1,187
Views
45
CrossRef citations to date
0
Altmetric
Review Article

The biotechnological potential of Epicoccum spp.: diversity of secondary metabolites

, &
Pages 759-778 | Received 01 Mar 2018, Accepted 13 Aug 2018, Published online: 28 Oct 2018

References

  • Abdel-Hafez SII, Nafady NA, Abdel-Rahim IR, Shaltout AM, Daròs JA, Mohamed MA. 2017. Biosynthesis of silver nanoparticles using the compound curvularin isolated from the endophytic fungus Epicoccum nigrum: characterization and antifungal activity. J Pharm Appl Chem. 3:135–146.
  • Abdel-Lateff A, Fisch KM, Wright AD, König GM. 2003. A new antioxidant isobenzofuranone derivative from the algicolous marine fungus Epicoccum sp. Planta Med. 69:831–834.
  • Alcock A, Elmer P, Marsden R, Parry F. 2015. Inhibition of Botrytis cinerea by epirodin: a secondary metabolite from New Zealand isolates of Epicoccum nigrum. J Phytopathol. 163:841–852.
  • Amnuaykanjanasin A, Phonghanpot S, Sengpanich N, Cheevadhanarak S, Tanticharoen M. 2009. Insect-specific polyketide synthases (PKSs), potential PKS-nonribosomal peptide synthetase hybrids, and novel PKS clades in tropical fungi. Appl Environ Microbiol. 75:3721–3732.
  • Andrade LH, Keppler AF, Schoenlein-Crusius IH, Porto ALM, Comasseto JV. 2004. Evaluation of acetophenone monooxygenase and alcohol dehydrogenase activities in different fungal strains by biotransformation of acetophenone derivatives. J Mol Catal B Enzym. 31:129–135.
  • Arenal F, Platas G, Martín J, Asensio FJ, Salazar O, Collado J, Vicente F, Basilio A, Ruibal C, Royo I, et al. 2002. Comparison of genotypic and phenotypic techniques for assessing the variability of the fungus Epicoccum nigrum. J Appl Microbiol. 93:36–45.
  • Arenal F, Platas G, Martín J, Salazar O, Peláez F. 1999. Evaluation of different PCR-based DNA fingerprinting techniques for assessing the genetic variability of isolates of the fungus Epicoccum nigrum. J Appl Microbiol. 87:898–906.
  • Aveskamp MM, de Gruyter J, Woudenberg JHC, Verkley GM, Crous PW. 2010. Highlights of the Didymellaceae: a polyphasic approach to characterise Phoma and related pleosporalean genera. Stud Mycol. 65:1–60.
  • Bagy MMK, Abd-Alla MH, Morsy FM, Hassan EA. 2014. Two stage biodiesel and hydrogen production from molasses by oleaginous fungi and Clostridium acetobutylicum ATCC 824. Int J Hydrogen Energy. 39:3185–3197.
  • Bamford PC, Norris GLF, Ward G. 1961. Flavipin production by Epicoccum spp. Trans Br Mycol Soc. 44:354–356.
  • Barbu V, Bahrim G, Şoptică F, Socaciu C. 2006. Modification of pigment composition in Epicoccum nigrum by chemical mutagenesis. Sci study Res. VII:3589–3596.
  • Baute M-A, Deffieux G, Baute R, Neveu A. 1978. New antibiotics from the fungus Epicoccum nigrum. I. Fermentation, isolation and antibacterial properties. J Antibiot. 31:1099–1101.
  • Beasley DR, Joyce DC, Coates LM, Wearing AH. 2001. Saprophytic microorganisms with potential for biological control of Botrytis cinerea on Geraldton waxflower flowers. Aust J Exp Agric. 41:697–703.
  • Bell PJL, Karuso P. 2003. Epicocconone, a novel fluorescent compound from the fungus epicoccumnigrum. J Am Chem Soc. 125:9304–9305.
  • Bhuiyan SA, Ryley MJ, Galea VJ, Tay D. 2003. Evaluation of potential biocontrol agents against Claviceps africana in vitro and in vivo. Plant Pathol. 52:60–67.
