Fürch T, Preusse M, Tomasch J, Zech H, Wagner-Döbler I, Rabus R, Wittmann C. 2009. Metabolic fluxes in the central carbon metabolism of Dinoroseobacter shibae and Phaeobacter gallaeciensis, two members of the marine Roseobacter clade. BMC Microbiol. 9:209.
  • Gaca AO, Colomer-Winter C, Lemos JA. 2015. Many Means to a Common End: the Intricacies of (p)ppGpp Metabolism and Its Control of Bacterial Homeostasis. J Bacteriol. 197:1146–1156.
  • Gallot-Lavallée T, Zygmunt MS, Cloeckaert A, Bézard G, Dubray G. 1995. Growth phase-dependent variations in the outer membrane protein profile of Brucella melitensis. Res Microbiol. 146:227–236.
  • Gao J, Tian M, Bao Y, Li P, Liu J, Ding C, Wang S, Li T, Yu S. 2016. Pyruvate kinase is necessary for Brucella abortus full virulence in BALB/c mouse. Vet Res. 47:87.
  • Geddes BA, Hausner G, Oresnik IJ. 2013. Phylogenetic analysis of erythritol catabolic loci within the Rhizobiales and Proteobacteria. BMC Microbiol. 13:1–1.
  • Gentry DR, Cashel M. 1995. Cellular localization of the Escherichia coli SpoT protein. J Bacteriol. 177:3890–3893.
  • Gerhardt P. 1958. The nutrition of brucellae. Bacteriol Rev. 22:81–98.
  • Gerhardt P, Wilson JB. 1948. The nutrition of brucellae: growth in simple chemically defined media. J Bacteriol. 56:17–24.
  • Gerosa L, Sauer U. 2011. Regulation and control of metabolic fluxes in microbes. Curr Opin Biotechnol. 22:566–575.
  • Godfroid J, Scholz HC, Barbier T, Nicolas C, Wattiau P, Fretin D, Whatmore AM, Cloeckaert A, Blasco JM, Moriyon I, et al. 2011. Brucellosis at the animal/ecosystem/human interface at the beginning of the 21st century. Prev Vet Med. 102:118–131.
  • Gonzalez D, Collier J. 2014. Effects of (p)ppGpp on the progression of the cell cycle of Caulobacter crescentus. J Bacteriol. 196:2514–2525.
  • Goodwin RA, Gage DJ. 2014. Biochemical characterization of a nitrogen-type phosphotransferase system reveals enzyme EINtr integrates carbon and nitrogen signaling in Sinorhizobium meliloti. J Bacteriol. 196:1901–1907.
  • Gottschalk G. 2012. Bacterial metabolism. Berlin, Heidelberg: Springer-Verlag.
  • Guzmán-Verri C, Manterola L, Sola-Landa A, Parra A, Cloeckaert A, Garin J, Gorvel JP, Moriyon I, Moreno E, Lopez-Goni I. 2002. The two-component system BvrR/BvrS essential for Brucella abortus virulence regulates the expression of outer membrane proteins with counterparts in members of the Rhizobiaceae. Proc Natl Acad Sci USA. 99:12375–12380.
  • Hagins JM, Scoffield JA, Suh SJ, Silo-Suh L. 2010. Influence of RpoN on isocitrate lyase activity in Pseudomonas aeruginosa. Microbiology. 156:1201–1210.
  • Halling SM, Peterson-Burch BD, Bricker BJ, Zuerner RL, Qing Z, Li LL, Li LL, Kapur V, Alt DP, Olsen SC. 2005. Completion of the genome sequence of Brucella abortus and comparison to the highly similar genomes of Brucella melitensis and Brucella suis. J Bacteriol. 187:2715–2726.
  • Hanna N, Ouahrani-Bettache S, Drake KL, Adams LG, hler SK, Occhialini A. 2013. Global Rsh-dependent transcription profile of Brucella suis during stringent response unravels adaptation to nutrient starvation and cross-talk with other stress responses. BMC Genomics. 14:1–1.
  • Hohle TH, Franck WL, Stacey G, O’Brian MR. 2011. Bacterial outer membrane channel for divalent metal ion acquisition. Proc Natl Acad Sci. 108:15390–15395.
