851
Views
40
CrossRef citations to date
0
Altmetric
Review Articles

Biofilm formation by staphylococci in health-related environments and recent reports on their control using natural compounds

, &
Pages 201-222 | Received 12 Jan 2018, Accepted 19 Jan 2019, Published online: 20 Feb 2019

References

  • Akyıldız İ, Take G, Uygur K, Kızıl Y, Aydil U. 2013. Bacterial biofilm formation in the middle-ear mucosa of chronic otitis media patients. Indian J Otolaryngol Head Neck Surg. 65:557–561.
  • Al Wohoush I, Rivera J, Cairo J, Hachem R, Raad I. 2011. Comparing clinical and microbiological methods for the diagnosis of true bacteraemia among patients with multiple blood cultures positive for coagulase‐negative staphylococci. Clin Microbiol Infect. 17:569–571.
  • Arciola CR, Campoccia D, Gamberini S, Rizzi S, Donati ME, Baldassarri L, Montanaro L. 2004. Search for the insertion element IS256 within the ica locus of Staphylococcus epidermidis clinical isolates collected from biomaterial-associated infections. Biomaterials. 25:4117–4125.
  • Argemi X, Prévost G, Riegel P, Keller D, Meyer N, Baldeyrou M, Douiri N, Lefebvre N, Meghit K, Oustau CR, et al. 2017. VISLISI trial, a prospective clinical study allowing identification of a new metalloprotease and putative virulence factor from Staphylococcus lugdunensis. Clin Microbiol Infect. 23:334–341.
  • Arrecubieta C, Lee M-H, Macey A, Foster TJ, Lowy FD. 2007. SdrF, a Staphylococcus epidermidis surface protein, binds type I collagen. J Biol Chem. 282:18767–18776.
  • Arrecubieta C, Toba FA, von Bayern M, Akashi H, Deng MC, Naka Y, Lowy FD. 2009. SdrF, a Staphylococcus epidermidis surface protein, contributes to the initiation of ventricular assist device driveline-related infections. PLoS Pathog. 5:e1000411.
  • Artini M, Papa R, Barbato G, Scoarughi G, Cellini A, Morazzoni P, Bombardelli E, Selan L. 2012. Bacterial biofilm formation inhibitory activity revealed for plant derived natural compounds. Bioorg Med Chem. 20:920–926.
  • Atshan SS, Nor Shamsudin M, Sekawi Z, Lung LTT, Hamat RA, Karunanidhi A, Shueh J. 2012. Prevalence of adhesion and regulation of biofilm-related genes in different clones of Staphylococcus aureus. BioMed Res Int. 2012:1–10.
  • Balaban N, Giacometti A, Cirioni O, Gov Y, Ghiselli R, Mocchegiani F, Viticchi C, Del Prete MS, Saba V, Scalise G, et al. 2003. Use of the quorum-sensing inhibitor RNAIII-inhibiting peptide to prevent biofilm formation in vivo by drug-resistant Staphylococcus epidermidis. J Infect Dis. 187:625–630.
  • Balasubramanian S, Othman EM, Kampik D, Stopper H, Hentschel U, Ziebuhr W, Oelschlaeger TA, Abdelmohsen UR. 2017. Marine sponge-derived Streptomyces sp. SBT343 extract inhibits staphylococcal biofilm formation. Frontiers Microbiol. 8:623–633.
  • Barros EM, Lemos M, Souto-Padrón T, Giambiagi-deMarval M. 2015. Phenotypic and genotypic characterization of biofilm formation in Staphylococcus haemolyticus. Curr Microbiol. 70:829–834.
  • Beenken KE, Blevins JS, Smeltzer MS. 2003. Mutation of sarA in Staphylococcus aureus limits biofilm formation. Infect Immun. 71:4206–4211.
  • Beenken KE, Mrak LN, Griffin LM, Zielinska AK, Shaw LN, Rice KC, Horswill AR, Bayles KW, Smeltzer MS. 2010. Epistatic relationships between sarA and agr in Staphylococcus aureus biofilm formation. PLoS One. 5:e10790.
  • Bhumbra S, Mahboubi M, Blackwood RA. 2014. Staphylococcus lugdunensis: novel organism causing cochlear implant infection. Infect Dis Rep. 6:5406.
  • Bierbaum G, Sahl HG. 2009. Lantibiotics: mode of action, biosynthesis and bioengineering. Curr Pharm Biotechnol. 10:2–18.
  • Bispo PJ, Haas W, Gilmore MS. 2015. Biofilms in infections of the eye. Pathogens. 4:111–136.
  • Boles BR, Horswill AR. 2008. Agr-mediated dispersal of Staphylococcus aureus biofilms. PLoS Pathog. 4:e1000052.
  • Botelho AMN, Nunes Z.dG, Asensi MD, Gomes MZR, Fracalanzza SEL, Figueiredo AMS. 2012. Characterization of coagulase-negative staphylococci isolated from hospital indoor air and a comparative analysis between airborne and inpatient isolates of Staphylococcus epidermidis. J Med Microbiol. 61:1136–1145.
  • Bowling FL, Jude EB, Boulton AJ. 2009. MRSA and diabetic foot wounds: contaminating or infecting organisms? Curr Diab Rep. 9:440–444.
  • Brackman G, Breyne K, De Rycke R, Vermote A, Van Nieuwerburgh F, Meyer E, Van Calenbergh S, Coenye T. 2016. The quorum sensing inhibitor hamamelitannin increases antibiotic susceptibility of Staphylococcus aureus biofilms by affecting peptidoglycan biosynthesis and eDNA release. Sci Rep. 6:20321.
  • Brady A, Loughlin R, Gilpin D, Kearney P, Tunney M. 2006. In vitro activity of tea-tree oil against clinical skin isolates of meticillin-resistant and -sensitive Staphylococcus aureus and coagulase-negative staphylococci growing planktonically and as biofilms. J Med Microbiol. 55:1375–1380.
  • Brötz H, Sahl H-G. 2000. New insights into the mechanism of action of lantibiotics-diverse biological effects by binding to the same molecular target. J Antimicrob Chemother. 46:1–6.
  • Brown KL, Hancock RE. 2006. Cationic host defense (antimicrobial) peptides. Curr Opin Immunol. 18:24–30.
  • Campoccia D, Baldassarri L, Pirini V, Ravaioli S, Montanaro L, Arciola CR. 2008. Molecular epidemiology of Staphylococcus aureus from implant orthopaedic infections: ribotypes, agr polymorphism, leukocidal toxins and antibiotic resistance. Biomaterials. 29:4108–4116.
  • Ceotto‐Vigoder H, Marques SLS, Santos INS, Alves MDB, Barrias ES, Potter A, Alviano DS, Bastos MCF. 2016. Nisin and lysostaphin activity against preformed biofilm of Staphylococcus aureus involved in bovine mastitis. J Appl Microbiol. 121:101–114.