  • Birch J, Musgrave OC, Rickards RW, Smith H. 1959. Studies in relation to biosynthesis. Part XX. The structure and biosynthesis of curvularin. J Chem Soc. 3146–3152.
  • Braga RM. 2016. Identification of candidate genes contributing to epicolactone biosynthesis in Epicoccum nigrum [Doctoral Thesis]. São Paulo: Biotechnology, University of São Paulo.
  • Brown AE, Finlay R, Ward JS. 1987. Antifungal compounds produced by Epicoccum purpurascens against soil-borne plant pathogenic fungi. Soil Biol Biochem. 19:657–664.
  • Bruton BD, Redlin SC, Collins JK, Sams CE. 1993. Post-harvest decay of cantaloupe caused by Epicoccum nigrum. Plant Dis. 77:1060–1062.
  • Burge WR, Buckley LJ, Sullivan JD, McGrattan CJ, Ikawa M. 1976. Isolation and biological activity of the pigments of the mold Epicoccum nigrum. J Agric Food Chem. 24:555–559.
  • Cabras A, Mannoni MA, Serra S, Andolfi A, Fiore M, Evidente A. 2006. Occurrence, isolation and biological activity of phytotoxic metabolites produced in vitro by Sphaeropsis sapinea, pathogenic fungus of Pinus radiata. Eur J Plant Pathol. 115:187–193.
  • Caruso M, Colombo AL, Fedeli L, Pavesi A, Quaroni S, Saracchi M, Ventrella G. 2000. Isolation of endophytic fungi and actinomycetes taxane producers. Ann Microbiol 50:3–13.
  • Chen Q, Hou LW, Duan WJ, Crous PW, Cai L. 2017. Didymellaceae revisited. Stud Mycol. 87:105–159.
  • Chen Q, Jiang GR, Zhang GZ, Cai L, Crous PW. 2015. Resolving the Phoma enigma. Stud Mycol. 82:137–217.
  • Chen XL, Wang YH, Luo T. 2017. First report of leaf spot caused by Phoma sorghina on Oxalis debilis in China. Plant Dis. 101:1047–1047.
  • Choi H-Y, Veal DA, Karuso P. 2006. Epicocconone, a new cell-permeable long Stokes' shift fluorescent stain for live cell imaging and multiplexing. J Fluoresc. 16:475–482.
  • Cueva C, García-Ruiz A, González-Rompinelli E, Bartolome B, Martín-Álvarez PJ, Salazar O, Vicente MF, Bills GF, Moreno-Arribas MV. 2012. Degradation of biogenic amines by vineyard ecosystem fungi. Potential use in winemaking. J Appl Microbiol. 112:672–682.
  • Cundliffe E. 1989. How antibiotic-producing organisms avoid suicide. Annu Rev Microbiol. 43:207–233.
  • da Silva Araújo FD, Fávaro LCL, Araújo WL, de Oliveira FL, Aparicio R, Marsaioli AJ. 2012. Epicolactone – natural product isolated from the sugarcane endophytic fungus Epicoccum nigrum. Eur J Org Chem. 2012:5225–5230.
  • Deffieux G, Filleau MJ, Baute R. 1978a. New antibiotics from the fungus Epicoccum nigrum. III. Epicorazine B: structure elucidation and absolute configuration. J Antibiot (Tokyo). 31:1106–1109.
  • Deffieux G, Filleau M-J, Baute M-A, Baute R. 1978b. New antibiotics from the fungus Epicoccum nigrum. II. Epicorazine A: structure elucidation and absolute configuration. J Antibiot (Tokyo). 31:1102–1105.
  • Dzoyem JP, Melong R, Tsamo AT, Maffo T, Kapche DGWF, Ngadjui BT, McGaw LJ, Eloff JN. 2017. Cytotoxicity, antioxidant and antibacterial activity of four compounds produced by an endophytic fungus Epicoccum nigrum associated with Entada abyssinica. Brazilian J Pharmacogn. 27:251–253.