  • Hong PC, Tsolis RM, Ficht TA. 2000. Identification of genes required for chronic persistence of Brucella abortus in mice. Infect Immun. 68:4102–4107.
  • Jacques I, Grayon M, Verger J-M. 2007. Oxidative metabolic profiles of Brucella strains isolated from marine mammals: contribution to their species classification. FEMS Microbiol Lett. 270:245–249.
  • Jahn S, van Rijsewijk BRH, Sauer U, Bettenbrock K. 2013. A role for EIIA(Ntr) in controlling fluxes in the central metabolism of E. coli K12. Biochim Biophys Acta. 1833:2879–2889.
  • Jenner DC, Dassa E, Whatmore AM, Atkins HS. 2009. ATP-binding cassette systems of Brucella. Comp Funct Genomics. 2009:1–16.
  • Jones LM, Montgomery V, Wilson JB. 1965. Characteristics of carbon dioxide-independent cultures of Brucella abortus isolated from cattle vaccinated with strain 19. J Infect Dis. 115:312–320.
  • Kemner JM, Liang X, Nester EW. 1997. The Agrobacterium tumefaciens virulence gene chvE is part of a putative ABC-type sugar transport operon. J Bacteriol. 179:2452–2458.
  • Keppie J, Williams A, Witt K, Smith H. 1965. The role of erythritol in the tissue localization of the brucellae. Br J Exp Pathol. 46:104–108.
  • Kim DH, Lim JJ, Lee JJ, Kim DG, Lee HJ, Min W, Kim KD, Chang HH, Rhee MH, et al. 2012. Identification of genes contributing to the intracellular replication of Brucella abortus within HeLa and RAW 264.7 cells. Vet Microbiol. 158:322–328.
  • Kim S, Watarai M, Kondo Y, Erdenebaatar J, Makino S-I, Shirahata T. 2003. Isolation and characterization of mini-Tn5Km2 insertion mutants of Brucella abortus deficient in internalization and intracellular growth in HeLa cells. Infect Immun. 71:3020–3027.
  • Kochanowski K, Volkmer B, Gerosa L, Haverkorn van Rijsewijk BR, Schmidt A, Heinemann M. 2013. Functioning of a metabolic flux sensor in Escherichia coli. Proc Natl Acad Sci USA. 110:1130–1135.
  • Kotte O, Zaugg JB, Heinemann M. 2010. Bacterial adaptation through distributed sensing of metabolic fluxes. Mol Syst Biol. 6:1–9.
  • Köhler S, Foulongne V, Ouahrani-Bettache S, Bourg G, Teyssier J, Ramuz M, Liautard JP. 2002. The analysis of the intramacrophagic virulome of Brucella suis deciphers the environment encountered by the pathogen inside the macrophage host cell. Proc Natl Acad Sci USA. 99:15711–15716.
  • Köhler S, Ouahrani-Bettache S, Layssac M, Teyssier J, Liautard JP. 1999. Constitutive and inducible expression of green fluorescent protein in Brucella suis. Infect Immun. 67:6695–6697.
  • Kutzner E, Kern T, Felsl A, Eisenreich W, Fuchs TM. 2016. Isotopologue profiling of the listerial N-metabolism. Mol Microbiol. 100:315–327.bf.
  • Lamontagne J, Butler H, Chaves-Olarte E, Hunter J, Schirm M, Paquet C, Tian M, Kearney P, Hamaidi L, Chelsky D, et al. 2007. Extensive cell envelope modulation is associated with virulence in Brucella abortus. J Proteome Res. 6:1519–1529.
  • Lamontagne J, Forest A, Marazzo E, Denis F, Butler H, Michaud J-F, Boucher L, Pedro I, Villeneuve A, Sitnikov D, et al. 2009. Intracellular Adaptation of Brucella abortus. J Proteome Res. 8:1594–1609.
  • Lee CR, Cho SH, Yoon MJ. 2007. Escherichia coli enzyme IIANtr regulates the K + transporter TrkA. Proc Natl Acad Sci USA. 104:4124–4129.
