1,555
Views
35
CrossRef citations to date
0
Altmetric
Review Article

Biosensor for the detection of Listeria monocytogenes: emerging trends

ORCID Icon, ORCID Icon &
Pages 590-608 | Received 12 Sep 2017, Accepted 02 May 2018, Published online: 23 May 2018

References

  • Allerberger F. 2003. Listeria: growth, phenotypic differentiation and molecular microbiology. FEMS Immunol Med Microbiol. 35:183–189.
  • Banada PP, Guo S, Bayraktar B, Bae E, Rajwa B, Robinson JP, Hirleman ED, Bhunia AK. 2007. Optical forward-scattering for detection of Listeria monocytogenes and other Listeria species. Biosens Bioelectron. 22:1664–1671.
  • Banada PP, Huff K, Bae E, Rajwa B, Aroonnual A, Bayraktar B, Adil A, Robinson JP, Hirleman ED, Bhunia AK. 2009. Label-free detection of multiple bacterial pathogens using light-scattering sensor. Biosens Bioelectron. 24:1685–1692.
  • Banerjee P, Bhunia AK. 2010. Cell-based biosensor for rapid screening of pathogens and toxins. Biosens Bioelectron. 26:99–106.
  • Banerjee P, Lenz D, Robinson JP, Rickus JL, Bhunia AK. 2008. A novel and simple cell-based detection system with a collagen-encapsulated B-lymphocyte cell line as a biosensor for rapid detection of pathogens and toxins. Lab Invest. 88:196–206.
  • Beale DJ, Morrison PD, Palombo EA. 2014. Detection of listeria in milk using non-targeted metabolic profiling of Listeria monocytogenes: a proof-of-concept application. Food Control. 42:343–346.
  • Berrada H, Soriano JM, Picó Y, Mañes J. 2006. Quantification of Listeria monocytogenes in salads by real time quantitative PCR. Int J Food Microbiol. 107:202–206.
  • Bhattacharya S, Salamat S, Morisette D, Banada P, Akin D, Liu Y-S, Bhunia AK, Ladisch M, Bashir R. 2008. PCR-based detection in a micro-fabricated platform. Lab Chip. 8:1130–1136.
  • Bhunia AK. 2014. One day to one hour: how quickly can foodborne pathogens be detected? Future Microbiol. 9:935–946.
  • Buchanan RL, Gorris LGM, Hayman MM, Jackson TC, Whiting RC. 2017. A review of Listeria monocytogenes: an update on outbreaks, virulence, dose-response, ecology, and risk assessments. Food Control. 75:1–13.
  • Chai C, Lee J, Oh S-W, Takhistov P. 2014. Impedimetric characterization of adsorption of Listeria monocytogenes on the surface of an aluminum-based immunosensor. J Food Sci. 79:E2266–E2271.
  • Chemburu S, Wilkins E, Abdel-Hamid I. 2005. Detection of pathogenic bacteria in food samples using highly-dispersed carbon particles. Biosens Bioelectron. 21:491–499.
  • Cheng K, Chui H, Domish L, Hernandez D, Wang G. 2016. Recent development of mass spectrometry and proteomics applications in identification and typing of bacteria. Proteomics Clin Appl. 10:346–357.
  • Cheng C, Peng Y, Bai J, Zhang X, Liu Y, Fan X, Ning B, Gao Z. 2014. Rapid detection of Listeria monocytogenes in milk by self-assembled electrochemical immunosensor. Sensor Actuat B-Chem. 190:900–906.
  • Chen W-T, Hendrickson RL, Huang C-P, Sherman D, Geng T, Bhunia AK, Ladisch MR. 2005. Mechanistic study of membrane concentration and recovery of Listeria monocytogenes. Biotechnol Bioeng. 89:263–273.