  • El Amrani M, Lai D, Debbab A, Aly AH, Siems K, Seidel C, Schnekenburger M, Gaigneaux A, Diederich M, Feger D, et al. 2014. Protein kinase and HDAC inhibitors from the endophytic fungus Epicoccum nigrum. J Nat Prod. 77:49–56.
  • Ellerbrock P, Armanino N, Ilg MK, Webster R, Trauner D. 2015. An eight-step synthesis of epicolactone reveals its biosynthetic origin. Nat Chem. 7:879–882.
  • Ellerbrock P, Armanino N, Trauner D. 2014. Biomimetic synthesis of the calcineurin phosphatase inhibitor dibefurin. Angew Chem Int Ed. 53:13414–13418.
  • Fatima N, Ismail T, Muhammad SA, Jadoon M, Ahmed S, Azhar S, Mumtaz A. 2016. Epicoccum sp., an emerging source of unique bioactive metabolites. Acta Pol Pharm. 73:13–21.
  • Fávaro LCL, de Melo FL, Aguilar-Vildoso CI, Araújo WL. 2011. Polyphasic analysis of intraspecific diversity in Epicoccum nigrum warrants reclassification into separate species. PLoS One. 6:e14828.
  • Fávaro LCL, Sebastianes FLdS, Araújo WL. 2012. Epicoccum nigrum P16, a sugarcane endophyte, produces antifungal compounds and induces root growth. PLoS One. 7:e36826.
  • Ferreira AJ. 2016. Analysis and annotation of Epicoccum nigrum genome and secondary metabolism [Doctoral Thesis]. São Paulo: Microbiology, University of São Paulo.
  • Fokin M, Fleetwood D, Weir BS, Villas-Boas S. 2017. Genome sequence of the saprophytic ascomycete Epicoccum nigrum strain ICMP 19927. Isolated from New Zealand. Genome Announc. 5:e00557–17.
  • Foppen FH, Gribanovski-Sassu O. 1968. Lipids produced by Epicoccum nigrum in submerged culture. Biochem J. 106:97–100.
  • Frederick CB, Bentley MD, Shive W. 1981a. Structure of triornicin, a new siderophore. Biochemistry. 20:2436–2438.
  • Frederick CB, Szaniszlo PJ, Vickrey PE, Bentley MD, Shive W. 1981b. Production and isolation of siderophores from the soil fungus Epicoccum purpurascens. Biochemistry. 20:2432–2436.
  • Gatenbeck S, Eriksson PO, Hansson Y. 1969. Cell-free C-methylation in relation to aromatic biosynthesis. Acta Chem Scand. 23:699–701.
  • Gaucher GM, Shepherd MG. 1968. Isolation of orsellinic acid synthase. Biochem Biophys Res Commun. 32:664–671.
  • Geris R, Simpson TJ. 2009. Meroterpenoids produced by fungi. Nat Prod Rep. 26:1063–1094.
  • Green MR. 1993. Molecular mechanisms of Tat and Rev. AIDS Res. 3:41–55.
  • Gribanovski-Sassu O, Foppen FH. 1967. The carotenoids of the fungus Epicoccum nigrum link. Phytochemistry. 6:907–909.
  • Gribanovski-Sassu O, Tuttobello L, Foppen FH. 1970. Carotenoids in some ultraviolet mutants of Epicoccum nigrum Link. Arch Mikrobiol. 73:216–223.
  • Gu B, He S, Yan X, Zhang L. 2013. Tentative biosynthetic pathways of some microbial diketopiperazines. Appl Microbiol Biotechnol. 97:8439–8453.
  • Guo H, Sun B, Gao H, Chen X, Liu S, Yao X, Liu X, Che Y. 2009. Diketopiperazines from the Cordyceps-colonizing fungus Epicoccum nigrum. J Nat Prod. 72:2115–2119.
  • Hashem M, Ali E. 2004. Epicoccum nigrum as biocontrol agent of Pythium damping-off and root-rot of cotton seedlings. Arch Phytopathol Plant Prot. 37:283–297.
