786
Views
20
CrossRef citations to date
0
Altmetric
Review Article

On the intrinsic constraint of bacterial growth rate: M. tuberculosis’s view of the protein translation capacity

&
Pages 455-464 | Received 27 Aug 2017, Accepted 05 Jan 2018, Published online: 15 Jan 2018

References

  • Andersson DI, van Verseveld HW, Stouthamer AH, Kurland CG. 1986. Suboptimal growth with hyper-accurate ribosomes. Arch Microbiol. 144:96–101.
  • Basan M, Hui S, Okano H, Zhang Z, Shen Y, Williamson JR, Hwa T. 2015a. Overflow metabolism in Escherichia coli results from efficient proteome allocation. Nature. 528:99–104.
  • Basan M, Zhu M, Dai X, Warren M, Sevin D, Wang YP, Hwa T. 2015b. Inflating bacterial cells by increased protein synthesis. Mol Syst Biol. 11:836.
  • Besra GS, Chatterjee D. 1994. Lipids and carbohydrates of Mycobacterium tuberculosis. In: Bloom B, editor. Tuberculosis. Washington, DC: ASM Press; p. 285–306.
  • Beste DJ, Peters J, Hooper T, Avignone-Rossa C, Bushell ME, McFadden J. 2005. Compiling a molecular inventory for Mycobacterium bovis BCG at two growth rates: evidence for growth rate-mediated regulation of ribosome biosynthesis and lipid metabolism. J Bacteriol. 187:1677–1684.
  • Bonven B, Gullov K. 1979. Peptide chain elongation rate and ribosomal activity in Saccharomyces cerevisiae as a function of the growth rate. Molec Gen Genet. 170:225–230.
  • Bremer H, Dennis PP. 1996. Modulation of chemical composition and other parameters of the cell at different exponential growth rates. In: Neidhardt FC, editor. Escherichia coli and Salmonella. 2nd ed. Washington, DC: Am Soc Microbiol; p. 1553–1569.
  • Change YT, Andersen RN, Vaituzis Z. 1967. Growth of Mycobacterium lepraemurium in cultures of mouse peritoneal macrophages. J Bacteriol. 93:1119–1131.
  • Condon C, Liveris D, Squires C, Schwartz I, Squires CL. 1995. rRNA operon multiplicity in Escherichia coli and the physiological implications of rrn inactivation. J Bacteriol. 177:4152–4156.
  • Cook GM, Berney M, Gebhard S, Heinemann M, Cox RA, Danilchanka O, Niederweis M. 2009. Physiology of mycobacteria. Adv Microb Physiol. 55:81–182. 318-9.
  • Cox RA, Cook GM. 2007. Growth regulation in the mycobacterial cell. CMM. 7:231–245.
  • Dai X, Zhu M, Warren M, Balakrishnan R, Patsalo V, Okano H, Williamson JR, Fredrick K, Wang Y-P, Hwa T. 2016. Reduction of translating ribosomes enables Escherichia coli to maintain elongation rates during slow growth. Nat Microbiol. 2:16231.
  • Dennis PP, Ehrenberg M, Bremer H. 2004. Control of rRNA synthesis in Escherichia coli: a systems biology approach. Microbiol Mol Biol Rev. 68:639–668.
  • Deris JB, Kim M, Zhang Z, Okano H, Hermsen R, Groisman A, Hwa T. 2013. The innate growth bistability and fitness landscapes of antibiotic-resistant bacteria. Science. 342:1237435.
  • Diaz I, Pedersen S, Kurland CG. 1987. Effects of miaA on translation and growth rates. Mol Gen Genet. 208:373–376.
  • Farewell A, Neidhardt FC. 1998. Effect of temperature on in vivo protein synthetic capacity in Escherichia coli. J Bacteriol. 180:4704–4710.
  • Forbes M, Kuck NA, Peets EA. 1965. Effect of ethambutol on nucleic acid metabolism in mycobacterium smegmatis and its reversal by polyamines and divalent cations. J Bacteriol. 89:1299–1305.