  • Chen Q, Lin J, Gan C, Wang Y, Wang D, Xiong Y, Lai W, Li Y, Wang M. 2015. A sensitive impedance biosensor based on immunomagnetic separation and urease catalysis for rapid detection of Listeria monocytogenes using an immobilization-free interdigitated array microelectrode. Biosens Bioelectron. 74:504–511.
  • Chen Q, Wang D, Cai G, Xiong Y, Li Y, Wang M, Huo H, Lin J. 2016. Fast and sensitive detection of foodborne pathogen using electrochemical impedance analysis, urease catalysis and microfluidics. Biosens Bioelectron. 86:770–776.
  • Churchill RLT, Lee H, Hall C. 2006. Detection of Listeria monocytogenes and the toxin listeriolysin O in food. J Microbiol Methods. 64:141–170.
  • Curtis T, Naal RMZG, Batt C, Tabb J, Holowka D. 2008. Development of a mast cell-based biosensor. Biosens Bioelectron. 23:1024–1031.
  • Datta AR, Laksanalamai P, Solomotis M. 2013. Recent developments in molecular sub-typing of Listeria monocytogenes. Food Addit Contam Part A Chem Anal Control Expo Risk Assess. 30:1437–1445.
  • Davis D, Guo X, Musavi L, Lin C-S, Chen S-H, Wu VCH. 2013. Gold nanoparticle-modified carbon electrode biosensor for the detection of Listeria monocytogenes. Ind Biotechnol. 9:31–36.
  • Ding J, Lei J, Ma X, Gong J, Qin W. 2014. Potentiometric aptasensing of Listeria monocytogenes using protamine as an indicator. Anal Chem. 86:9412–9416.
  • Donaldson JR, Hercik K, Rai AN, Reddy S, Lawrence ML, Nanduri B, Edelmann M. 2015. Listeria and -omics approaches for understanding its biology. In: Ricke SC, Donaldson JR, Phillips CA, editors. Food safety: emerging issues, technologies and systems. Oxford, UK: Academic Press, Elsevier, Inc.; p. 135–158.
  • EFSA. 2015. European food safety authority and the European centre for disease prevention and control. EFSA J. 13:4329.
  • Etayash H, Jiang K, Thundat T, Kaur K. 2014. Impedimetric detection of pathogenic gram-positive bacteria using an antimicrobial peptide from Class IIa bacteriocins. Anal Chem. 86:1693–1700.
  • Farabullini F, Lucarelli F, Palchetti I, Marrazza G, Mascini M. 2007. Disposable electrochemical genosensor for the simultaneous analysis of different bacterial food contaminants. Biosens Bioelectron. 22:1544–1549.
  • Fratamico PM. 2008. The application of “omics” technologies for food safety research. Foodborne Pathog Dis. 5:369–370.
  • Gao H-W, Qin P, Lin C, Shang Z-M, Sun W. 2010. Electrochemical DNA biosensor for the detection of Listeria monocytogenes using toluidine blue as a hybridization indicator. JICS. 7:119–127.
  • Gasanov U, Hughes D, Hansbro PM. 2005. Methods for the isolation and identification of Listeria spp. and Listeria monocytogenes: a review. FEMS Microbiol Rev. 29:851–875.
  • Geng T, Morgan MT, Bhunia AK. 2004. Detection of low levels of Listeria monocytogenes cells by using a fiber-optic immunosensor. Appl Environ Microbiol. 70:6138–6146.
  • Gomez-Sjoberg R, Morisette DT, Bashir R. 2005. Impedance microbiology-on-a-chip: microfluidic bioprocessor for rapid detection of bacterial metabolism. J Microelectromech Syst. 14:829–838.
  • Hajdukiewicz J, Boland S, Kavanagh P, Leech D. 2010. An enzyme-amplified amperometric DNA hybridisation assay using DNA immobilised in a carboxymethylated dextran film anchored to a graphite surface. Biosens Bioelectron. 25:1037–1042.