  • Herzner G, Schlecht A, Dollhofer V, Parzefall C, Harrar K, Kreuzer A, Pilsl L, Ruther J. 2013. Larvae of the parasitoid wasp Ampulex compressa sanitize their host, the American cockroach, with a blend of antimicrobials. Proc Natl Acad Sci USA. 110:1369–1374.
  • Hu DX, Withall DM, Challis GL, Thomson RJ. 2016. Structure, chemical synthesis, and biosynthesis of prodiginine natural products. Chem Rev. 116:7818–7853.
  • Huang H, Bremer E, Hynes R, Erickson R. 2000. Foliar application of fungal biocontrol agents for the control of white mold of dry bean caused by Sclerotinia sclerotiorum. Biol Control. 18:270–276.
  • Hufendiek P, Stölben SSM, Kehraus S, Merten N, Harms H, Crüsemann M, Arslan I, Gütschow M, Schneider T, König GM. 2017. Biosynthetic studies on acetosellin and structure elucidation of a new acetosellin derivative. Planta Med. 83:1044–1052.
  • Ikawa M, McGratten CJ, Burge WR, Iannitelli RC, Uebel JJ, Noguchi T. 1978. Epirodin, a polyene antibiotic from the mold Eipoccum nigrum. J Antibiot. 31:159–161 (Tokyo).
  • Ishikawa Y, Ito T, Lee KH. 1996. Inhibition of sardine flesh lipoxygenase by a new antioxidant from Aspergillus terreus. J Jpn Oil Chem Soc. 45:1321–1325.
  • Ishiuchi K, Nakazawa T, Ookuma T, Sugimoto S, Sato M, Tsunematsu Y, Ishikawa N, Noguchi H, Hotta K, Moriya H, et al. 2012. Establishing a new methodology for genome mining and biosynthesis of polyketides and peptides through yeast molecular genetics. Chem Bio Chem. 13:846–854.
  • Jadulco R, Proksch P, Wray V, Sudarsono BA, Gräfe U. 2001. New macrolides and furan carboxylic acid derivative from the sponge-derived fungus Cladosporium herbarum. J Nat Prod 64:527–530.
  • Jayasiri SC, Hyde KD, Jones EBG, Jeewon R, Ariyawansa HA, Bhat JD, Camporesi E, Kang JC. 2017. Taxonomy and multigene phylogenetic evaluation of novel species in Boeremia and Epicoccum with new records of Ascochyta and Didymella (Didymellaceae). Mycosphere. 8:1080–1101.
  • Jørgensen SH, Frandsen RJN, Nielsen KF, Lysøe E, Sondergaard TE, Wimmer R, Giese H, Sørensen JL. 2014. Fusarium graminearum PKS14 is involved in orsellinic acid and orcinol synthesis. Fungal Genet Biol. 70:24–31.
  • Kanai A, Takeda Y, Kuramochi K, Nakazaki A, Kobayashi S. 2007. Synthetic study on telomerase inhibitor, D8646-2-6: synthesis of the key intermediate using Sn(OTf)2 or Sc(OTf)3 mediated aldol-type reaction and Stille coupling. Chem Pharm Bull. 55:495–499 (Tokyo).
  • Kasiri MB, Safapour S. 2014. Natural dyes and antimicrobials for green treatment of textiles. Environ Chem Lett. 12:1–13.
  • Kemami Wangun HV, Hertweck C. 2007. Epicoccarines A, B and epipyridone: tetramic acids and pyridone alkaloids from an Epicoccum sp. associated with the tree fungus Pholiota squarrosa. Org Biomol Chem. 5:1702–1705.
  • Kemami Wangun HV, Ishida K, Hertweck C. 2008. Epicoccalone, a coumarin-type chymotrypsin inhibitor, and isobenzofuran congeners from an Epicoccum sp. associated with a tree fungus. European J Org Chem. 22:3781–3784.
