1,293
Views
60
CrossRef citations to date
0
Altmetric
Review Article

Bioprospecting of functional cellulases from metagenome for second generation biofuel production: a review

, , &
Pages 244-257 | Received 10 Oct 2016, Accepted 31 May 2017, Published online: 13 Jun 2017

References

  • Adrio JL, Demain AL. 2014. Microbial enzymes: tools for biotechnological processes. Biomolecules. 4:117–139.
  • Alain K, Querellou J. 2009. Cultivating the uncultured: limits, advances and future challenges. Extremophiles. 13:583–594.
  • Alcaide M, Messina E, Richter M, Bargiela R, Peplies J, Huws SA, Newbold CJ, Golyshin PN, Simón MA, López G. 2012. Gene sets for utilization of primary and secondary nutrition supplies in the distal gut of endangered Iberian lynx. PLoS One. 7:e51521.
  • Al-Khodor S, Price CT, Kalia A, Kwaik YA. 2010. Functional diversity of ankyrin repeats in microbial proteins. Trends Microbiol. 18:132–139.
  • Angenent LT, Karim K, Al-Dahhan MH, Wrenn BA, Domíguez-Espinosa R. 2004. Production of bioenergy and biochemicals from industrial and agricultural wastewater. Trends Biotechnol. 22:477–485.
  • Arnold FH. 2001. Combinatorial and computational challenges for biocatalyst design. Nature. 409:253–257.
  • Bao L, Huang Q, Chang L, Zhou J, Lu H. 2011. Screening and characterization of a cellulase with endocellulase and exocellulase activity from yak rumen metagenome. J Mol Catal B-Enzym. 73:104–110.
  • Baweja M, Singh PK, Shukla P. 2016. Enzyme technology, functional proteomics, and systems biology toward unraveling molecular basis for functionality and interactions in biotechnological processes. Frontier discoveries and innovations in interdisciplinary microbiology. India: Springer; p. 207–212.
  • Bayer EA, Chanzy H, Lamed R, Shoham Y. 1998. Cellulose, cellulases and cellulosomes. Curr Opin Struct Biol. 8:548–557.
  • Beguin P. 1990. Molecular biology of cellulose degradation. Annu Rev Microbiol. 44:219–248.
  • Bhatia Y, Mishra S, Bisaria V. 2002. Microbial beta-glucosidases: cloning, properties, and applications. Crit Rev Biotechnol. 22:375–407.
  • Biver S, Stroobants A, Portetelle D, Vandenbol M. 2014. Two promising alkaline β-glucosidases isolated by functional metagenomics from agricultural soil, including one showing high tolerance towards harsh detergents, oxidants and glucose. J Ind Microbiol Biotechnol. 41:479–488.
  • Brown TR. 2015. A techno-economic review of thermochemical cellulosic biofuel pathways. Bioresour Technol. 178:166–176.
  • Brulc JM, Antonopoulos DA, Miller MEB, Wilson MK, Yannarell AC, Dinsdale EA, Edwards RE, Frank ED, Emerson JB, Wacklin P. 2009. Gene-centric metagenomics of the fiber-adherent bovine rumen microbiome reveals forage specific glycoside hydrolases. PNAS. 106:1948–1953.
  • Cairns JRK, Esen A. 2010. β-Glucosidases. Cell Mol Life Sci. 67:3389–3405.
  • Campiche JL, Bryant HL, Richardson JW. 2010. Long-run effects of falling cellulosic ethanol production costs on the US agricultural economy. Environ Res Lett. 5:014018.
  • Cardoso AM, Cavalcante JJ, Cantão ME, Thompson CE, Flatschart RB, Glogauer A, Scapin SM, Sade YB, Beltrão PJ, Gerber AL. 2012. Metagenomic analysis of the microbiota from the crop of an invasive snail reveals a rich reservoir of novel genes. PLoS One. 7:e48505.
  • Cheng J, Huang S, Jiang H, Zhang Y, Li L, Wang J, Fan C. 2016. Isolation and characterization of a non-specific endoglucanase from a metagenomic library of goat rumen. World J Microbiol Biotechnol. 32:1–8.
  • Chokhawala HA, Roche CM, Kim TW, Atreya ME, Vegesna N, Dana CM, Blanch HW, Clark DS. 2015. Mutagenesis of Trichoderma reesei endoglucanase I: impact of expression host on activity and stability at elevated temperatures. BMC Biotechnol. 15:11.