  • Hearty S, Leonard P, Quinn J, O'Kennedy R. 2006. Production, characterisation and potential application of a novel monoclonal antibody for rapid identification of virulent Listeria monocytogenes. J Microbiol Met. 66:294–312.
  • Huang X, Xu Z, Mao Y, Ji Y, Xu H, Xiong Y, Li Y. 2015. Gold nanoparticle-based dynamic light scattering immunoassay for ultrasensitive detection of Listeria monocytogenes in lettuces. Biosens Bioelectron. 66:184–190.
  • Ingianni A, Floris M, Palomba P, Madeddu MA, Quartuccio M, Pompei R. 2001. Rapid detection of Listeria monocytogenes in foods, by a combination of PCR and DNA probe. Mol Cell Probes. 15:275–280.
  • Jacobs MB, Cater RM, Lubrano GJ, Guilbault GG. 1995. A piezoelectric biosensor for Listeria monocytogenes. Am Lab. 27:26–28.
  • Jadhav S, Bhave M, Palombo EA. 2012. Methods used for the detection and subtyping of Listeria monocytogenes. J Microbiol Methods. 88:327–341.
  • Jadhav S, Gulati V, Fox EM, Karpe A, Beale DJ, Sevior D, Bhave M, Palombo EA. 2015. Rapid identification and source-tracking of Listeria monocytogenes using MALDI-TOF mass spectrometry. Int J Food Microbiol. 202:1–9.
  • Jadhav S, Sevior D, Bhave M, Palombo EA. 2014. Detection of Listeria monocytogenes from selective enrichment broth using MALDI-TOF mass spectrometry. J Proteomics. 97:100–106.
  • Kashish, Gupta S, Dubey SK, Prakash R. 2015. Genosensor based on a nanostructured, platinum-modified glassy carbon electrode for Listeria detection. Anal Methods. 7:2616–2622.
  • Kashish, Soni DK, Prakash R, Dubey SK. 2015. Label-free impedimetric detection of Listeria monocytogenes based on poly-5-carboxy indole modified ssDNA probe. J Biotechnol. 200:70–76.
  • Kavanagh P, Leech D. 2006. Redox polymer and probe DNA tethered to gold electrodes for enzyme-amplified amperometric detection of DNA hybridization. Anal Chem. 78:2710–2716.
  • Kim HJ, Bennetto HP, Halablab MA. 1995. A novel liposome-based electrochemical biosensor for the detection of haemolytic microorganisms. Biotechnol Tech. 9:389–394.
  • Ko S, Grant SA. 2003. Development of novel FRET method for detection of Listeria or Salmonella. Sensor Actuat B-Chem. 96:372–378.
  • Koo OK, Liu Y, Shuaib S, Bhattacharya S, Ladisch MR, Bashir R, Bhunia AK. 2009. Targeted capture of pathogenic bacteria using a mammalian cell receptor coupled with dielectrophoresis on a biochip. Anal Chem. 81:3094–3101.
  • Koubová V, Brynda E, Karasová L, Škvor J, Homola J, Dostálek J, Tobiška P, Rošický J. 2001. Detection of foodborne pathogens using surface plasmon resonance biosensors. Sensor Actuat B-Chem. 74:100–105.
  • Lathrop AA, Jaradat ZW, Haley T, Bhunia AK. 2003. Characterization and application of a Listeria monocytogenes reactive monoclonal antibody C11E9 in a resonant mirror biosensor. J Immunol Methods. 281:119–128.
  • Leonard P, Hearty S, Quinn J, O’Kennedy R. 2004. A generic approach for the detection of whole Listeria monocytogenes cells in contaminated samples using surface plasmon resonance. Biosens Bioelectron. 19:1331–1335.
  • Liébana S, Brandão D, Cortés P, Campoy S, Alegret S, Pividori MI. 2016. Electrochemical genosensing of Salmonella, Listeria and Escherichia coli on silica magnetic particles. Anal Chim Acta. 904:1–9.