  • Kobayashi A, Hino T, Yata S, Itoh TJ, Sato H, Kawazu K. 1988. Unique spindle poisons, curvularin and its derivatives, isolated from Penicillium species. Agric Biol Chem. 52:3119–3123.
  • Kostovcik M, Bateman CC, Kolarik M, Stelinski LL, Jordal BH, Hulcr J. 2015. The ambrosia symbiosis is specific in some species and promiscuous in others: evidence from community pyrosequencing. ISME J. 9:126–138.
  • Koutb M, Morsy FM. 2011. A potent lipid producing isolate of Epicoccum purpurascens AUMC5615 and its promising use for biodiesel production. Biomass Bioenergy. 35:3182–3187.
  • Lackner G, Bohnert M, Wick J, Hoffmeister D. 2013. Assembly of melleolide antibiotics involves a polyketide synthase with cross-coupling activity. Chem Biol. 20:1101–1106.
  • Lahlali R, Hijri M. 2010. Screening, identification and evaluation of potential biocontrol fungal endophytes against Rhizoctonia solani AG3 on potato plants. FEMS Microbiol Lett. 311:152–159.
  • Larena I, Torres R, De Cal A, Liñán M, Melgarejo P, Domenichini P, Bellini A, Mandrin JF, Lichou J, de Eribe XO, et al. 2005. Biological control of postharvest brown rot (Monilinia spp.) of peaches by field applications of Epicoccum nigrum. Biol Control. 32:305–310.
  • Lebeau J, Venkatachalam M, Fouillaud M, Petit T, Vinale F, Dufossé L, Caro Y. 2017. Extraction method of polyketide red pigments produced by ascomycetous fungi from terrestrial and marine habitats. J Fungi. 3:34.
  • Lee NH, Gloer JB, Wicklow DT. 2007. Isolation of chromanone and isobenzofuran derivatives from a fungicolous isolate of Epicoccum purpurascens. Bull Korean Chem Soc. 28:877–879.
  • Li C, Sarotti AM, Yang B, Turkson J, Cao S. 2017. A new N-methoxypyridone from the co-cultivation of Hawaiian endophytic fungi Camporesia sambuci FT1061 and Epicoccum sorghinum FT1062. Molecules. 22:E1166.
  • Li Y, Xia LQQ, Wang YNN, Liu XYY, Zhang CHH, Hu TLL, Cao KQQ. 2013. The inhibitory effect of Epicoccum nigrum strain XF1 against Phytophthora infestans. Biol Control. 67:462–468.
  • Lin ZY, Wei JJ, Zhang MQ, Xu SQ, Guo Q, Wang X, Wang JH, Chen BS, Que YX, Deng ZH, et al. 2015. Identification and characterization of a new fungal pathogen causing twisted leaf disease of sugarcane in China. Plant Dis. 99:325–332.
  • Madrigal C, Pascual S, Melgarejo P. 1994. Biological control of peach twig blight (Monilinia laxa) with Epicoccum nigrum. Plant Pathol. 43:554–561.
  • Madrigal C, Tadeo JL, Melgarejo P. 1991. Relationship between flavipin production by Epicoccum nigrum and antagonism against Monilinia laxa. Mycol Res. 95:1375–1381.
  • Malla S, Niraula NP, Liou K, Sohng JK. 2010. Self-resistance mechanism in Streptomyces peucetius: overexpression of drrA, drrB and drrC for doxorubicin enhancement. Microbiol Res. 165:259–267.
  • Mapari SAS, Meyer AS, Thrane U. 2006. Colorimetric characterization for comparative analysis of fungal pigments and natural food colorants. J Agric Food Chem. 54:7027–7035.
  • Mapari SAS, Meyer AS, Thrane U. 2008. Evaluation of Epicoccum nigrum for growth, morphology and production of natural colorants in liquid media and on a solid rice medium. Biotechnol Lett. 30:2183–2190.
  • Mapari SAS, Meyer AS, Thrane U. 2009. Photostability of natural orange-red and yellow fungal pigments in liquid food model systems. J Agric Food Chem. 57:6253–6261.