  • Gengenbacher M, Kaufmann SH. 2012. Mycobacterium tuberculosis: success through dormancy. FEMS Microbiol Rev. 36:514–532.
  • Goldman E, Jakubowski H. 1990. Uncharged tRNA, protein synthesis, and the bacterial stringent response. Mol Microbiol. 4:2035–2040.
  • Gyorfy Z, Draskovits G, Vernyik V, Blattner FF, Gaal T, Posfai G. 2015. Engineered ribosomal RNA operon copy-number variants of E. coli reveal the evolutionary trade-offs shaping rRNA operon number. Nucleic Acids Res. 43:1783–1794.
  • Harshey RM, Ramakrishnan T. 1977. Rate of ribonucleic acid chain growth in Mycobacterium tuberculosis H37Rv. J Bacteriol. 129:616–622.
  • Hett EC, Rubin EJ. 2008. Bacterial growth and cell division: a mycobacterial perspective. Microbiol Mol Biol Rev. 72:126–156.
  • Hui S, Silverman JM, Chen SS, Erickson DW, Basan M, Wang J, Hwa T, Williamson JR. 2015. Quantitative proteomic analysis reveals a simple strategy of global resource allocation in bacteria. Mol Syst Biol. 11:784.
  • Izard J, Gomez Balderas CD, Ropers D, Lacour S, Song X, Yang Y, Lindner AB, Geiselmann J, de Jong H. 2015. A synthetic growth switch based on controlled expression of RNA polymerase. Mol Syst Biol. 11:840.
  • Johnsen K, Molin S, Karlstrom O, Maaloe O. 1977. Control of protein synthesis in Escherichia coli: analysis of an energy source shift-down. J Bacteriol. 131:18–29.
  • Kafri M, Metzl-Raz E, Jona G, Barkai N. 2016. The cost of protein production. Cell Rep. 14:22–31.
  • Klappenbach JA, Dunbar JM, Schmidt TM. 2000. rRNA operon copy number reflects ecological strategies of bacteria. Appl Environ Microbiol. 66:1328–1333.
  • Klumpp S, Scott M, Pedersen S, Hwa T. 2013. Molecular crowding limits translation and cell growth. Proc Natl Acad Sci USA. 110:16754–16759.
  • Koch AL. 1971. The adaptive responses of Escherichia coli to a feast and famine existence. Adv Microb Physiol. 6:147–217.
  • Levin BR, McCall IC, Perrot V, Weiss H, Ovesepian A, Baquero F, Bush K. 2017. A numbers game: ribosome densities, bacterial growth, and antibiotic-mediated stasis and death. MBio. 8:e02253-16.
  • Maaløe O. (1979). Regulation of the protein-synthesizing machinery – ribosomes, tRNA, factors, and so on. In: Goldberger RF, editor. Biological regulation and development. New York (NY): Plenum; p. 487–542.
  • Mandelstam J. 1960. The intracellular turnover of protein and nucleic acids and its role in biochemical differentiation. Bacteriol Rev. 24:289.
  • Mikkola R, Kurland C. 1988. Media dependence of translational mutant phenotype. FEMS Microbiol Lett. 56:265–269.
  • Mikkola R, Kurland CG. 1991. Evidence for demand-regulation of ribosome accumulation in E. coli. Biochimie. 73:1551–1556.
  • Nath K, Koch AL. 1970. Protein degradation in Escherichia coli. I. Measurement of rapidly and slowly decaying components. J Biol Chem. 245:2889–2900.
  • Pang H, Winkler HH. 1994. The concentrations of stable RNA and ribosomes in Rickettsia prowazekii. Mol Microbiol. 12:115–120.
  • Paul BJ, Ross W, Gaal T, Gourse RL. 2004. rRNA transcription in Escherichia coli. Annu Rev Genet. 38:749–770.
  • Pedersen S. 1984. Escherichia coli ribosomes translate in vivo with variable rate. EMBO J. 3:2895–2898.