  • Ligaj M, Oczkowski T, Jasnowska J. 2003. Electrochemical genosensors for detection of L. monocytogenes and genetically-modified components in food. Pol J Food Nutr Sci. 12:61–63.
  • Liu D. 2006. Identification, subtyping and virulence determination of Listeria monocytogenes, an important foodborne pathogen. J Med Microbiol. 55:645–659.
  • Long Y, Zhou X, Xing D. 2011. Sensitive and isothermal electrochemiluminescence gene-sensing of Listeria monocytogenes with hyperbranching rolling circle amplification technology. Biosens Bioelectron. 26:2897–2904.
  • Martinović T, Andjelković U, Gajdošik MŠ, Rešetar D, Josić D. 2016. Foodborne pathogens and their toxins. J Proteomics. 147:226–235.
  • Marusov G, Sweatt A, Pietrosimone K, Benson D, Geary SJ, Silbart LK, Challa S, Lagoy J, Lawrence DA, Lynes MA, et al. 2012. A microarray biosensor for multiplexed detection of microbes using grating-coupled surface plasmon resonance imaging. Environ Sci Technol. 46:348–359.
  • Mazzeo MF, Sorrentino A, Gaita M, Cacace G, Di Stasio M, Facchiano A, Comi G, Malorni A, Siciliano RA. 2006. Matrix-assisted laser desorption ionization-time of flight mass spectrometry for the discrimination of food-borne microorganisms. Appl Environ Microbiol. 72:1180–1189.
  • Nanduri V, Bhunia AK, Tu S-I, Paoli GC, Brewster JD. 2007. SPR biosensor for the detection of L. monocytogenes using phage-displayed antibody. Biosens Bioelectron. 23:248–252.
  • O’Grady J, Sedano-Balbás S, Maher M, Smith T, Barry T. 2008. Rapid real-time PCR detection of Listeria monocytogenes in enriched food samples based on the ssrA gene, a novel diagnostic target. Food Microbiol. 25:75–84.
  • Ohk SH, Koo OK, Sen T, Yamamoto CM, Bhunia AK. 2010. Antibody-aptamer functionalized fibre-optic biosensor for specific detection of Listeria monocytogenes from food. J Appl Microbiol. 109:808–817.
  • Ojima-Kato T, Yamamoto N, Takahashi H, Tamura H. 2016. Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) can precisely discriminate the lineages of Listeria monocytogenes and species of listeria. PLoS One. 11:e0159730.
  • Palumbo JD, Borucki MK, Mandrell RE, Gorski L. 2003. Serotyping of Listeria monocytogenes by enzyme-linked immunosorbent assay and identification of mixed-serotype cultures by colony immunoblotting. J Clin Microbiol. 41:564–571.
  • Poltronieri P, de Blasi MD, Urso OF D. 2009. Detection of Listeria monocytogenes through real-time PCR and biosensor method. Plant Soil Environ. 55:363–369.
  • Pouillot R, Klontz KC, Chen Y, Burall LS, Macarisin D, Doyle M, Bally KM, Strain E, Datta AR, Hammack TS, Van Doren JM. 2016. Infectious dose of Listeria monocytogenes in outbreak linked to ice cream, United States, 2015. Emerging Infect Dis. 22:2113–2119.
  • Radhakrishnan R, Jahne M, Rogers S, Suni II. 2013. Detection of Listeria monocytogenes by electrochemical impedance spectroscopy. Electroanalysis. 25:2231–2237.
  • Reyes-De-Corcuera JI, Cavalieri RP, Powers JR, Tang J, Kang DH. 2005. Enzyme–electropolymer-based amperometric biosensors: an innovative platform for time–temperature integrators. J Agric Food Chem. 53:8866–8873.