  • Lee C-R, Cho S-H, Kim H-J, Kim M, Peterkofsky A, Seok Y-J. 2010. Potassium mediates Escherichia coli enzyme IIANtr-dependent regulation of sigma factor selectivity. Mol. Micro Biol. 78:1468–1483.
  • Lee C-R, Park Y-H, Kim M, Kim Y-R, Park S, Peterkofsky A, et al. 2013. Reciprocal regulation of the autophosphorylation of enzyme INtr by glutamine and α-ketoglutarate in Escherichia coli. Mol Microbiol. 88:473–485.
  • Lestrate P, Delrue RM, Danese I, Didembourg C, Taminiau B, Mertens P, De Bolle X, Tibor A, Tang CM, Letesson JJ. 2000. Identification and characterization of in vivo attenuated mutants of Brucella melitensis. Mol Microbiol. 38:543–551.
  • Lestrate P, Dricot A, Delrue RM, Lambert C, Martinelli V, De Bolle X, Letesson JJ, Tibor A. 2003. Attenuated signature-tagged mutagenesis mutants of Brucella melitensis identified during the acute phase of infection in mice. Infect Immun. 71:7053–7060.
  • Letesson J, De Bolle X. 2004. Brucella virulence: a matter of control. In: López-Goñi I, Moriyón I. editors. Brucella: molecular and cellular biology. Norfolk England: Horizon Biosciences; p. 117–158.
  • Lillo AM, Tetzlaff CN, Sangari FJ, Cane DE. 2003. Functional expression and characterization of EryA, the erythritol kinase of Brucella abortus, and enzymatic synthesis of L-erythritol-4-phosphate. Bioorg Med Chem Lett. 13:737–739.
  • Lüttmann D, Göpel Y, Görke B. 2012. The phosphotransferase protein EIIA Ntrmodulates the phosphate starvation response through interaction with histidine kinase PhoR in Escherichia coli. Mol Microbiol. 86:96–110.
  • Lüttmann D, Heermann R, Zimmer B, Hillmann A, Rampp IS, Jung K, Görke B. 2009. Stimulation of the potassium sensor KdpD kinase activity by interaction with the phosphotransferase protein IIA(Ntr) in Escherichia coli. Mol Microbiol. 72:978–994.
  • Manterola L, Moriyón I, Moreno E, Sola-Landa A, Weiss DS, Koch MHJ, et al. 2005. The lipopolysaccharide of Brucella abortus BvrS/BvrR mutants contains lipid A modifications and has higher affinity for bactericidal cationic peptides. J Bacteriol. 187:5631–5639.
  • Marquis H, Ficht TA. 1993. The omp2 gene locus of Brucella abortus encodes two homologous outer membrane proteins with properties characteristic of bacterial porins. Infect Immun. 61:3785–3790.
  • Marr AG, Olsen CB, unger HS, Wilson JB. 1953. The oxidation of glutamic acid by Brucella abortus. J Bacteriol. 66:606–610.
  • Martinez de Tejada G, Pizarro-Cerda J, Moreno E, Moriyon I. 1995. The outer membranes of Brucella spp. are resistant to bactericidal cationic peptides. Infect Immun. 63:3054–3061.
  • McCullough WG, Beal GA. 1951. Growth and manometric studies on carbohydrate utilization of Brucella. J Infect Dis. 89:266–271.
  • Meyer ME, Cameron HS. 1961. Metabolic characterization of the genus Brucella. I. Statistical evaluation of the oxidative rates by which type I of each species can be identified. J Bacteriol 82:387–395.
  • Meyer ME, Morgan W. 1973. Designation of neotype strains and of biotype reference strains for species of the genus Brucella Meyer and Shaw. Int J Syst Bact. 23:135–141.
  • Michaux C, Verneuil N, Hartke A, Giard JC. 2014. Physiological roles of small RNA molecules. Microbiology (Reading, Engl). 160:1007–1019.
  • Mignolet J, Van der Henst C, Nicolas C, Deghelt M, delphinee D, Letesson J-J, De Bolle X. 2010. PdhS, an old-pole-localized histidine kinase, recruits the fumarase FumC in Brucella abortus. J Bacteriol. 192:3235–3239.