  • Coenen TMM, Schoenmakers ACM, Verhagen H. 1995. Safety evaluation of beta-glucanase derived from Trichoderma reesei: summary of toxicological data. Food Chem Toxicol. 33:859–866.
  • Coughlan MP, Mayer F, Balows A, Truper HG, Dworkin M, Harder W, Schleifer KH. 1992. The cellulose-decomposing bacteria and their enzyme systems. The prokaryotes: a handbook on the biology of bacteria: ecophysiology, isolation, identification, applications. Vol. I. 2nd ed. New York: Springer-Verlag; p. 460–516.
  • Cowan D, Meyer Q, Stafford W, Muyanga S, Cameron R, Wittwer P. 2005. Metagenomic gene discovery: past, present and future. Trends Biotechnol. 23:321–329.
  • Crameri R, Suter M. 1993. Display of biologically active proteins on the surface of filamentous phages: a cDNA cloning system for selection of functional gene products linked to the genetic information responsible for their production. Gene. 137:69–75.
  • Dashtban M, Maki M, Leung KT, Mao C, Qin W. 2010. Cellulase activities in biomass conversion: measurement methods and comparison. Crit Rev Biotechnol. 30:302–309.
  • Davey JW, Hohenlohe PA, Etter PD, Boone JQ, Catchen JM, Blaxter ML. 2011. Genome-wide genetic marker discovery and genotyping using next-generation sequencing. Nat Rev Genet. 12:499–510.
  • Davies G, Henrissat B. 1995. Structures and mechanisms of glycosyl hydrolases. Structure. 3:853–859.
  • Del Pozo MV, Fernández-Arrojo L, Gil-Martínez J, Montesinos A, Chernikova TN, Nechitaylo TY, Waliszek A, Tortajada M, Rojas A, Huws SA. 2012. Microbial β-glucosidases from cow rumen metagenome enhance the saccharification of lignocellulose in combination with commercial cellulase cocktail. Biotechnol Biofuels. 5:73.
  • Do TH, Nguyen TT, Nguyen TN, Le QG, Nguyen C, Kimura K, Truong NH. 2014. Mining biomass-degrading genes through Illumina-based de novo sequencing and metagenomic analysis of free-living bacteria in the gut of the lower termite Coptotermes gestroi harvested in Vietnam. J Biosci Bioeng. 118:665–671.
  • Donachie SP, Foster JS, Brown MV. 2007. Culture clash: challenging the dogma of microbial diversity. ISME J. 1:97.
  • Dusselier M, Mascal M, Sels BF. 2014. Top chemical opportunities from carbohydrate biomass: a chemist’s view of the biorefinery. Selective catalysis for renewable feedstocks and chemicals. Berlin, Heidelberg: Springer; p. 1–40.
  • Edwards JL, Smith DL, Connolly J, McDonald JE, Cox MJ, Joint I, Edwards C, McCarthy AJ. 2010. Identification of carbohydrate metabolism genes in the metagenome of a marine biofilm community shown to be dominated by Gammaproteobacteria and Bacteroidetes. Genes (Basel). 1:371–384.
  • Elleuche S, Schröder C, Sahm K, Antranikian G. 2014. Extremozymes-biocatalysts with unique properties from extremophilic microorganisms. Curr Opin Biotechnol. 29:116–123.
  • Fang Z, Fang W, Liu J, Hong Y, Peng H, Zhang X, Sun B, Xiao Y. 2010. Cloning and characterization of a beta-glucosidase from marine microbial metagenome with excellent glucose tolerance. J Microbiol Biotechnol. 20:1351–1358.
  • Ferrer M, Golyshina OV, Chernikova TN, Khachane AN, Reyes‐Duarte D, Santos VA, Strompl C, Elborough K, Jarvis G, Neef A. 2005. Novel hydrolase diversity retrieved from a metagenome library of bovine rumen microflora. Environ Microbiol. 7:1996–1910.
  • Franková L, Fry SC. 2013. Biochemistry and physiological roles of enzymes that 'cut and paste' plant cell-wall polysaccharides. J Exp Bot. 64:3519–3550.