  • Cerca N, Martins S, Sillankorva S, Jefferson KK, Pier GB, Oliveira R, Azeredo J. 2005. Effects of growth in the presence of subinhibitory concentrations of dicloxacillin on Staphylococcus epidermidis and Staphylococcus haemolyticus biofilms. Appl Environ Microbiol. 71:8677–8682.
  • Chandra J, Kuhn DM, Mukherjee PK, Hoyer LL, McCormick T, Ghannoum MA. 2001. Biofilm formation by the fungal pathogen Candida albicans: development, architecture, and drug resistance. J Bacteriol. 183:5385–5394.
  • Chaves F, García-Álvarez M, Sanz F, Alba C, Otero JR. 2005. Nosocomial spread of a Staphylococcus hominis subsp. novobiosepticus strain causing sepsis in a neonatal intensive care unit. J Clin Microbiol. 43:4877–4879.
  • Cheung GY, Joo HS, Chatterjee SS, Otto M. 2014. Phenol-soluble modulins-critical determinants of staphylococcal virulence. FEMS Microbiol Rev. 38:698–719.
  • Chu VH, Miro JM, Hoen B, Cabell CH, Pappas PA, Jones P, Stryjewski ME, Anguera I, Braun S, Munoz P, et al. 2008. Coagulase-negative staphylococcal prosthetic valve endocarditis—a contemporary update based on the International Collaboration on Endocarditis: prospective cohort study. Heart. 95:570–576.
  • Chu M, Zhang M-B, Liu Y-C, Kang J-R, Chu Z-Y, Yin K-L, Ding L-Y, Ding R, Xiao R-X, Yin Y-N, et al. 2016. Role of berberine in the treatment of methicillin-resistant Staphylococcus aureus infections. Sci Rep. 6:24748.
  • Chusri S, Phatthalung PN, Voravuthikunchai S. 2012. Anti‐biofilm activity of Quercus infectoria G. Olivier against methicillin‐resistant Staphylococcus aureus. Lett Appl Microbiol. 54:511–517.
  • Cirioni O, Giacometti A, Ghiselli R, Bergnach C, Orlando F, Mocchegiani F, Silvestri C, Licci A, Skerlavaj B, Zanetti M, et al. 2006. Pre-treatment of central venous catheters with the cathelicidin BMAP-28 enhances the efficacy of antistaphylococcal agents in the treatment of experimental catheter-related infection. Peptides. 27:2104–2110.
  • Coates R, Moran J, Horsburgh MJ. 2014. Staphylococci: colonizers and pathogens of human skin. Future Microbiol. 9:75–91.
  • Cobrado L, Silva-Dias A, Azevedo M, Pina-Vaz C, Rodrigues A. 2013. In vivo antibiofilm effect of cerium, chitosan and hamamelitannin against usual agents of catheter-related bloodstream infections. J Antimicrob Chemother. 68:126–130.
  • Cochran WL, McFeters GA, Stewart PS. 2000. Reduced susceptibility of thin Pseudomonas aeruginosa biofilms to hydrogen peroxide and monochloramine. J Appl Microbiol. 88:22–30.
  • Conrady DG, Brescia CC, Horii K, Weiss AA, Hassett DJ, Herr AB. 2008. A zinc-dependent adhesion module is responsible for intercellular adhesion in staphylococcal biofilms. Proc Natl Acad Sci U S A. 105:19456–19461.
  • Corrigan RM, Rigby D, Handley P, Foster TJ. 2007. The role of Staphylococcus aureus surface protein SasG in adherence and biofilm formation. Microbiology. 153:2435–2446.
  • Costerton J, Montanaro L, Arciola C. 2005. Biofilm in implant infections: its production and regulation. Int J Artif Organs. 28:1062–1068.
  • Coulon F, Chronopoulou P-M, Fahy A, Païssé S, Goñi-Urriza M, Peperzak L, Acuña Alvarez L, McKew BA, Brussaard CPD, Underwood GJC, et al. 2012. Central role of dynamic tidal biofilms dominated by aerobic hydrocarbonoclastic bacteria and diatoms in the biodegradation of hydrocarbons in coastal mudflats. Appl Environ Microbiol. 78:3638–3648.
  • Cucarella C, Solano C, Valle J, Amorena B, Lasa Í, Penadés JR. 2001. Bap, a Staphylococcus aureus surface protein involved in biofilm formation. J Bacteriol. 183:2888–2896.
  • Cui B, Smooker PM, Rouch DA, Deighton MA. 2015. Effects of erythromycin on the phenotypic and genotypic biofilm expression in two clinical Staphylococcus capitis subspecies and a functional analysis of Ica proteins in S. capitis. J Med Microbiol. 64:591–604.
  • Czekaj T, Ciszewski M, Szewczyk EM. 2015. Staphylococcus haemolyticus – an emerging threat in the twilight of the antibiotics age. Microbiology (Reading, Engl). 161:2061–2068.
  • Da F, Joo HS, Cheung GY, Villaruz AE, Rohde H, Luo X, Otto M. 2017. Phenol-soluble modulin toxins of Staphylococcus haemolyticus. Front Cell Infect Microbiol. 7:206.
  • Dastgheyb SS, Villaruz AE, Le KY, Tan VY, Duong AC, Chatterjee SS, Cheung GY, Joo H-S, Hickok NJ, Otto M. 2015. Role of phenol-soluble modulins in formation of Staphylococcus aureus biofilms in synovial fluid. Infect Immun. 83:2966–2975.
  • Davis SL, Gurusiddappa S, McCrea KW, Perkins S, Höök M. 2001. SdrG, a fibrinogen-binding bacterial adhesin of the microbial surface components recognizing adhesive matrix molecules subfamily from Staphylococcus epidermidis, targets the thrombin cleavage site in the Bβ chain. J Biol Chem. 276:27799–27805.
  • Dean SN, Bishop BM, van Hoek ML. 2011. Natural and synthetic cathelicidin peptides with anti-microbial and anti-biofilm activity against Staphylococcus aureus. BMC Microbiol. 11:114.
  • de Benito S, Alou L, Becerro-de-Bengoa-Vallejo R, Losa-Iglesias ME, Gómez-Lus ML, Collado L, Sevillano D. 2018. Prevalence of Staphylococcus spp. nasal colonization among doctors of podiatric medicine and associated risk factors in Spain. Antimicrob Resist Infect Control. 7:24.
  • Dell'Acqua G, Giacometti A, Cirioni O, Ghiselli R, Saba V, Scalise G, Gov Y, Balaban N. 2004. Suppression of drug-resistant staphylococcal infections by the quorum-sensing inhibitor RNAIII-inhibiting peptide. J Infect Dis. 190:318–320.