  • Mollaret H, Bourdin M. 1973. Conservation expérimentale de Brucella suis durant quatre ans dans la terre: Intérêt épidémiologique. Med Mal Infect. 3:537–538.
  • Monahan LG, Hajduk IV, Blaber SP, Charles IG, Harry EJ. 2014. Coordinating bacterial cell division with nutrient availability: a role for glycolysis. MBio. 5:e00935–e00935–14.
  • Moreno E, Moriyón I. 2002. Brucella melitensis: a nasty bug with hidden credentials for virulence. Proc Natl Acad Sci USA. 99:1–3.
  • Moreno E, Moriyón I. 2006. The Genus Brucella. New York, NY: Springer New York, 315–456.
  • Murray KD, Bremer H. 1996. Control of spoT-dependent ppGpp synthesis and degradation in Escherichia coli. J Mol Biol. 259:41–57.
  • Nataro JP. 2015. Pathogenesis – thoughts from the front line. Microbiol Spect. 3:MBP-0012-2014.
  • Paquet J-Y, Diaz MA, Genevrois S, Grayon M, Verger J-M, De Bolle X, Lakey JH, Letesson JJ, Cloeckaert A. 2001. Molecular, antigenic, and functional analyses of Omp2b porin size variants of Brucella spp. J Bacteriol. 183:4839–4847.
  • Paulsen IT, Nguyen L, Sliwinski MK, Rabus R, Saier MH Jr. 2000. Microbial genome analyses: comparative transport capabilities in eighteen prokaryotes. J Mol Biol. 301:75–100.
  • Peng WT, Lee YW, Nester EW. 1998. The phenolic recognition profiles of the Agrobacterium tumefaciens VirA protein are broadened by a high level of the sugar binding protein ChvE. J. Bacteriol. 180:5632–5638.
  • Petrovska L, Hewinson RG, Dougan G, Maskell DJ, Woodward MJ. 1999. Brucella melitensis 16M: characterisation of the galE gene and mouse immunisation studies with a galE deficient mutant. Vet Microbiol. 65:21–36.
  • Pinedo CA, Gage DJ. 2009. HPrK regulates succinate-mediated catabolite repression in the gram-negative symbiont Sinorhizobium meliloti. J Bacteriol. 191:298–309.
  • Pinedo CA, Bringhurst RM, Gage DJ. 2008. Sinorhizobium meliloti mutants lacking phosphotransferase system enzyme HPr or EIIA are altered in diverse processes, including carbon metabolism, cobalt requirements, and succinoglycan production. J Bacteriol. 190:2947–2956.
  • Plommet M. 1991. Minimal requirements for growth of Brucella suis and other Brucella species. Zentralbl Bakteriol Mikrobiol Hyg A. 275:436–450.
  • Powell BS, Court DL, Inada T, Nakamura Y, Michotey V, Cui X, Reizer A, Saier MH Jr, Reizer J. 1995. Novel proteins of the phosphotransferase system encoded within the rpoN operon of Escherichia coli. Enzyme IIANtr affects growth on organic nitrogen and the conditional lethality of an erats mutant. J Biol Chem. 270:4822–4839.
  • Reizer J, Reizer A, Merrick MJ, Plunkett G3, Rose DJ, Saier MHJ. 1996. Novel phosphotransferase-encoding genes revealed by analysis of the Escherichia coli genome: a chimeric gene encoding an Enzyme I homologue that possesses a putative sensory transduction domain. Gene. 181:103–108.
  • Rest R. 1975. Characterization of the electron transport system in Brucella abortus. J Bacteriol. 122: 139–144.
  • Rest RF, Robertson DC. 1974. Glucose transport in Brucella abortus. J Bacteriol. 118:250–258.
  • Richardson M. 1959. Parasitization in vitro of bovine cells by Brucella abortus. J Bacteriol. 78:769–777.
  • Robertson DC, McCullough WG. 1968a. The glucose catabolism of the genus Brucella. I. Evaluation of pathways. Arch Biochem Biophys. 127:263–273.