  • Galbraith EA, Antonopoulos DA, White BA. 2004. Suppressive subtractive hybridization as a tool for identifying genetic diversity in an environmental metagenome: the rumen as a model. Environ Microbiol. 6:928–937.
  • Geng A, Zou G, Yan X, Wang Q, Zhang J, Liu F, Zhu B, Zhou Z. 2012. Expression and characterization of a novel metagenome-derived cellulase Exo2b and its application to improve cellulase activity in Trichoderma reesei. Appl Microbiol Biotechnol. 96:951–962.
  • Gilbert J, Li L-L, Taghavi S, McCorkle SM, Tringe S, van der Lelie D. 2012. Bioprospecting metagenomics for new glycoside hydrolases. Biomass conversion. New York: Springer; p. 141–51.
  • Gladden JM, Park JI, Bergmann J, Reyes-Ortiz V, D'haeseleer P, Quirino BF, Sale KL, Simmons BA, Singer SW. 2014. Discovery and characterization of ionic liquid-tolerant thermophilic cellulases from a switchgrass-adapted microbial community. Biotechnol Biofuels. 7:15.
  • Goacher RE, Selig MJ, Master ER. 2014. Advancing lignocellulose bioconversion through direct assessment of enzyme action on insoluble substrates. Curr Opin Biotechnol. 27:123–133.
  • Green CD, Simons JF, Taillon BE, Lewin DA. 2001. Open systems: panoramic views of gene expression. J Immunol Methods. 250:67–79.
  • Gunawardana M, Chang S, Jimenez A, Holland-Moritz D, Holland-Moritz H, La Val TP, Lund C, Mullen M, Olsen J, Sztain TA, et al. 2014. Isolation of PCR quality microbial community DNA from heavily contaminated environments. J Microbiol Methods. 102:1–7.
  • Gupta SK, Shukla P. 2015. Advanced technologies for improved expression of recombinant proteins in bacteria: perspectives and applications. Crit Rev Biotechnol. 36:1089–1098.
  • Handelsman J, Rondon MR, Brady SF, Clardy J, Goodman RM. 1998. Molecular biological access to the chemistry of unknown soil microbes: a new frontier for natural products. Chem Biol. 5:R245–R249.
  • Hasunuma T, Okazaki F, Okai N, Hara KY, Ishii J, Kondo A. 2013. A review of enzymes and microbes for lignocellulosic biorefinery and the possibility of their application to consolidated bioprocessing technology. Bioresour Technol. 135:513–522.
  • Henrissat B. 1991. A classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem J. 280:309–316.
  • Hess M, Sczyrba A, Egan R, Kim T-W, Chokhawala H, Schroth G, Luo S, Clark DS, Chen F, Zhang T. 2011. Metagenomic discovery of biomass-degrading genes and genomes from cow rumen. Science. 331:463–467.
  • Huang GL, Anderson TD, Clubb RT. 2014. Engineering microbial surfaces to degrade lignocellulosic biomass. Bioengineered. 5:96–106.
  • Ilmberger N, Güllert S, Dannenberg J, Rabausch U, Torres J, Wemheuer B, Alawi M, Poehlein A, Chow J, Turaev D. 2014. A comparative metagenome survey of the fecal microbiota of a breast-and a plant-fed Asian elephant reveals an unexpectedly high diversity of glycoside hydrolase family enzymes. PLoS One. 9:e106707.
  • Ito Y, Ikeuchi A, Imamura C. 2013. Advanced evolutionary molecular engineering to produce thermostable cellulase by using a small but efficient library. Protein Eng Des Sel. 26:73–79.
  • Jarvis M. 2003. Chemistry: cellulose stacks up. Nature. 426:611–612.
  • Jiang C, Hao Z-Y, Jin K, Li S-X, Che Z-Q, Ma G-F, Wu B. 2010. Identification of a metagenome-derived β-glucosidase from bioreactor contents. J Mol Catal B: Enzym. 63:11–16.
  • Jiang C, Ma G, Li S, Hu T, Che Z, Shen P, Yan B, Wu B. 2009. Characterization of a novel beta-glucosidase-like activity from a soil metagenome. J Microbiol. 47:542–548.
  • Jiang C-J, Chen G, Huang J, Huang Q, Jin K, Shen P-H, Li J-F, Wu B. 2011. A novel β-glucosidase with lipolytic activity from a soil metagenome. Folia Microbiol (Praha). 56:563–570.