  • Doherty N, Holden MT, Qazi SN, Williams P, Winzer K. 2006. Functional analysis of luxS in Staphylococcus aureus reveals a role in metabolism but not quorum sensing. J Bacteriol. 188:2885–2897.
  • Dimitriadi D, Charitidou C, Charvalos E. 2015. Urinary tract infection due to beta-lactams-resistant Staphylococcus warneri: a case report. Int Arab J Antimicrob Agents. 4:1–4.
  • Ding Y, Onodera Y, Lee JC, Hooper DC. 2008. NorB, an efflux pump in Staphylococcus aureus strain MW2, contributes to bacterial fitness in abscesses. J Bacteriol. 190:7123–7129.
  • Donlan RM. 2002. Biofilms: microbial life on surfaces. Emerg Infect Dis. 8:881–890.
  • Dubos RJ. 1939. Studies on a bactericidal agent extracted from a soil bacillus: I. Preparation of the agent. Its activity in vitro. J Exp Med. 70:1–10.
  • Dunne WM, Mason EO, Kaplan SL. 1993. Diffusion of rifampin and vancomycin through a Staphylococcus epidermidis biofilm. Antimicrob Agents Chemother. 37:2522–2526.
  • Eriksen NH, Espersen F, Rosdahl VT, Jensen K. 1995. Carriage of Staphylococcus aureus among 104 healthy persons during a 19-month period. Epidemiol Infect. 115:51–60.
  • Espina L, Pagán R, López D, García-Gonzalo D. 2015. Individual constituents from essential oils inhibit biofilm mass production by multi-drug resistant Staphylococcus aureus. Molecules. 20:11357–11372.
  • Formosa-Dague C, Speziale P, Foster TJ, Geoghegan JA, Dufrêne YF. 2016. Zinc-dependent mechanical properties of Staphylococcus aureus biofilm-forming surface protein SasG. Proc Natl Acad Sci U S A. 113:410–415.
  • Foulston L, Elsholz AK, DeFrancesco AS, Losick R. 2014. The extracellular matrix of Staphylococcus aureus biofilms comprises cytoplasmic proteins that associate with the cell surface in response to decreasing pH. MBio. 5:e01667–e01614.
  • Frank DN, Feazel LM, Bessesen MT, Price CS, Janoff EN, Pace NR. 2010. The human nasal microbiota and Staphylococcus aureus carriage. PLoS One. 5:e10598.
  • Frank KL, del Pozo JL, Patel R. 2008. From clinical microbiology to infection pathogenesis: how daring to be different works for Staphylococcus lugdunensis. Clin Microbiol Rev. 21:111–133.
  • Frank KL, Patel R. 2007. Poly-N-acetylglucosamine is not a major component of the extracellular matrix in biofilms formed by icaADBC-positive Staphylococcus lugdunensis isolates. Infect Immun. 75:4728–4742.
  • Frank KL, Reichert EJ, Piper KE, Patel R. 2007. In vitro effects of antimicrobial agents on planktonic and biofilm forms of Staphylococcus lugdunensis clinical isolates. Antimicrob Agents Chemother. 51:888–895.
  • Fredheim EGA, Klingenberg C, Rohde H, Frankenberger S, Gaustad P, Flaegstad T, Sollid JE. 2009. Biofilm formation by Staphylococcus haemolyticus. J Clin Microbiol. 47:1172–1180.
  • Garza-González E, Morfin-Otero R, Martínez-Vázquez MA, Gonzalez-Diaz E, González-Santiago O, Rodríguez-Noriega E. 2011. Microbiological and molecular characterization of human clinical isolates of Staphylococcus cohnii, Staphylococcus hominis, and Staphylococcus sciuri. Scand J Infect Dis. 43:930–936.
  • Ghiselli R, Giacometti A, Cirioni O, Dell'Acqua G, Mocchegiani F, Orlando F, D’Amato G, Rocchi M, Scalise G, Saba V. 2004. RNAIII-inhibiting peptide and/or nisin inhibit experimental vascular graft infection with methicillin-susceptible and methicillin-resistant Staphylococcus epidermidis. Eur J Vasc Endovasc Surg. 27:603–607.
  • Giacometti A, Cirioni O, Gov Y, Ghiselli R, Del Prete MS, Mocchegiani F, Saba V, Orlando F, Scalise G, Balaban N, et al. 2003. RNA III inhibiting peptide inhibits in vivo biofilm formation by drug-resistant Staphylococcus aureus. Antimicrob Agents Chemother. 47:1979–1983.
  • Gibert L, Didi J, Marlinghaus L, Lesouhaitier O, Legris S, Szabados F, Pons J-L, Pestel-Caron M. 2014. The major autolysin of Staphylococcus lugdunensis, AtlL, is involved in cell separation, stress-induced autolysis and contributes to bacterial pathogenesis. FEMS Microbiol Lett. 352:78–86.
  • Gill SR, Fouts DE, Archer GL, Mongodin EF, DeBoy RT, Ravel J, Paulsen IT, Kolonay JF, Brinkac L, Beanan M, et al. 2005. Insights on evolution of virulence and resistance from the complete genome analysis of an early methicillin-resistant Staphylococcus aureus strain and a biofilm-producing methicillin-resistant Staphylococcus epidermidis strain. J Bacteriol. 187:2426–2438.
  • Giormezis N, Kolonitsiou F, Foka A, Drougka E, Liakopoulos A, Makri A, Papanastasiou AD, Vogiatzi A, Dimitriou G, Marangos M, Christofidou M. 2014. Coagulase-negative staphylococcal bloodstream and prosthetic-device-associated infections: the role of biofilm formation and distribution of adhesin and toxin genes. J Med Microbiol. 63:1500–1508.
  • Gov Y, Bitler A, Dell’Acqua G, Torres JV, Balaban N. 2001. RNAIII inhibiting peptide (RIP), a global inhibitor of Staphylococcus aureus pathogenesis: structure and function analysis. Peptides. 22:1609–1620.
  • Greco-Stewart VS, Ali H, Kumaran D, Kalab M, Rood IG, de Korte D, Ramírez-Arcos S. 2013. Biofilm formation by Staphylococcus capitis strains isolated from contaminated platelet concentrates. J Med Microbiol. 62:1051–1059.
  • Gründling A, Missiakas DM, Schneewind O. 2006. Staphylococcus aureus mutants with increased lysostaphin resistance. J Bacteriol. 188:6286–6297.
  • Guenther F, Stroh P, Wagner C, Obst U, HÄnsch GM. 2009. Phagocytosis of staphylococci biofilms by polymorphonuclear neutrophils: S. aureus and S. epidermidis differ with regard to their susceptibility towards the host defense. Int J Artif Organs. 32:565–573.