  • Mapari SAS, Nielsen KF, Larsen TO, Frisvad JC, Meyer AS, Thrane U. 2005. Exploring fungal biodiversity for the production of water-soluble pigments as potential natural food colorants. Curr Opin Biotechnol. 16:231–238.
  • Mapari SAS, Thrane U, Meyer AS. 2010. Fungal polyketide azaphilone pigments as future natural food colorants? Trends Biotechnol. 28:300–307.
  • Mari M, Torres R, Casalini L, Lamarca N, Mandrin JF, Lichou J, Larena I, De Cal MA, Melgarejo P, Usall J. 2007. Control of post-harvest brown rot on nectarine by Epicoccum nigrum and physico-chemical treatments. J Sci Food Agric. 87:1271–1277.
  • Matsuda Y, Abe I. 2016. Biosynthesis of fungal meroterpenoids. Nat Prod Rep. 33:26–53.
  • Mohamed AM. 2015. One-step functionalization of silver nanoparticles using the orsellinic acid compound isolated from the endophytic fungus Epicoccum nigrum: Characterization and antifungal activity. Int J Nano Chem. 1:103–110.
  • Mercer JAM, Burns NZ. 2015. Natural products: emulation illuminates biosynthesis. Nature Chem. 7:860–861.
  • Nitao J, Meyer S, Oliver J, Schmidt W, Chitwood D. 2002. Isolation of flavipin, a fungus compound antagonistic to plant-parasitic nematodes. Nematology. 4:55–63.
  • Ogata N, Shibata T. 2004. Inhibition of rat intestinal Cl-secretion by 4,5-dimethylresorcinol. Pharmacology. 72:247–253.
  • Oliveira RC, Davenport KW, Hovde B, Silva D, Chain PSG, Correa B, Rodrigues DF. 2017. Draft genome sequence of sorghum grain mold fungus Epicoccum sorghinum, a producer of tenuazonic acid. Genome Announc. 5:e01495–16.
  • Peng G, Sutton JC. 1991. Evaluation of microorganisms for biocontrol of Botrytis cinerea in strawberry. Can J Plant Pathol. 13:247–257.
  • Peng J, Jiao J, Li J, Wang W, Gu Q, Zhu T, Li D. 2012. Pyronepolyene C-glucosides with NF-κB inhibitory and anti-influenza A viral (H1N1) activities from the sponge-associated fungus Epicoccum sp. JJY40. Bioorg Med Chem Lett. 22:3188–3190.
  • Perveen I, Raza MA, Iqbal T, Naz I, Sehar S, Ahmed S. 2017. Isolation of anticancer and antimicrobial metabolites from Epicoccum nigrum; endophyte of Ferula sumbul. Microb Pathog. 110:214–224.
  • Pettersson G. 1965a. The biosynthesis of flavipin. I. Incorporation of acetate and methionine. Acta Chem Scand. 19:35–40.
  • Pettersson G. 1965b. The biosynthesis of flavipin. II. Incorporation of aromatic precursors. Acta Chem Scand. 19:1724–1732.
  • Pieckenstain FL, Bazzalo E, Roberts AMI, Ugalde RA. 2001. Epicoccum purpurascens for biocontrol of Sclerotinia head rot of sunflower. Mycol Res. 105:77–84.
  • Pimenta L, Ferreira MA, Pedroso MP, Campos VP. 2017. Wood-associated fungi produce volatile organic compounds toxic to root-knot nematode. Sci Agric (Piracicaba, Braz). 74:303–310.
  • Pitt JI, Hocking AD. 2012. Fungi and food spoilage. 2nd ed. Sydney: Springer Science & Business Media.
  • Qian Y, Yu H, He D, Yang H, Wang W, Wan X, Wang L. 2013. Biosynthesis of silver nanoparticles by the endophytic fungus Epicoccum nigrum and their activity against pathogenic fungi. Bioprocess Biosyst Eng. 36:1613–1619.