  • Piir K, Paier A, Liiv A, Tenson T, Maivali U. 2011. Ribosome degradation in growing bacteria. EMBO Rep. 12:458–462.
  • Polz MF, Cordero OX. 2016. Bacterial evolution: genomics of metabolic trade-offs. Nat Microbiol. 1:16181.
  • Primm TP, Andersen SJ, Mizrahi V, Avarbock D, Rubin H, Barry CE 3rd. 2000. The stringent response of Mycobacterium tuberculosis is required for long-term survival. J Bacteriol. 182:4889–4898.
  • Regensburger B, Hennecke H. 1983. RNA polymerase from Rhizobium japonicum. Arch Microbiol. 135:103–109.
  • Repasy T, Lee J, Marino S, Martinez N, Kirschner DE, Hendricks G, Baker S, Wilson AA, Kotton DN, Kornfeld H, Behr MA. 2013. Intracellular bacillary burden reflects a burst size for Mycobacterium tuberculosis in vivo. PLoS Pathog. 9:e1003190.
  • Roller BR, Schmidt TM. 2015. The physiology and ecological implications of efficient growth. ISME J. 9:1481–1487.
  • Roller BR, Stoddard SF, Schmidt TM. 2016. Exploiting rRNA operon copy number to investigate bacterial reproductive strategies. Nat Microbiol. 1:16160.
  • Ruusala T, Andersson D, Ehrenberg M, Kurland CG. 1984. Hyper-accurate ribosomes inhibit growth. EMBO J. 3:2575–2580.
  • Sander P, Prammananan T, Bottger EC. 1996. Introducing mutations into a chromosomal rRNA gene using a genetically modified eubacterial host with a single rRNA operon. Mol Microbiol. 22:841–848.
  • Schaechter M. 2015. A brief history of bacterial growth physiology. Front Microbiol. 6:289.
  • Scott M, Gunderson CW, Mateescu EM, Zhang Z, Hwa T. 2010. Interdependence of cell growth and gene expression: origins and consequences. Science. 330:1099–1102.
  • Scott M, Klumpp S, Mateescu EM, Hwa T. 2014. Emergence of robust growth laws from optimal regulation of ribosome synthesis. Mol Syst Biol. 10:747.
  • Stallings CL, Stephanou NC, Chu L, Hochschild A, Nickels BE, Glickman MS. 2009. CarD is an essential regulator of rRNA transcription required for Mycobacterium tuberculosis persistence. Cell. 138:146–159.
  • Stephan J, Bender J, Wolschendorf F, Hoffmann C, Roth E, Mailander C, Engelhardt H, Niederweis M. 2005. The growth rate of Mycobacterium smegmatis depends on sufficient porin-mediated influx of nutrients. Mol Microbiol. 58:714–730.
  • Stevenson BS, Schmidt TM. 2004. Life history implications of rRNA gene copy number in Escherichia coli. Appl Environ Microbiol. 70:6670–6677.
  • Verma A, Sampla AK, Tyagi JS. 1999. Mycobacterium tuberculosis rrn promoters: differential usage and growth rate-dependent control. J Bacteriol. 181:4326–4333.
  • Vieira-Silva S, Rocha EP. 2010. The systemic imprint of growth and its uses in ecological (meta)genomics. PLoS Genet. 6:e1000808.
  • Winder FG, Rooney SA. 1970. Effects of nitrogenous components of the medium on the carbohydrate and nucleic acid content of Mycobacterium tuberculosis BCG. J Gen Microbiol. 63:29–39.
  • You C, Okano H, Hui S, Zhang Z, Kim M, Gunderson CW, Wang YP, Lenz P, Yan D, Hwa T. 2013. Coordination of bacterial proteome with metabolism by cyclic AMP signalling. Nature. 500:301–306.
  • Zhu M, Dai X, Wang Y-P. 2016. Real time determination of bacterial in vivo ribosome translation elongation speed based on LacZα complementation system. Nucleic Acids Res. 44:e155–e155.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.