  • Gupta K, Hooton TM, Stamm WE. 2001. Increasing antimicrobial resistance and the management of uncomplicated community-acquired urinary tract infections. Ann Intern Med. 135:41–50.
  • Harris LG, Murray S, Pascoe B, Bray J, Meric G, Mageiros L, Wilkinson TS, Jeeves R, Rohde H, Schwarz S, et al. 2016. Correction: biofilm morphotypes and population structure among Staphylococcus epidermidis from commensal and clinical samples. PLoS One. 11:e0154510.
  • Hartford O, O’Brien L, Schofield K, Wells J, Foster TJ. 2001. The Fbe (SdrG) protein of Staphylococcus epidermidis HB promotes bacterial adherence to fibrinogen. Microbiology. 147:2545–2552.
  • Harwood M, Danielewska-Nikiel B, Borzelleca JF, Flamm GW, Williams GM, Lines TC. 2007. A critical review of the data related to the safety of quercetin and lack of evidence of in vivo toxicity, including lack of genotoxic/carcinogenic properties. Food Chem Toxicol. 45:2179–2205.
  • Heilmann C, Hartleib J, Hussain MS, Peters G. 2005. The multifunctional Staphylococcus aureus autolysin aaa mediates adherence to immobilized fibrinogen and fibronectin. Infect Immun. 73:4793–4802.
  • Hell E, Giske C, Nelson A, Römling U, Marchini G. 2010. Human cathelicidin peptide LL37 inhibits both attachment capability and biofilm formation of Staphylococcus epidermidis. Lett Appl Microbiol. 50:211–215.
  • Hendry ER, Worthington T, Conway BR, Lambert PA. 2009. Antimicrobial efficacy of eucalyptus oil and 1,8-cineole alone and in combination with chlorhexidine digluconate against microorganisms grown in planktonic and biofilm cultures. J Antimicrob Chemother. 64:1219–1225.
  • Hogan S, Zapotoczna M, Stevens NT, Humphreys H, O’Gara JP, O’Neill E. 2017. Potential use of targeted enzymatic agents in the treatment of Staphylococcus aureus biofilm-related infections. J Hospital Infect. 96:177–182.
  • Høiby N. 2002. Understanding bacterial biofilms in patients with cystic fibrosis: current and innovative approaches to potential therapies. J Cystic Fibrosis. 1:249–254.
  • Hollmann A, Martínez M, Noguera ME, Augusto MT, Disalvo A, Santos NC, Semorile L, Maffía PC. 2016. Role of amphipathicity and hydrophobicity in the balance between hemolysis and peptide-membrane interactions of three related antimicrobial peptides. Colloids Surf B Biointerfaces. 141:528–536.
  • Hoskin DW, Ramamoorthy A. 2008. Studies on anticancer activities of antimicrobial peptides. Biochim Biophys Acta. 1778:357–375.
  • Huigens RW, Ma LY, Gambino C, Moeller PDR, Basso A, Cavanagh J, Wozniak DJ, Melander C. 2008. Control of bacterial biofilms with marine alkaloid derivatives. Mol Biosyst. 4:614–621.
  • Huseby MJ, Kruse AC, Digre J, Kohler PL, Vocke JA, Mann EE, Bayles KW, Bohach GA, Schlievert PM, Ohlendorf DH, et al. 2010. Beta toxin catalyzes formation of nucleoprotein matrix in staphylococcal biofilms. Proc Natl Acad Sci U S A. 107:14407–14412.
  • Ibberson CB, Parlet CP, Kwiecinski J, Crosby HA, Meyerholz DK, Horswill AR. 2016. Hyaluronan modulation impacts Staphylococcus aureus biofilm infection. Infect Immun. 84:1917–1929.
  • Ishihara S, Yokoi S, Ito M, Kobayashi S, Deguchi T. 2001. Pathologic significance of Staphylococcus saprophyticus in complicated urinary tract infections. Urology. 57:17–20.
  • Jafri H, Husain FM, Ahmad I. 2014. Antibacterial and antibiofilm activity of some essential oils and compounds against clinical strains of Staphylococcus aureus. J Biomed Ther Sci. 1:65–71.
  • James GA, Swogger E, Wolcott R, Pulcini E. dLancey, Secor P, Sestrich J, Costerton JW, Stewart PS. 2008. Biofilms in chronic wounds. Wound Repair Regen. 16:37–44.
  • Jenkins A, Diep BA, Mai TT, Vo NH, Warrener P, Suzich J, Stover CK, Sellman BR. 2015. Differential expression and roles of Staphylococcus aureus virulence determinants during colonization and disease. MBio. 6:e02272–e02214.
  • Jhora ST, Paul S. 2011. Urinary tract infections caused by Staphylococcus saprophyticus and their antimicrobial sensitivity pattern in young adult women. Bangladesh J Med Microbiol. 5:21–25.
  • Jung CJ, Yeh CY, Shun CT, Hsu RB, Cheng HW, Lin CS, Chia JS. 2012. Platelets enhance biofilm formation and resistance of endocarditis-inducing streptococci on the injured heart valve. J Infect Dis. 205:1066–1075.
  • Kavanaugh NL, Ribbeck K. 2012. Selected antimicrobial essential oils eradicate Pseudomonas spp. and Staphylococcus aureus biofilms. Appl Environ Microbiol. 78:4057–4061.
  • Kiran MD, Adikesavan NV, Cirioni O, Giacometti A, Silvestri C, Scalise G, Ghiselli R, Saba V, Orlando F, Shoham M, et al. 2008. Discovery of a quorum-sensing inhibitor of drug-resistant staphylococcal infections by structure-based virtual screening. Mol Pharmacol. 73:1578–1586.
  • King NP, Beatson SA, Totsika M, Ulett GC, Alm RA, Manning PA, Schembri MA. 2011. UafB is a serine-rich repeat adhesin of Staphylococcus saprophyticus that mediates binding to fibronectin, fibrinogen and human uroepithelial cells. Microbiology. 157:1161–1175.
  • Kloos WE, Schleifer KH. 1975. Isolation and characterization of staphylococci from human skin II. descriptions of four new species: Staphylococcus warneri, Staphylococcus capitis, Staphylococcus hominis, and Staphylococcus simulans1. Int J Syst Evol Microbiol. 25:62–79.
  • Kokai-Kun JF, Chanturiya T, Mond JJ. 2009. Lysostaphin eradicates established Staphylococcus aureus biofilms in jugular vein catheterized mice. J Antimicrob Chemother. 64:94–100.
  • Krishnan S, Haglund L, Ashfaq A, Leist P, Roat T. 1996. Prosthetic valve endocarditis due to Staphylococcus saccharolyticus. Clin Infect Dis. 22:722–723.