  • Robertson DC, McCullough WG. 1968b. The glucose catabolism of the genus Brucella. II. Cell-free studies with B. abortus (S-19). Arch Biochem Biophys. 127:445–456.
  • Rodríguez MC, Viadas C, Seoane A, Sangari FJ, López-Goñi I, García-Lobo JM. 2012. Evaluation of the Effects of Erythritol on Gene Expression in Brucella abortus. PLoS One. 7:e50876.
  • Ronneau S, Moussa S, Barbier T, Conde-Alvarez R, Zúñiga-Ripa A, Moriyón I, Letesson JJ. 2014. Brucella, nitrogen and virulence. Crit Rev Microbiol. 42:507–525.
  • Rossetti CA, Galindo CL, Everts RE, Lewin HA, Garner HR, Adams LG. 2011a. Comparative analysis of the early transcriptome of Brucella abortus-infected monocyte-derived macrophages from cattle naturally resistant or susceptible to brucellosis. Res Vet Sci. 91:40–51.
  • Rossetti CA, Galindo CL, Garner HR, Adams LG. 2011b. Transcriptional profile of the intracellular pathogen Brucella melitensis following HeLa cells infection. Microb Pathog. 51:338–344.
  • Rossetti CA, Galindo CL, Lawhon SD, Garner HR, Adams LG. 2009. Brucella melitensis global gene expression study provides novel information on growth phase-specific gene regulation with potential insights for understanding Brucella:host initial interactions. BMC Microbiol. 9:81.
  • Rousseau P, Ricard C, Cameron J. 1987. Improvements in the fermenter growth of Brucella abortus strain 19. Appl Microbiol Biotechnol. 26:422–426.
  • Saadeh B, Caswell CC, Chao Y, Berta P, Wattam AR, Roop RM, O’Callaghan D. 2015. Transcriptome-wide identification of Hfq-associated RNAs in Brucella suis by deep sequencing. J Bacteriol. 198:427–435.
  • Sage AE, Proctor WD, Phibbs PV. 1996. A two-component response regulator, gltR, is required for glucose transport activity in Pseudomonas aeruginosa PAO1. J Bacteriol. 178:6064–6066.
  • Saier MH. 2000. Families of transmembrane sugar transport proteins. Mol Microbiol. 35:699–710.
  • Saier MH Jr, Reddy VS, Tsu BV, Ahmed MS, Li C, Moreno-Hagelsieb G. 2016. The Transporter Classification Database (TCDB): recent advances. Nucleic Acids Res. 44:D372–D379.
  • Sangari FJ, Agüero J, García-Lobo JM. 2000. The genes for erythritol catabolism are organized as an inducible operon in Brucella abortus. Microbiology (Reading, Engl.). 146 (Pt 2): 487–495.
  • Sangari FJ, Grilló MJ, Jimenez de Bagues MP, González-Carreró MI, García-Lobo JM, Blasco JM, Agüero J. 1998. The defect in the metabolism of erythritol of the Brucella abortus B19 vaccine strain is unrelated with its attenuated virulence in mice. Vaccine. 16:1640–1645.
  • Santos JM, Verstreate DR, Perera VY, Winter AJ. 1984. Outer membrane proteins from rough strains of four Brucella species. Infect Immun. 46:188–194.
  • Schneider E. 2001. ABC transporters catalyzing carbohydrate uptake. Res Microbiol. 152:303–310.
  • Scholz HC, Hubalek Z, Sedlacek I, Vergnaud G, Tomaso H, Al Dahouk S, Melzer F, Kämpfer P, Neubauer H, Cloeckaert A, et al. 2008. Brucella microti sp. nov., isolated from the common vole Microtus arvalis. Int J Syst Evol Microbiol. 58:375–382.
  • Scholz HC, Nockler K, Gollner C, Bahn P, Vergnaud G, Tomaso H, Al Dahouk S, Kämpfer P, Cloeckaert A, Maquart M, et al. 2010. Brucella inopinata sp. nov., isolated from a breast implant infection. Int J Syst Evol Microbiol. 60:801–808.