  • Jothi R, Cuddapah S, Barski A, Cui K, Zhao K. 2008. Genome-wide identification of in vivo protein-DNA binding sites from ChIP-Seq data. Nucleic Acids Res. 36:5221–5231.
  • Kanokratana P, Eurwilaichitr L, Pootanakit K, Champreda V. 2015. Identification of glycosyl hydrolases from a metagenomic library of microflora in sugarcane bagasse collection site and their cooperative action on cellulose degradation. J Biosci Bioeng. 119:384–391.
  • Keller M, Zengler K. 2004. Tapping into microbial diversity. Nat Rev Microbiol. 2:141–150.
  • Kim S-J, Lee C-M, Han B-R, Kim M-Y, Yeo Y-S, Yoon S-H, Koo B-S, Jun H-K. 2008. Characterization of a gene encoding cellulase from uncultured soil bacteria. FEMS Microbiol Lett. 282:44–51.
  • Kim S-J, Lee C-M, Kim M-Y, Yeo Y-S, Yoon S-H, Kang H-C, Koo B-S. 2007. Screening and characterization of an enzyme with beta-glucosidase activity from environmental DNA. J Microbiol Biotechnol. 17:905–912.
  • Ko K-C, Lee JH, Han Y, Choi JH, Song JJ. 2013. A novel multifunctional cellulolytic enzyme screened from metagenomic resources representing ruminal bacteria. Biochem Biophys Res Commun. 441:567–572.
  • Laine RA. 1994. A calculation of all possible oligosaccharide isomers both branched and linear yields 1.05 × 10(12) structures for a reducing hexasaccharide: the Isomer Barrier to development of single-method saccharide sequencing or synthesis systems. Glycobiology. 4:759–767.
  • Laserson J, Jojic V, Koller D. 2011. Genovo: de novo assembly for metagenomes. J Comput Biol. 18:429–443.
  • Lepage P, Leclerc MC, Joossens M, Mondot S, Blottière HM, Raes J, Ehrlich D, Doré J. 2013. A metagenomic insight into our gut's microbiome. Gut. 62:146–158.
  • Li G, Jiang Y, Fan X-J, Liu Y-H. 2012. Molecular cloning and characterization of a novel β-glucosidase with high hydrolyzing ability for soybean isoflavone glycosides and glucose-tolerance from soil metagenomic library. Bioresour Technol. 123:15–22.
  • Li L-L, McCorkle SR, Monchy S, Taghavi S, van der Lelie D. 2009. Bioprospecting metagenomes: glycosyl hydrolases for converting biomass. Biotechnol Biofuels. 2:10.
  • Li Q, Song J, Peng S, Wang JP, Qu GZ, Sederoff RR, Chiang VL. 2014. Plant biotechnology for lignocellulosic biofuel production. Plant Biotechnol J. 12:1174–1192.
  • Liu M, Xie W, Xu H, Gu J, Lv X, Yu H, Ye L. 2014. Directed evolution of an exoglucanase facilitated by a co-expressed β-glucosidase and construction of a whole engineered cellulase system in Escherichia coli. Biotechnol Lett. 36:1801–1807.
  • Lombard V, Ramulu HG, Drula E, Coutinho PM, Henrissat B. 2014. The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res. 42:D490–D495.
  • Lorenz P, Liebeton K, Niehaus F, Eck J. 2002. Screening for novel enzymes for biocatalytic processes: accessing the metagenome as a resource of novel functional sequence space. Curr Opin Biotechnol. 13:572–557.
  • Lu J, Du L, Wei Y, Hu Y, Huang R. 2013. Expression and characterization of a novel highly glucose-tolerant β-glucosidase from a soil metagenome. Acta Biochim Biophys Sin (Shanghai). 45:664–673.
  • Lubieniechi S, Peranantham T, Levin DB. 2013. Recent patents on genetic modification of plants and microbes for biomass conversion to biofuels. Recent Pat DNA Gene Seq. 7:25–35.
  • Mai Z, Su H, Yang J, Huang S, Zhang S. 2014. Cloning and characterization of a novel GH44 family endoglucanase from mangrove soil metagenomic library. Biotechnol Lett. 36:1701–1709.