  • Kumaran D, Kalab M, Rood I, Korte D, Ramirez‐Arcos S. 2014. Adhesion of anaerobic bacteria to platelet containers. Vox Sang. 107:188–191.
  • Kuroda M, Yamashita A, Hirakawa H, Kumano M, Morikawa K, Higashide M, Maruyama A, Inose Y, Matoba K, Toh H, et al. 2005. Whole genome sequence of Staphylococcus saprophyticus reveals the pathogenesis of uncomplicated urinary tract infection. PNAS. 102:13272–13277.
  • Kwieciński J, Eick S, Wójcik K. 2009. Effects of tea tree (Melaleuca alternifolia) oil on Staphylococcus aureus in biofilms and stationary growth phase. Int J Antimicrob Agents. 33:343–347.
  • Kwiecinski J, Na M, Jarneborn A, Jacobsson G, Peetermans M, Verhamme P, Jin T. 2016. Tissue plasminogen activator coating on implant surfaces reduces Staphylococcus aureus biofilm formation. Appl Environ Microbiol. 82:394–401.
  • Lee J-H, Kim Y-G, Ryu SY, Lee J. 2016. Calcium-chelating alizarin and other anthraquinones inhibit biofilm formation and the hemolytic activity of Staphylococcus aureus. Sci Rep. 6:19267.
  • Lee J-H, Park J-H, Cho HS, Joo SW, Cho MH, Lee J. 2013. Anti-biofilm activities of quercetin and tannic acid against Staphylococcus aureus. Biofouling. 29:491–499.
  • Lee K, Lee JH, Kim SI, Cho MH, Lee J. 2014. Anti-biofilm, anti-hemolysis, and anti-virulence activities of black pepper, cananga, myrrh oils, and nerolidol against Staphylococcus aureus. Appl Microbiol Biotechnol. 98:9447–9457.
  • Lewis K. 2001. Riddle of biofilm resistance. Antimicrob Agents Chemother. 45:999–1007.
  • Lewis K. 2008. Multidrug tolerance of biofilms and persister cells. In: Romeo T, editor. Bacterial biofilms. New York: Springer; p. 107–131.
  • Lina G, Etienne J, Vandenesch F. 2000. Biology and pathogenicity of staphylococci other than Staphylococcus aureus and Staphylococcus epidermidis. Washington (DC): Gram-positive Pathogens ASM Press; p. 450–462.
  • Lin YJ, Alsad L, Vogel F, Koppar S, Nevarez L, Auguste F, Seymour J, Syed A, Christoph K, Loomis JS. 2013. Interactions between Candida albicans and Staphylococcus aureus within mixed species biofilms. Bios. 84:30–39.
  • Liu X, Liu C, Guan N, Liu J. 2017. Long term toxicity of chelerythrine on NF-κB expression in rat pulmonary tissues. Int J Clin Exp Med. 10:11464–11471.
  • Liu Y, Ames B, Gorovits E, Prater BD, Syribeys P, Vernachio JH, Patti JM. 2004. SdrX, a serine-aspartate repeat protein expressed by Staphylococcus capitis with collagen VI binding activity. Infect Immun. 72:6237–6244.
  • Lönn-Stensrud J, Landin MA, Benneche T, Petersen FC, Scheie AA. 2009. Furanones, potential agents for preventing Staphylococcus epidermidis biofilm infections? J Antimicrob Chemother. 63:309–316.
  • Macintosh RL, Brittan JL, Bhattacharya R, Jenkinson HF, Derrick J, Upton M, Handley PS. 2009. The terminal A domain of the fibrillar accumulation-associated protein (Aap) of Staphylococcus epidermidis mediates adhesion to human corneocytes. J Bacteriol. 191:7007–7016.
  • Maisetta G, Grassi L, Di Luca M, Bombardelli S, Medici C, Brancatisano FL, Esin S, Batoni G. 2016. Anti-biofilm properties of the antimicrobial peptide temporin 1Tb and its ability, in combination with EDTA, to eradicate Staphylococcus epidermidis biofilms on silicone catheters. Biofouling. 32:787–800.
  • Matsuo M, Sasaki N, Saga K, Kaneko T. 2005. Cytotoxicity of flavonoids toward cultured normal human cells. Biol Pharm Bull. 28:253–259.
  • McAuliffe O, Ross RP, Hill C. 2001. Lantibiotics: structure, biosynthesis and mode of action. FEMS Microbiol Rev. 25:285–308.
  • Mendoza-Olazarán S, Morfin-Otero R, Rodríguez-Noriega E, Llaca-Díaz J, Flores-Treviño S, González-González GM, Villarreal-Treviño L, Garza-González E. 2013. Microbiological and molecular characterization of Staphylococcus hominis isolates from blood. PLoS One. 8:e61161.
  • Mendoza-Olazarán S, Morfín-Otero R, Villarreal-Treviño L, Rodríguez-Noriega E, Llaca-Díaz J, Camacho-Ortiz A, González GM, Casillas-Vega N, Garza-González E. 2015. Antibiotic susceptibility of biofilm cells and molecular characterisation of Staphylococcus hominis isolates from blood. PLoS One. 10:e0144684.
  • Minardi D, d'Anzeo G, Cantoro D, Conti A, Muzzonigro G. 2011. Urinary tract infections in women: etiology and treatment options. Int J Gen Med. 4:333.
  • Missineo A, Di Poto A, Geoghegan JA, Rindi S, Heilbronner S, Gianotti V, Arciola CR, Foster TJ, Speziale P, Pietrocola G. 2014. IsdC from Staphylococcus lugdunensis induces biofilm formation under low-iron growth conditions. Infect Immun. 82:2448–2459.
  • Mitchell J, Tristan A, Foster TJ. 2004. Characterization of the fibrinogen-binding surface protein Fbl of Staphylococcus lugdunensis. Microbiology (Reading, Engl).. 150:3831–3841.
  • Møretrø T, Hermansen L, Holck AL, Sidhu MS, Rudi K, Langsrud S. 2003. Biofilm formation and the presence of the intercellular adhesion locus ica among staphylococci from food and food processing environments. Appl Environ Microbiol. 69:5648–5655.
  • Nilsson M, Bjerketorp J, Guss B, Frykberg L. 2004. A fibrinogen-binding protein of Staphylococcus lugdunensis. FEMS Microbiol Lett. 241:87–93.
  • Nostro A, Roccaro AS, Bisignano G, Marino A, Cannatelli MA, Pizzimenti FC, Cioni PL, Procopio F, Blanco AR. 2007. Effects of oregano, carvacrol and thymol on Staphylococcus aureus and Staphylococcus epidermidis biofilms. J Med Microbiol. 56:519–523.