  • Schmelcher M, Shabarova T, Eugster MR, Eichenseher F, Tchang VS, Banz M, Loessner MJ. 2010. Rapid multiplex detection and differentiation of Listeria cells by use of fluorescent phage endolysin cell wall binding domains. Appl Environ Microbiol. 76:5745–5756.
  • Sergeev N, Distler M, Courtney S, Al-Khaldi SF, Volokhov D, Chizhikov V, Rasooly A. 2004. Multipathogen oligonucleotide microarray for environmental and biodefense applications. Biosens Bioelectron. 20:684–698.
  • Sharma H, Mutharasan R. 2013. Rapid and sensitive immunodetection of Listeria monocytogenes in milk using a novel piezoelectric cantilever sensor. Biosens Bioelectron. 45:158–162.
  • Sharma PP, Albisetti E, Massetti M, Scolari M, La Torre C, Monticelli M, Leone M, Damin F, Gervasoni G, Ferrari G, et al. 2017. Integrated platform for detecting pathogenic DNA via magnetictunneling junction-based biosensors. Sensor Actuat B-Chem. 242:280–287.
  • Singh AK, Ulanov AV, Li Z, Jayaswal RK, Wilkinson BJ. 2011. Metabolomes of the psychrotolerant bacterium Listeria monocytogenes 10403s grown at 37 °C and 8 °C. Int J Food Microbiol. 148:107–114.
  • Soni DK, Dubey SK. 2014. Phylogenetic analysis of the Listeria monocytogenes based on sequencing of 16S rRNA and hlyA genes. Mol Biol Rep. 41:8219–8229.
  • Soni DK, Singh DV, Dubey SK. 2015. Pregnancy-associated human listeriosis: virulence and genotypic analysis of Listeria monocytogenes. J Microbiol. 53:653–660.
  • Soni DK, Ghosh A, Chikara SK, Singh KM, Joshi CG, Dubey SK. 2017. Comparative whole genome analysis of Listeria monocytogenes strains reveals least genome diversification irrespective of their niche specificity. Gene Rep. 8:61–68.
  • Soni DK, Singh KM, Ghosh A, Chikara SK, Joshi CG, Dubey SK. 2015. Whole-genome sequence of Listeria monocytogenes strains from clinical and environmental samples from Varanasi, India. Genome Announc. 3:e01496-14.
  • Soni DK, Singh M, Singh DV, Dubey SK. 2014. Virulence and genotypic characterization of Listeria monocytogenes isolated from vegetable and soil samples. BMC Microbiol. 14:241.
  • Soni DK, Singh RK, Singh DV, Dubey SK. 2013. Characterization of Listeria monocytogenes isolated from Ganges water, human clinical and milk samples at Varanasi, India. Infect Genet Evol. 14:83–91.
  • Soni DK, Nath A, Dubey SK. 2015b. Evaluation and use of in-silico structure based epitope prediction for listeriolysin O of Listeria monocytogenes. Indian J Biotechnol. 14:160–166.
  • Stasiewicz MJ, Den Bakker HC, Wiedmann M. 2015. Genomics tools in microbial food safety. Curr Opin Food Sci. 4:105–110.
  • Sun W, Qi X, Zhang Y, Yang H, Gao H, Chen Y, Sun Z. 2012. Electrochemical DNA biosensor for the detection of Listeria monocytogenes with dendritic nanogold and electrochemical reduced graphene modified carbon ionic liquid electrode. Electrochim Acta. 85:145–151.
  • Susmel S, Guilbault GG, O'Sullivan CK. 2003. Demonstration of labeless detection of food pathogens using electrochemical redox probe and screen printed gold electrodes. Biosens Bioelectron. 18:881–889.
  • Taitt CR, Golden JP, Shubin YS, Shriver-Lake LC, Sapsford KE, Rasooly A, Ligler FS. 2004. A portable array biosensor for detecting multiple analytes in complex samples. Microb Ecol. 47:175–185.