  • Maki M, Leung KT, Qin W. 2009. The prospects of cellulase-producing bacteria for the bioconversion of lignocellulosic biomass. Int J Biol Sci. 5:500–516.
  • Martinez A, Kolvek SJ, Yip CLT, Hopke J, Brown KA, MacNeil IA, Osburne MS. 2004. Genetically modified bacterial strains and novel bacterial artificial chromosome shuttle vectors for constructing environmental libraries and detecting heterologous natural products in multiple expression hosts. Appl Environ Microbiol. 70:2452–2463.
  • Maruthamuthu M, Jiménez DJ, Stevens P, van Elsas JD. 2016. A multi-substrate approach for functional metagenomics-based screening for (hemi)cellulases in two wheat straw-degrading microbial consortia unveils novel thermoalkaliphilic enzymes. BMC Gen. 17:86.
  • Meng X, Ragauskas AJ. 2014. Recent advances in understanding the role of cellulose accessibility in enzymatic hydrolysis of lignocellulosic substrates. Curr Opin Biotechnol. 27:150–158.
  • Metzker ML. 2010. Sequencing technologies – the next generation. Nat Rev Genet. 11:31–46.
  • Mhuantong W, Charoensawan V, Kanokratana P, Tangphatsornruang S, Champreda V. 2015. Comparative analysis of sugarcane bagasse metagenome reveals unique and conserved biomass-degrading enzymes among lignocellulolytic microbial communities. Biotechnol Biofuels. 8:1.
  • Miller P, Blum P. 2010. Extremophile‐inspired strategies for enzymatic biomass saccharification. Environ Technol. 31:1005–1015.
  • Milshteyn A, Schneider JS, Brady SF. 2014. Mining the metabiome: identifying novel natural products from microbial communities. Chem Biol. 21:1211–1223.
  • Mitra S, Rupek P, Richter DC, Urich T, Gilbert JA, Meyer F, Wilke A, Huson DH. 2011. Functional analysis of metagenomes and metatranscriptomes using SEED and KEGG. BMC Bioinformatics. 12(Suppl 1):S21.
  • Morgan XC, Segata N, Huttenhower C. 2013. Biodiversity and functional genomics in the human microbiome. Trends Genet. 29:51–58.
  • Naumoff D. 2011. Hierarchical classification of glycoside hydrolases. Biochemistry (Mosc). 76:622–635.
  • Nishiyama Y, Langan P, Chanzy H. 2002. Crystal structure and hydrogen-bonding system in cellulose Ibeta from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc. 124:9074–9082.
  • Packer MS, Liu DR. 2015. Methods for the directed evolution of proteins. Nat Rev Genet. 16:379–394.
  • Pang H, Zhang P, Duan C-J, Mo X-C, Tang J-L, Feng J-X. 2009. Identification of cellulase genes from the metagenomes of compost soils and functional characterization of one novel endoglucanase. Curr Microbiol. 58:404–408.
  • Pope P, Denman S, Jones M, Tringe S, Barry K, Malfatti S, McHardy A, Cheng J-F, Hugenholtz P, McSweeney C. 2010. Adaptation to herbivory by the Tammar wallaby includes bacterial and glycoside hydrolase profiles different from other herbivores. Proc Natl Acad Sci USA. 107:14793–14798.
  • Pottkämper J, Barthen P, Ilmberger N, Schwaneberg U, Schenk A, Schulte M, Ignatiev N, Streit WR. 2009. Applying metagenomics for the identification of bacterial cellulases that are stable in ionic liquids. Green Chem. 11:957–965.
  • Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C, Nielsen T, Pons N, Levenez F, Yamada T. 2010. A human gut microbial gene catalogue established by metagenomic sequencing. Nature. 464:59–65.
  • Radajewski S, Ineson P, Parekh NR, Murrell JC. 2000. Stable-isotope probing as a tool in microbial ecology. Nature. 403:646–649.
  • Reddy AP, Simmons CW, D’haeseleer P, Khudyakov J, Burd H, Hadi M, Simmons BA, Singer SW, Thelen MP, Van der Gheynst JS. 2013. Discovery of microorganisms and enzymes involved in high-solids decomposition of rice straw using metagenomic analyses. PLoS One. 8:e77985.
  • Rossello-Mora R, Amann R. 2001. The species concept for prokaryotes. FEMS Microbiol Rev. 25:39–67.