  • Nostro A, Marino A, Ginestra G, Cellini L, Di Giulio M, Bisignano G. 2017. Effects of adaptation to carvacrol on Staphylococcus aureus in the planktonic and biofilm phases. Biofouling. 33:1–11.
  • Nourbakhsh F, Namvar AE. 2016. Detection of genes involved in biofilm formation in Staphylococcus aureus isolates. GMS Hyg Infect Control. 11:1–5.
  • Okuda K, Zendo T, Sugimoto S, Iwase T, Tajima A, Yamada S, Sonomoto K, Mizunoe Y. 2013. Effects of bacteriocins on methicillin-resistant Staphylococcus aureus biofilm. Antimicrob Agents Chemother. 57:5572–5579.
  • O'Toole G, Kaplan HB, Kolter R. 2000. Biofilm formation as microbial development. Annu Rev Microbiol. 54:49–79.
  • Otto M. 2009. Staphylococcus epidermidis – the 'accidental' pathogen. Nat Rev Microbiol. 7:555–567.
  • Pais-Correia AM, Sachse M, Guadagnini S, Robbiati V, Lasserre R, Gessain A, Gout O, Alcover A, Thoulouze MI. 2010. Biofilm-like extracellular viral assemblies mediate HTLV-1 cell-to-cell transmission at virological synapses. Nat Med. 16:83–89.
  • Pedroso SHSP, Sandes SHC, Luiz KCM, Dias RS, Filho RAT, Serufo JC, Farias LM, Carvalho MAR, Bomfim MRQ, Santos SG. 2016. Biofilm and toxin profile: a phenotypic and genotypic characterization of coagulase-negative staphylococci isolated from human bloodstream infections. Microb Pathog. 100:312–318.
  • Pereira UA, Barbosa LC, Maltha CR, Demuner AJ, Masood MA, Pimenta AL. 2014. γ-Alkylidene-γ-lactones and isobutylpyrrol-2(5H)-ones analogues to rubrolides as inhibitors of biofilm formation by gram-positive and gram-negative bacteria. Bioorg Med Chem Lett. 24:1052–1056.
  • Peters BM, Jabra-Rizk MA, Scheper MA, Leid JG, Costerton JW, Shirtliff ME. 2010. Microbial interactions and differential protein expression in Staphylococcus aureus–Candida albicans dual-species biofilms. FEMS Immunol Med Microbiol. 59:493–503.
  • Pinheiro L, Brito CI, de Oliveira A, Pereira VC, de Souza MLR. 2016. Staphylococcus epidermidis and Staphylococcus haemolyticus: detection of biofilm genes and biofilm formation in blood culture isolates from patients in a Brazilian teaching hospital. Diagn Microbiol Infect Dis. 86:11–14.
  • Post V, Wahl P, Uckay I, Zimmerli W, Corvec S, Loiez C, Ochsner P, Moriarty F. 2014. Biofilm formation and molecular characterisation of Staphylococcus aureus isolated from orthopaedic implant related infections depends on type of device. Bone Joint J Ortho Proceed Supple. 96:283–283.
  • Potter A, Ceotto H, Giambiagi-deMarval M, dos Santos KRN, Nes IF, Bastos MdCdF. 2009. The gene bap, involved in biofilm production, is present in Staphylococcus spp. strains from nosocomial infections. J Microbiol. 47:319–326.
  • Pragman AA, Berger JP, Williams BJ. 2016. Understanding persistent bacterial lung infections: clinical implications informed by the biology of the microbiota and biofilms. Clin Pulm Med. 23:57–66.
  • Puškárová A, Bučková M, Kraková L, Pangallo D, Kozics K. 2017. The antibacterial and antifungal activity of six essential oils and their cyto/genotoxicity to human HEL 12469 cells. Sci Rep. 7:8211.
  • Rahman A, Hosaain M, Mahmud C, Paul S, Sultana S, Haque N, Kabir M, Kubayashi N. 2012. Species distribution of coagulase negative staphylococci isolated from different clinical specimens. Mymensingh Med J. 21:195–199.
  • Rasigade J-P, Raulin O, Picaud J-C, Tellini C, Bes M, Grando J, Ben Saïd M, Claris O, Etienne J, Tigaud S, et al. 2012. Methicillin-resistant Staphylococcus capitis with reduced vancomycin susceptibility causes late-onset sepsis in intensive care neonates. PLoS One. 7:e31548.
  • Raz R, Colodner R, Kunin CM. 2005. Who are you – Staphylococcus saprophyticus? Clin Infect Dis. 40:896–898.
  • Reyes S, Huigens III RW, Su Z, Simon ML, Melander C. 2011. Synthesis and biological activity of 2-aminoimidazole triazoles accessed by Suzuki–Miyaura cross-coupling. Org Biomol Chem. 9:3041–3049.
  • Richards JJ, Reyes S, Stowe SD, Tucker AT, Ballard TE, Mathies LD, Cavanagh J, Melander C. 2009. Amide isosteres of oroidin: assessment of antibiofilm activity and C. elegans toxicity. J Med Chem. 52:4582–4585.
  • Riool M, de Breij A, Drijfhout JW, Nibbering PH, Zaat SA. 2017. Antimicrobial peptides in biomedical device manufacturing. Front Chem. 5:63.
  • Rode TM, Langsrud S, Holck A, Møretrø T. 2007. Different patterns of biofilm formation in Staphylococcus aureus under food-related stress conditions. Int J Food Microbiol. 116:372–383.
  • Rogers SA, Huigens RW, Melander C. 2009. A 2-aminobenzimidazole that inhibits and disperses gram-positive biofilms through a zinc-dependent mechanism. J Am Chem Soc. 131:9868–9869.
  • Rogers SA, Huigens RW, Cavanagh J, Melander C. 2010. Synergistic effects between conventional antibiotics and 2-aminoimidazole-derived antibiofilm agents. Antimicrob Agents Chemother. 54:2112–2118.
  • Rohde H, Burandt EC, Siemssen N, Frommelt L, Burdelski C, Wurster S, Scherpe S, Davies AP, Harris LG, Horstkotte MA, et al. 2007. Polysaccharide intercellular adhesin or protein factors in biofilm accumulation of Staphylococcus epidermidis and Staphylococcus aureus isolated from prosthetic hip and knee joint infections. Biomaterials. 28:1711–1720.
  • Rubin RJ, Harrington CA, Poon A, Dietrich K, Greene JA, Moiduddin A. 1999. The economic impact of Staphylococcus aureus infection in New York City hospitals. Emerg Infect Dis. 5:9.
  • Ruppé E, Barbier F, Mesli Y, Maiga A, Cojocaru R, Benkhalfat M, Benchouk S, Hassaine H, Maiga I, Diallo A, et al. 2009. Diversity of staphylococcal cassette chromosome mec structures in methicillin-resistant Staphylococcus epidermidis and Staphylococcus haemolyticus strains among outpatients from four countries. Antimicrob Agents Chemother. 53:442–449.