  • Raistrick H, Rudman P. 1956. Studies in the biochemistry of micro-organisms. 97. Flavipin, a crystalline metabolite of Aspergillus flavipes (Bainier & Sartory) Thom Church and Aspergillus terreus Thom. Biochem J. 63:395–406.
  • Ramos HP, Simão MR, de Souza JM, Magalhães LG, Rodrigues V, Ambrósio SR, Said S. 2013. Evaluation of dihydroisocoumarins produced by the endophytic fungus Arthrinium state of Apiospora montagnei against Schistosoma mansoni. Nat Prod Res. 27:2240–2243.
  • Rutledge PJ, Challis GL. 2015. Discovery of microbial natural products by activation of silent biosynthetic gene clusters. Nat Rev Microbiol. 13:509–523.
  • Schol-Schwarz MB. 1959. The genus Epicoccum Link. Trans Br Mycol Soc. 42:149–173.
  • Schroeckh V, Scherlach K, Nützmann H-W, Shelest E, Schmidt-Heck W, Schuemann J, Martin K, Hertweck C, Brakhage AA. 2009. Intimate bacterial-fungal interaction triggers biosynthesis of archetypal polyketides in Aspergillus nidulans. Proc Natl Acad Sci USA. 106:14558–14563.
  • Schulz B, Boyle C. 2005. The endophytic continuum. Mycol Res. 109:661–686.
  • Shahid-Ul-Islam SG. 2017. Thermodynamics, kinetics, and multifunctional finishing of textile materials with colorants extracted from natural renewable sources. ACS Sustainable Chem Eng. 5:7451–7466.
  • Sheikhloo Z, Salouti M, Katiraee F. 2011. Biological synthesis of gold nanoparticles by fungus Epicoccum nigrum. J Clust Sci. 22:661–665.
  • Shimizu K, Ono T, Miyazawa M. 2013. Highly selective and asymmetric reductive biotransformation of α-ionone by Epicoccum purpurascens. J Oleo Sci. 62:231–234.
  • Shu YZ, Ye Q, Li H, Kadow KF, Hussain RA, Huang S, Gustavson DR, Lowe SE, Chang LP, Pirnik DM, et al. 1997. Orevactaene, a novel binding inhibitor of HIV-1 rev protein to rev response element (RRE) from Epicoccum nigrum WC47880. Bioorganic Med Chem Lett. 7:2295–2298.
  • Somjaipeng S, Medina A, Kwaśna H, Ordaz Ortiz J, Magan N. 2015. Isolation, identification, and ecology of growth and taxol production by an endophytic strain of Paraconiothyrium variabile from English yew trees (Taxus baccata). Fungal Biol. 119:1022–1031.
  • Somjaipeng S, Medina A, Magan N. 2016. Environmental stress and elicitors enhance taxol production by endophytic strains of Paraconiothyrium variabile and Epicoccum nigrum. Enzyme Microb Technol. 90:69–75.
  • Stokholm MS, Wulff EG, Zida EP, Thio IG, Néya JB, Soalla RW, Głazowska SE, Andresen M, Topbjerg HB, Boelt B, et al. 2016. DNA barcoding and isolation of vertically transmitted ascomycetes in sorghum from Burkina Faso: Epicoccum sorghinum is dominant in seedlings and appears as a common root pathogen. Microbiol Res. 191:38–50.
  • Sun H-H, Mao W-J, Jiao J-Y, Xu J-C, Li H-Y, Chen Y, Qi X-H, Chen Y-L, Xu J, Zhao C-Q, et al. 2011. Structural characterization of extracellular polysaccharides produced by the marine fungus Epicoccum nigrum JJY-40 and their antioxidant activities. Mar Biotechnol. 13:1048–1055.
  • Tala MF, Qin J, Ndongo JT, Laatsch H. 2017. New azulene-type sesquiterpenoids from the fruiting bodies of lactarius deliciosus. Nat Prod Bioprospect. 7:269–273.
  • Talontsi FM, Dittrich B, Schüffler A, Sun H, Laatsch H. 2013. Epicoccolides: antimicrobial and antifungal polyketides from an endophytic fungus Epicoccum sp. associated with Theobroma cacao. Eur J Org Chem. 2013:3174–3180.