  • Schweizer H, Argast M, Boos W. 1982. Characteristics of a binding protein-dependent transport system for sn-glycerol-3-phosphate in Escherichia coli that is part of the pho regulon. J Bacteriol. 150:1154–1163.
  • Scupham AJ, Triplett EW. 1997. Isolation and characterization of the UDP-glucose 4'-epimerase-encoding gene, galE, from Brucella abortus 2308. Gene. 202:53–59.
  • Seyfzadeh M, Keener J, Nomura M. 1993. spoT-dependent accumulation of guanosine tetraphosphate in response to fatty acid starvation in Escherichia coli. Proc Natl Acad Sci USA. 90:11004–11008.
  • Smith H, Williams A, Pearce EJ, Keppie J, Harris-smith PW, Fitz-george RB, Witt K. 1962. Foetal erythritol: a cause of the localization of Brucella abortus in bovine contagious abortion. Nature. 193:47–49.
  • Sola-Landa A, Pizarro-Cerda J, Grilló MJ, Moreno E, Moriyon I, Blasco JM, Gorvel JP, López-Goñi I. 1998. A two-component regulatory system playing a critical role in plant pathogens and endosymbionts is present in Brucella abortus and controls cell invasion and virulence. Mol Microbiol. 29:125–138.
  • Solaimanpour S, Sarmiento F, Mrázek J. 2015. Tn-Seq explorer: a tool for analysis of high-throughput sequencing data of transposon mutant libraries. PLoS One. 10:e0126070. doi: 10.1371/journal.pone.0126070.s003.
  • Sperry J, Robertson DC. 1975. Erythritol catabolism by Brucella abortus. J Bacteriol. 121:619–630.
  • Spira B, Silberstein N, Yagil E. 1995. Guanosine 3′,5′-bispyrophosphate (ppGpp) synthesis in cells of Escherichia coli starved for Pi. J Bacteriol. 177:4053–4058.
  • Stolzenberger J, Lindner SN, Persicke M, Brautaset T, Wendisch VF. 2013. Characterization of Fructose 1,6-Bisphosphatase and Sedoheptulose 1,7-Bisphosphatase from the Facultative Ribulose Monophosphate Cycle Methylotroph Bacillus methanolicus. J Bacteriol. 195:5112–5122.
  • Storz G, Vogel J, Wassarman KM. 2011. Regulation by Small RNAs in Bacteria: Expanding Frontiers. Mol Cell. 43:880–891.
  • Stülke J, Hillen W. 1999. Carbon catabolite repression in bacteria. Curr Opin Microbiol. 2:195–201.
  • Tian M, Qu J, Han X, Zhang M, Ding C, Ding J, Chen G, Yu S. 2013. Microarray-based identification of differentially expressed genes in intracellular Brucella abortus within RAW264.7 Cells. PLoS One. 8:e67014.
  • Ucker DS, Signer ER. 1978. Catabolite-repression-like phenomenon in Rhizobium meliloti. J Bacteriol. 136:1197–1200.
  • Untiet V, Karunakaran R, Krämer M, Poole P, Priefer U, Prell J. 2013. ABC Transport Is Inactivated by the PTSNtr under Potassium Limitation in Rhizobium leguminosarum 3841. PLoS One. 8:e64682.
  • Uzureau S, Lemaire J, Delaive E, Dieu M, Gaigneaux A, Raes M, De Bolle X, Letesson JJ. 2010. Global analysis of quorum sensing targets in the intracellular pathogen Brucella melitensis 16 M. J Proteome Res. 9:3200–3217.
  • Velasco J, Bengoechea JA, Brandenburg K. 2000. Brucella abortus and its closest phylogenetic relative, Ochrobactrum spp., differ in outer membrane permeability and cationic peptide resistance. Infect Immun. 68:3210–3218.
  • Verstreate DR, Creasy MT, Caveney NT. 1982. Outer membrane proteins of Brucella abortus: isolation and characterization. Infect Immun. 35:979–989.
  • Viadas C, Rodríguez MC, Sangari FJ, Gorvel J-P, Garcia-Lobo JM, López-Goñi I. 2010. Transcriptome Analysis of the Brucella abortus BvrR/BvrS Two-Component Regulatory System. PLoS One. 5:e10216.