  • Tatituri RVV, Wolf BJ, Brenner MB, Turk J, Hsu F-F. 2015. Characterization of polar lipids of Listeria monocytogenes by hcd and low-energy cad linear ion-trap mass spectrometry with electrospray ionization. Anal Bioanal Chem. 407:2519–2528.
  • Taylor AD, Ladd J, Yu Q, Chen S, Homola J, Jiang S. 2006. Quantitative and simultaneous detection of four foodborne bacterial pathogens with a multi-channel SPR sensor. Biosens Bioelectron. 22:752–758.
  • Tims TB, Dickey SS, Demarco DR, Lim DV. 2001. Detection of low levels of Listeria monocytogenes within 20 hours using an evanescent wave biosensor. Am Clin Lab. 20:28–29.
  • Tolba M, Ahmed MU, Tlili C, Eichenseher F, Loessner MJ, Zourob M. 2012. A bacteriophage endolysin-based electrochemical impedance biosensor for the rapid detection of Listeria cells. Analyst. 137:5749–5756.
  • Tully E, Higson SP, O’Kennedy R. 2008. The development of a ‘labeless’ immunosensor for the detection of Listeria monocytogenes cell surface protein, Internalin B. Biosens Bioelectron. 23:906–912.
  • Vaughan RD, O’Sullivan CK, Guilbault GG. 2001. Development of a quartz crystal microbalance (QCM) immunosensor for the detection of Listeria monocytogenes. Enzyme Microb Tech. 29:635–638.
  • Volokhov D, Rasooly A, Chumakov K, Chizhikov V. 2002. Identification of Listeria species by microarray-based assay. J Clin Microbiol. 40:4720–4728.
  • Wang D, Chen Q, Huo H. 2017. Efficient separation and quantitative detection of Listeria monocytogenes based on screen-printed interdigitated electrode, urease and magnetic nanoparticles. Food Control. 73:555–561.
  • Wang R, Dong W, Ruan C, Kanayeva D, Tian R, Lassiter K, Li Y. 2008. TiO2 nanowire bundle microelectrode based impedance immunosensor for rapid and sensitive detection of Listeria monocytogenes. Nano Lett. 8:2625–2631.
  • Warriner K, Namvar A. 2009. Why is the hysteria with Listeria? Trends Food Sci Technol. 20:245–254.
  • World Health Organization (WHO). 2017. [Accessed 2017 May 17]. http://www.who.int/ith/diseases/listeriosis/en/
  • World Health Organization Regional Office for South-East Asia (WHO SEARO). 2017. [Accessed 2017 May 17]. http://www.searo.who.int/entity/emerging_diseases/Zoonoses_Listeriosis.pdf?ua =1
  • Wu L-W, Liu Q-J, Wu Z-W, Lu Z-H. 2010. Electrochemical detection of toxin gene in Listeria monocytogenes. Hereditas (Beijing). 32:512–516.
  • Yang L, Banada PP, Liu Y-S, Bhunia AK, Bashir R. 2005. Conductivity and pH dual detection of growth profile of healthy and stressed Listeria monocytogenes. Biotechnol Bioeng. 92:685–694.
  • Yang X, Zhou X, Zhu M, Xing D. 2017. Sensitive detection of Listeria monocytogenes based on highly efficient enrichment with vancomycin-conjugated brush-like magnetic nanoplatforms. Biosens Bioelectron. 91:238–245.
  • Zhu M, Liu W, Liu H, Liao Y, Wei J, Zhou X, Xing D. 2015. Construction of Fe3O4/Vancomycin/PEG magnetic nanocarrier for highly efficient pathogen enrichment and gene sensing. ACS Appl Mater Interfaces. 7:12873–12881.
  • Zunabovic M, Domig KJ, Kneifel W. 2011. Practical relevance of methodologies for detecting and tracing of Listeria monocytogenes in ready-to-eat foods and manufacture environments – a review. LWT-Food Sci Technol. 44:351–362.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.