  • Ryu S, Karim MN. 2011. A whole cell biocatalyst for cellulosic ethanol production from dilute acid-pretreated corn stover hydrolyzates. Appl Microbiol Biotechnol. 91:529–542.
  • Schmidt TM, DeLong E, Pace N. 1991. Analysis of a marine picoplankton community by 16S rRNA gene cloning and sequencing. J Bacteriol. 173:4371–4378.
  • Scholz MB, Lo C-C, Chain PS. 2012. Next generation sequencing and bioinformatic bottlenecks: the current state of metagenomic data analysis. Curr Opin Biotechnol. 23:9–15.
  • Schröder C, Elleuche S, Blank S, Antranikian G. 2014. Characterization of a heat-active archaeal β-glucosidase from a hydrothermal spring metagenome. Enzyme Microb Technol. 57:48–54.
  • Schülein M. 2000. Protein engineering of cellulases. Biochim Biophys Acta. 1543:239–252.
  • Sergeant MJ, Constantinidou C, Cogan TA, Bedford MR, Penn CW, Pallen MJ. 2014. Extensive microbial and functional diversity within the chicken cecal microbiome. PLoS One. 9:e91941.
  • Simon C, Herath J, Rockstroh S, Daniel R. 2009. Rapid identification of genes encoding DNA polymerases by function-based screening of metagenomic libraries derived from glacial ice. Appl Environ Microbiol. 75:2964–2968.
  • Singhania RR, Patel AK, Sukumaran RK, Larroche C, Pandey A. 2013. Role and significance of beta-glucosidases in the hydrolysis of cellulose for bioethanol production. Bioresour Technol. 127:500–507.
  • Staley JT, Konopka A. 1985. Measurement of in situ activities of nonphotosynthetic microorganisms in aquatic and terrestrial habitats. Annu Rev Microbiol. 39:321–346.
  • Swanson KS, Dowd SE, Suchodolski JS, Middelbos IS, Vester BM, Barry KA, Nelson KE, Torralba M, Henrissat B, Coutinho PM. 2011. Phylogenetic and gene-centric metagenomics of the canine intestinal microbiome reveals similarities with humans and mice. ISME J. 5:639–649.
  • Swiegers J, Bartowsky E, Henschke P, Pretorius I. 2005. Yeast and bacterial modulation of wine aroma and flavour. Aust J Grape Wine Res. 11:139.
  • Tiwari R, Nain PK, Singh S, Adak A, Saritha M, Rana S, Sharma A, Nain L. 2015. Cold active holocellulase cocktail from Aspergillus niger SH3: process optimization for production and biomass hydrolysis. J Taiwan Inst Chem Eng. 56:57–66.
  • Tiwari R, Singh S, Shukla P, Nain L. 2014. Novel cold temperature active β-glucosidase from Pseudomonas lutea BG8 suitable for simultaneous saccharification and fermentation. RSC Adv. 4:58108–58115.
  • Tiwari R, Singh S, Singh N, Adak A, Rana S, Sharma A, Nain L. 2014. Unwrapping the hydrolytic system of the phytopathogenic fungus Phoma exigua by secretome analysis. Process Biochem. 49:1630–1636.
  • Uchiyama T, Abe T, Ikemura T, Watanabe K. 2005. Substrate-induced gene-expression screening of environmental metagenome libraries for isolation of catabolic genes. Nat Biotechnol. 23:88–93.
  • Uchiyama T, Miyazaki K. 2009. Functional metagenomics for enzyme discovery: challenges to efficient screening. Curr Opin Biotechnol. 20:616–622.
  • Uchiyama T, Yaoi K, Miyazaki K. 2015. Glucose-tolerant β-glucosidase retrieved from a Kusaya gravy metagenome. Front Microbiol. 6:548.
  • Ufarté L, Potocki-Veronese G, Laville É. 2015. Discovery of new protein families and functions: new challenges in functional metagenomics for biotechnologies and microbial ecology. Front Microbiol. 6:563.
  • Van Den Burg B. 2003. Extremophiles as a source for novel enzymes. Curr Opin Microbiol. 6:213–218.
  • Venter JC, Remington K, Heidelberg JF, Halpern AL, Rusch D, Eisen JA, Wu D, Paulsen I, Nelson KE, Nelson W. 2004. Environmental genome shotgun sequencing of the Sargasso Sea. Science. 304:66–74.