  • Vinella D, Albrecht C, Cashel M, D’Ari R. 2005. Iron limitation induces SpoT-dependent accumulation of ppGpp in Escherichia coli. Mol Microbiol. 56:958–970.
  • Vizcaino N, Cloeckaert A. 2012. Biology and genetics of the Brucella outer membrane. In I. López-Goñi and D. O'Callaghan editors. Brucella. Molecular Microbiology and Genomics. Norfolk, U.K.: Caister Academic Press, pp. 133–161.
  • Vizcaino N, Cloeckaert A, Zygmunt MS, Fernandez-Lago L. 2001. Characterization of a Brucella Species 25-Kilobase DNA fragment deleted from Brucella abortus reveals a large gene cluster related to the synthesis of a polysaccharide. Infect Immun. 69:6738–6748.
  • Wang JD, Levin PA. 2009. Metabolism, cell growth and the bacterial cell cycle. Nat Rev Microbiol. 7:822–827.
  • Waśko A, Polak-Berecka M, Paduch R, Jóźwiak K. 2014. The effect of moonlighting proteins on the adhesion and aggregationability of Lactobacillus helveticus. Anaerobe. 30:161–168.
  • Wattam AR, Foster JT, Mane SP, Bekstrom M, Bekstrom J, Disckerman AW, Keim P, Pearson T, Tsolis ROD. 2014. Comparative phylogenomics and evolution of the Brucellae reveal a path to virulence. J Bacteriol. 196:920–929.
  • Weeks JN, Galindo CL, Drake KL, Adams GL, Garner HR, Ficht TA. 2010. Brucella melitensis VjbR and C12-HSL regulons: contributions of the N-dodecanoyl homoserine lactone signaling molecule and LuxR homologue VjbR to gene expression. BMC Microbiol. 10:167
  • Whatmore AM. 2009. Current understanding of the genetic diversity of Brucella, an expanding genus of zoonotic pathogens. Infect Genet Evol. 9:1168–1184.
  • White DW. 2007. The physiology and biochemistry of prokaryotes. New York: Oxford University Press.
  • Williams AE, Keppie J, Smith H. 1964. The relation of erythritol usage to virulence in the brucellas. J Gen Microbiol. 37:285–292.
  • Wilson JB, Dasinger BL. 1960. Biochemical properties of virulent and avirulent strains of brucellae*. Ann N Y Acad Sci. 88:1155–1166.
  • Wu Q, Pei J, Turse C, Ficht TA. 2006. Mariner mutagenesis of Brucella melitensis reveals genes with previously uncharacterized roles in virulence and survival. BMC Microbiol. 6:102.
  • Xavier MN, Winter MG, Spees AM, Hartigh, den AB, Nguyen K, Roux CM, Silva TM, Atluri VL, Kerrinnes T, Keestra AM, et al. 2013. PPARg-mediated increase in glucose availability sustains chronic Brucella abortus infectionin alternatively activated macrophages. Cell Host Microbe. 14:159–170.
  • Yost CK, Rath AM, Noel TC, Hynes MF. 2006. Characterization of genes involved in erythritol catabolism in Rhizobium leguminosarum bv. viciae. Microbiology (Reading, Engl.). 152:2061–2074.
  • Zhao J, Binns AN. 2011. Characterization of the mmsAB-araD1 (gguABC) Genes of Agrobacterium tumefaciens. J Bacteriol. 193:6586–6596.
  • Zúñiga-Ripa A, Barbier T, Conde-Alvarez R, Martínez-Gómez E, Palacios-Chaves L, Gil-Ramírez Y, Grilló MJ, Letesson JJ, Iriarte M, Moriyón I. 2014. Brucella abortus depends on pyruvate phosphate dikinase and malic enzyme but not on Fbp and GlpX fructose-1,6-bisphosphatases for full virulence in laboratory models. J Bacteriol. 196:3045–3057.
  • Zygmunt MS, Hagius SD, Walker JV, Elzer PH. 2006. Identification of Brucella melitensis 16M genes required for bacterial survival in the caprine host. Microb Infect. 8:2849–2854.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.