  • Sadovskaya I, Vinogradov E, Flahaut S, Kogan G, Jabbouri S. 2005. Extracellular carbohydrate-containing polymers of a model biofilm-producing strain, Staphylococcus epidermidis RP62A. Infect Immun. 73:3007–3017.
  • Saising J, Dube L, Ziebandt A-K, Voravuthikunchai SP, Nega M, Götz F. 2012. Activity of gallidermin on Staphylococcus aureus and Staphylococcus epidermidis biofilms. Antimicrob Agents Chemother. 56:5804–5810.
  • Savage VJ, Chopra I, O'Neill AJ. 2013. Staphylococcus aureus biofilms promote horizontal transfer of antibiotic resistance. Antimicrob Agents Chemother. 57:1968–1970.
  • Schaeffer CR, Woods KM, Longo GM, Kiedrowski MR, Paharik AE, Büttner H, Christner M, Boissy RJ, Horswill AR, Rohde H, Fey PD. 2014. Accumulation-associated protein (Aap) enhances Staphylococcus epidermidis biofilm formation under dynamic conditions and is required for infection in a rat catheter model. Infect Immun. 83:214–226.
  • Schommer NN, Christner M, Hentschke M, Ruckdeschel K, Aepfelbacher M, Rohde H. 2011. Staphylococcus epidermidis uses distinct mechanisms of biofilm formation to interfere with phagocytosis and activation of mouse macrophage-like cells 774A.1. Infect Immun. 79:2267–2276.
  • Schwartz K, Syed AK, Stephenson RE, Rickard AH, Boles BR. 2012. Functional amyloids composed of phenol soluble modulins stabilize Staphylococcus aureus biofilms. PLoS Pathog. 8:e1002744.
  • Shah A, Mond J, Walsh S. 2004. Lysostaphin-coated catheters eradicate Staphylococccus aureus challenge and block surface colonization. Antimicrob Agents Chemother. 48:2704–2707.
  • Singh R, Ray P, Das A, Sharma M. 2010. Penetration of antibiotics through Staphylococcus aureus and Staphylococcus epidermidis biofilms. J Antimicrob Chemother. 65:1955–1958.
  • Slany M, Oppelt J, Cincarova L. 2017. Formation of Staphylococcus aureus biofilm in the presence of sub-lethal concentrations of disinfectants: a transcriptomic analysis using RNA-seq. Appl Environ Microbiol. : 83(24):pii: e01643–17.
  • Soldera J, Nedel WL, Cardoso PRC, d'Azevedo PA. 2013. Bacteremia due to Staphylococcus cohnii ssp. urealyticus caused by infected pressure ulcer: case report and review of the literature. Sao Paulo Med J. 131:59–61.
  • Song Z, Borgwardt L, Høiby N, Wu H, Sørensen TS, Borgwardt A. 2013. Prosthesis infections after orthopedic joint replacement: the possible role of bacterial biofilms. Orthop Rev. 5:e14.
  • Soto S, Smithson A, Horcajada JP, Martinez JA, Mensa JP, Vila J. 2006. Implication of biofilm formation in the persistence of urinary tract infection caused by uropathogenic Escherichia coli. Clin Microbiol Infect. 12:1034–1036.
  • Stewart EJ, Payne DE, Ma TM, VanEpps JS, Boles BR, Younger JG, Solomon MJ. 2017. Effect of antimicrobial and physical treatments on growth of multispecies staphylococcal biofilms. Appl Environ Microbiol. 83:e03483–e03416.
  • Stowe SD, Richards JJ, Tucker AT, Thompson R, Melander C, Cavanagh J. 2011. Anti-biofilm compounds derived from marine sponges. Mar Drugs. 9:2010–2035.
  • Su Z, Peng L, Worthington RJ, Melander C. 2011. Evaluation of 4,5-disubstituted-2-aminoimidazole-triazole conjugates for antibiofilm/antibiotic resensitization activity against MRSA and Acinetobacter baumannii. ChemMedChem. 6:2243–2251.
  • Sued BPR, Pereira PMA, Faria YV, Ramos JN, Binatti VB, Santos KRNd, Seabra SH, Hirata Júnior R, Vieira VV, Mattos-Guaraldi AL, et al. 2017. Sphygmomanometers and thermometers as potential fomites of Staphylococcus haemolyticus: biofilm formation in the presence of antibiotics. Mem Inst Oswaldo Cruz. 112:188–195.
  • System NNIS. 2004. National Nosocomial Infections Surveillance (NNIS) System Report, data summary from January 1992 through June 2004, issued October 2004. Am J Infect Control. 32:470.
  • Szabados F, Mohner A, Kleine B, Gatermann SG. 2013. Staphylococcus saprophyticus surface-associated protein (Ssp) is associated with lifespan reduction in Caenorhabditis elegans. Virulence. 4:604–611.
  • Szczuka E, Grabska K, Kaznowski A. 2015a. In vitro activity of Rifampicin combined with daptomycin or tigecycline on Staphylococcus haemolyticus biofilms. Curr Microbiol. 71(2):184–189.
  • Szczuka E, Jabłońska L, Kaznowski A. 2016. Coagulase-negative staphylococci: pathogenesis, occurrence of antibiotic resistance genes and in vitro effects of antimicrobial agents on biofilm-growing bacteria. J Med Microbiol. 65:1405–1413.
  • Szczuka E, Krzymińska S, Kaznowski A. 2016. Clonality, virulence and the occurrence of genes encoding antibiotic resistance among Staphylococcus warneri isolates from bloodstream infections. J Med Microbiol. 65:828.
  • Szczuka E, Telega K, Kaznowski A. 2015b. Biofilm formation by Staphylococcus hominis strains isolated from human clinical specimens. Folia Microbiol. 60:1–5.
  • Takahashi T, Satoh I, Kikuchi N. 1999. NOTE phylogenetic relationships of 38 taxa of the genus Staphylococcus based on 16S rRNA gene sequence analysis. Int J Syst Bacteriol. 49:725–728.
  • Tan TY, Ng SY, Ng WX. 2006. Clinical significance of coagulase-negative staphylococci recovered from nonsterile sites. J Clin Microbiol. 44:3413–3414.
  • Tevell S, Hellmark B, Nilsdotter-Augustinsson Å, Söderquist B. 2017. Staphylococcus capitis isolated from prosthetic joint infections. Eur J Clin Microbiol Infect Dis. 36:115–122.
  • Trentin DS, Giordani RB, Zimmer KR, da Silva AG, da Silva MV, dos Santos Correia MT, Baumvol IJR, Macedo AJ. 2011. Potential of medicinal plants from the Brazilian semi-arid region (Caatinga) against Staphylococcus epidermidis planktonic and biofilm lifestyles. J Ethnopharmacol. 137:327–335.