  • Verastegui Y, Cheng J, Engel K, Kolczynski D, Mortimer S, Lavigne J, Montalibet J, Romantsov T, Hall M, McConkey BJ, et al. 2014. Multisubstrate isotope labeling and metagenomic analysis of active soil bacterial communities. MBio. 5:e01157–e01114.
  • Vey G, Moreno-Hagelsieb G. 2012. Metagenomic annotation networks: construction and applications. PLoS One. 7:e41283.
  • Wang F, Li F, Chen G, Liu W. 2009. Isolation and characterization of novel cellulase genes from uncultured microorganisms in different environmental niches. Microbiol Res. 164:650–657.
  • Wang J, Sun Z, Zhou Y, Wang Q, Ye JA, Chen Z, Liu J. 2012. Screening of a xylanase clone from a fosmid library of rumen microbiota in Hu sheep. Anim Biotechnol. 23:156–173.
  • Wang M, Lai G-L, Nie Y, Geng S, Liu L, Zhu B, Shi Z, Wu X-L. 2015. Synergistic function of four novel thermostable glycoside hydrolases from a long-term enriched thermophilic methanogenic digester. Front Microbiol. 6:509.
  • Warnecke F, Luginbühl P, Ivanova N, Ghassemian M, Richardson TH, Stege JT, Cayouette M, McHardy AC, Djordjevic G, Aboushadi N. 2007. Metagenomic and functional analysis of hindgut microbiota of a wood-feeding higher termite. Nature. 450:560–565.
  • Whitman WB, Coleman DC, Wiebe WJ. 1998. Prokaryotes: the unseen majority. Proc Natl Acad Sci USA. 95:6578–6583.
  • Wongwilaiwalin S, Laothanachareon T, Mhuantong W, Tangphatsornruang S, Eurwilaichitr L, Igarashi Y, Champreda V. 2013. Comparative metagenomic analysis of microcosm structures and lignocellulolytic enzyme systems of symbiotic biomass-degrading consortia. Appl Microbiol Biotechnol. 97:8941–8954.
  • Xing M-N, Zhang X-Z, Huang H. 2012. Application of metagenomic techniques in mining enzymes from microbial communities for biofuel synthesis. Biotechnol Adv. 30:920–929.
  • Xu B, Xu W, Li J, Dai L, Xiong C, Tang X, Yang Y, Mu Y, Zhou J, Ding J. 2015. Metagenomic analysis of the Rhinopithecus bieti fecal microbiome reveals a broad diversity of bacterial and glycoside hydrolase profiles related to lignocellulose degradation. BMC Genomics. 16:174.
  • Yang C, Niu Y, Li C, Zhu D, Wang W, Liu X, Cheng B, Ma C, Xu P. 2013. Characterization of a novel metagenome-derived 6-phospho-β-glucosidase from black liquor sediment. Appl Environ Microbiol. 79:2121–2127.
  • Yeh Y-F, Chang SC-Y, Kuo H-W, Tong C-G, Yu S-M, Ho T-HD. 2013. A metagenomic approach for the identification and cloning of an endoglucanase from rice straw compost. Gene. 519:360–366.
  • Yun J, Ryu S. 2005. Screening for novel enzymes from metagenome and SIGEX, as a way to improve it. Microb Cell Fact. 4:8.
  • Zhang Y-HP, Himmel ME, Mielenz JR. 2006. Outlook for cellulase improvement: screening and selection strategies. Biotechnol Adv. 24:452–481.
  • Zhang Z, Marquardt RR, Wang G, Guenter W, Crow GH, Han Z, Bedford MR. 1996. A simple model for predicting the response of chicks to dietary enzyme supplementation. J Anim Sci. 74:394–402.
  • Zhou Y, Pope PB, Li S, Wen B, Tan F, Cheng S, Chen J, Yang J, Liu F, Lei X. 2014. Omics-based interpretation of synergism in a soil-derived cellulose-degrading microbial community. Sci Rep. 4:5288.
  • Zhu L, Wu Q, Dai J, Zhang S, Wei F. 2012. Evidence of cellulose metabolism by the giant panda gut microbiome. Proc Natl Acad Sci USA. 108:17714–17719.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.