  • Vannini A, Contarini M, Faccoli M, Valle MD, Rodriguez CM, Mazzetto T, Guarneri D, Vettraino AM, Speranza S. 2017. First report of the ambrosia beetle Xylosandrus compactus and associated fungi in the Mediterranean maquis in Italy, and new host–pest associations. EPPO Bull. 47:100–103.
  • Vasundhara M, Kumar A, Reddy MS. 2016. Molecular approaches to screen bioactive compounds from endophytic fungi. Front Microbiol. 7:1774.
  • Wall ME. 1998. Camptothecin and taxol: discovery to clinic. Med Res Rev. 18:299–314.
  • Wang J, Wang G, Zhang Y, Zheng B, Zhang C, Wang L. 2014. Isolation and identification of an endophytic fungus Pezicula sp. in Forsythia viridissima and its secondary metabolites. World J Microbiol Biotechnol. 30:2639–2644.
  • Wang J-M, Ding G-Z, Fang L, Dai J-G, Yu S-S, Wang Y-H, Chen X-G, Ma S-G, Qu J, Xu S, et al. 2010. Thiodiketopiperazines produced by the endophytic fungus Epicoccum nigrum. J Nat Prod. 73:1240–1249.
  • Wangun HVK, Dahse H, Hertweck C. 2007. Epicoccamides B-D, glycosylated tetramic acid derivatives from an Epicoccum sp. associated with the tree fungus Pholiota squarrosa. J Nat Prod. 70:1800–1803.
  • Webster R, Pacey M, Winchester T, Johnson P, Jezequel S. 1998. Microbial oxidative metabolism of diclofenac: production of 4'-hydroxydiclofenac using Epiccocum nigrum IMI354292 . Appl Microbiol Biotechnol. 49:371–376.
  • Wright AD, Osterhage C, König GM. 2003. Epicoccamide, a novel secondary metabolite from a jellyfish-derived culture of Epicoccum purpurascens. Org Biomol Chem. 1:507–510.
  • Xia X, Qi J, Liu Y, Jia A, Zhang Y, Liu C, Gao C, She Z. 2015. bioactive isopimarane diterpenes from the fungus, Epicoccum sp. HS-1, associated with Apostichopus japonicus. Mar Drugs. 13:1124–1132.
  • Xia X, Zhang J, Zhang Y, Wei F, Liu X, Jia A, Liu C, Li W, She Z, Lin Y. 2012. Pimarane diterpenes from the fungus Epicoccum sp. HS-1 associated with Apostichopus japonicus. Bioorg Med Chem Lett. 22:3017–3019.
  • Xiao Y, Li HX, Li C, Wang JX, Li J, Wang MH, Ye YH. 2013. Antifungal screening of endophytic fungi from Ginkgo biloba for discovery of potent anti-phytopathogenic fungicides. FEMS Microbiol Lett. 339:130–136.
  • Yang SL, Yu P-L, Chung K-R. 2016. The glutathione peroxidase‐mediated reactive oxygen species resistance, fungicide sensitivity and cell wall construction in the citrus fungal pathogen Alternaria alternata. Environ Microbiol. 18:923–925.
  • Ye Y, Xiao Y, Ma L, Li H, Xie Z, Wang M, Ma H, Tang H, Liu J. 2013. Flavipin in Chaetomium globosum CDW7, an endophytic fungus from Ginkgo biloba, contributes to antioxidant activity. Appl Microbiol Biotechnol. 97:7131–7139.
  • Yuan GQ, Liao T, Tan HW, Li QQ, Lin W. 2016. First report of leaf spot caused by Phoma sorghina on tobacco in China. Plant Dis.100:1790.
  • Zhang Y, Liu S, Che Y, Liu X. 2007. Epicoccins A-D, epipolythiodioxopiperazines from a Cordyceps-colonizing isolate of Epicoccum nigrum. J Nat Prod. 70:1522–1525.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.