  • Trentin DS, Silva DB, Frasson AP, Rzhepishevska O, da Silva MV, Pulcini EL, James G, Soares GV, Tasca T, Ramstedt M. 2015. Natural green coating inhibits adhesion of clinically important bacteria. Sci Rep. 5:82–87.
  • Valour F, Rasigade JP, Trouillet-Assant S, Gagnaire J, Bouaziz A, Karsenty J, Lacour C, Bes M, Lustig S, Benet T, et al. 2015. Delta-toxin production deficiency in Staphylococcus aureus: a diagnostic marker of bone and joint infection chronicity linked with osteoblast invasion and biofilm formation. Clin Microbiol Infect. 21:568-e1.
  • van Belkum A. 2006. Staphylococcal colonization and infection: homeostasis versus disbalance of human (innate) immunity and bacterial virulence. Curr Opin Infect Dis. 19:339–344.
  • van der Mee-Marquet N, Achard A, Mereghetti L, Danton A, Minier M, Quentin R. 2003. Staphylococcus lugdunensis infections: high frequency of inguinal area carriage. J Clin Microbiol. 41:1404–1409.
  • Van Der Zwet WC, Debets-Ossenkopp YJ, Reinders E, Kapi M, Savelkoul PH, Van Elburg RM, Hiramatsu K, Vandenbroucke-Grauls CM. 2002. Nosocomial spread of a Staphylococcus capitis strain with heteroresistance to vancomycin in a neonatal intensive care unit. J Clin Microbiol. 40:2520–2525.
  • Van Griethuysen A, Van Loo I, Van Belkum A, Vandenbroucke-Grauls C, Wannet W, Van Keulen P, Kluytmans J. 2005. Loss of the mecA gene during storage of methicillin-resistant Staphylococcus aureus strains. J Clin Microbiol. 43:1361–1365.
  • von Eiff C, Peters G, Heilmann C. 2002. Pathogenesis of infections due to coagulase-negative staphylococci. Lancet Infect Dis. 2:677–685.
  • Vuong C, Gerke C, Somerville GA, Fischer ER, Otto M. 2003. Quorum-sensing control of biofilm factors in Staphylococcus epidermidis. J Infect Dis. 188:706–718.
  • Walsh S, Shah A, Mond J. 2003. Improved pharmacokinetics and reduced antibody reactivity of lysostaphin conjugated to polyethylene glycol. Antimicrob Agents Chemother. 47:554–558.
  • Wang X, Yao X, Zhu ZA, Tang T, Dai K, Sadovskaya I, Flahaut S, Jabbouri S. 2009. Effect of berberine on Staphylococcus epidermidis biofilm formation. Int J Antimicrob Agents. 34:60–66.
  • Wenzel RP, Edmond MB. 2001. The impact of hospital-acquired bloodstream infections. Emerg Infect Dis. 7:174.
  • Westblom TU, Gorse GJ, Milligan TW, Schindzielorz AH. 1990. Anaerobic endocarditis caused by Staphylococcus saccharolyticus. J Clin Microbiol. 28:2818–2819.
  • Westgate S, Percival S, Knottenbelt D, Clegg P, Cochrane C. 2011. Microbiology of equine wounds and evidence of bacterial biofilms. Vet Microbiol. 150:152–159.
  • Widerström M, Wiström J, Sjöstedt A, Monsen T. 2012. Coagulase-negative staphylococci: update on the molecular epidemiology and clinical presentation, with a focus on Staphylococcus epidermidis and Staphylococcus saprophyticus. Eur J Clin Microbiol Infect Dis. 31:7–20.
  • Worlitzsch D, Rintelen C, Böhm K, Wollschläger B, Merkel N, Borneff ‐Lipp M, Döring G. 2009. Antibiotic-resistant obligate anaerobes during exacerbations of cystic fibrosis patients. Clin Microbiol Infect. 15:454–460.
  • Wu X, Yu C, Wang X. 2009. A case of Staphylococcus saccharolyticus pneumonia. Int J Infect Dis. 13:e43–e46.
  • Xu L, Li H, Vuong C, Vadyvaloo V, Wang J, Yao Y, Otto M, Gao Q. 2006. Role of the luxS quorum-sensing system in biofilm formation and virulence of Staphylococcus epidermidis. Infect Immunity. 74:488–496.
  • Yang X, Huang N. 2013. Berberine induces selective apoptosis through the AMPK mediated mitochondrial/caspase pathway in hepatocellular carcinoma. Mol Med Rep. 8:505–510.
  • Yao Y, Sturdevant DE, Otto M. 2005. Genomewide analysis of gene expression in Staphylococcus epidermidis biofilms: insights into the pathophysiology of S. epidermidis biofilms and the role of phenol-soluble modulins in formation of biofilms. J Infect Dis. 191:289–298.
  • Yao Y, Vuong C, Kocianova S, Villaruz AE, Lai Y, Sturdevant DE, Otto M. 2006. Characterization of the Staphylococcus epidermidis accessory-gene regulator response: quorum-sensing regulation of resistance to human innate host defense. J Infect Dis. 193:841–848.
  • Yeagley AA, Su Z, McCullough KD, Worthington RJ, Melander C. 2013. N-Substituted 2-aminoimidazole inhibitors of MRSA biofilm formation accessed through direct 1,3-bis(tert-butoxycarbonyl)guanidine cyclization. Org Biomol Chem. 11:130–137.
  • Yokoi K-j, Kuzuwa S, Iwasaki S-I, Yamakawa A, Taketo A, Kodaira K-I. 2016. Aureolysin of Staphylococcus warneri M accelerates its proteolytic cascade, and participates in biofilm formation. Biosci Biotechnol Biochem. 1238–1242.
  • Yousefi M, Pourmand MR, Fallah F, Hashemi A, Mashhadi R, Nazari-Alam A. 2016. Characterization of Staphylococcus aureus biofilm formation in urinary tract infection. Iran J Public Health. 45:485.
  • Zapotoczna M, McCarthy H, Rudkin JK, O’gara JP, O’neill E. 2015. An essential role for coagulase in Staphylococcus aureus biofilm development reveals new therapeutic possibilities for device-related infections. J Infect Dis. 212:1883–1893.
  • Zarin MA, Wan HY, Isha A, Armania N. 2016. Antioxidant, antimicrobial and cytotoxic potential of condensed tannins from Leucaena leucocephala hybrid-Rendang. Food Sci Hum Wellness. 5:65–75.
  • Zheng Z, Stewart PS. 2002. Penetration of rifampin through Staphylococcus epidermidis biofilms. Antimicrob Agents Chemother. 46:900–903.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.