669
Views
13
CrossRef citations to date
0
Altmetric
Review Articles

Guardian genes ensuring subsistence of oral Streptococcus mutans

, , , , , , & show all
Pages 475-491 | Received 01 Jul 2020, Accepted 09 Jul 2020, Published online: 28 Jul 2020

References

  • Abranches J, Miller JH, Martinez AR, Simpson-Haidaris PJ, Burne RA, Lemos JA. 2011. The collagen-binding protein Cnm is required for Streptococcus mutans adherence to and intracellular invasion of human coronary artery endothelial cells. Infect Immun. 79(6):2277–2284.
  • Ahn SJ, Burne RA. 2007. Effects of oxygen on biofilm formation and the AtlA autolysin of Streptococcus mutans. J Bacteriol. 189(17):6293–6302.
  • Ahn SJ, Deep K, Turner ME, Ishkov I, Waters A, Hagen SJ, Rice KC. 2019. Characterization of LrgAB as a stationary phase-specific pyruvate uptake system in Streptococcus mutans. BMC Microbiol. 19(1):1–15.
  • Ahn SJ, Lemos JA, Burne RA. 2005. Role of HtrA in growth and competence of Streptococcus mutans UA159. J Bacteriol. 187(9):3028–3038.
  • Ahn SJ, Wen ZT, Burne RA. 2006. Multilevel control of competence development and stress tolerance in Streptococcus mutans UA159. Infect Immun. 74(3):1631–1642.
  • Ahn S-J, Rice KC, Oleas J, Bayles KW, Burne RA. 2010. The Streptococcus mutans Cid and Lrg systems modulate virulence traits in response to multiple environmental signals. Microbiology (Reading, Engl.). 156(Pt 10):3136–3147.
  • Armour CR, Nayfach S, Pollard KS, Sharpton TJ. 2019. A metagenomic meta-analysis reveals functional signatures of health and disease in the human gut microbiome. MSystems. 4(4). DOI:10.1128/mSystems.00332-18.
  • Baker JL, Abranches J, Faustoferri RC, Hubbard CJ, Lemos JA, Courtney MA, Quivey R. Jr 2015. Transcriptional profile of glucose-shocked and acid-adapted strains of Streptococcus mutans. Mol Oral Microbiol. 30(6):496–517.
  • Baker JL, Derr AM, Karuppaiah K, MacGilvray ME, Kajfasz JK, Faustoferri RC, Rivera-Ramos I, Bitoun JP, Lemos JA, Wen ZT, et al. 2014. Streptococcus mutans NADH oxidase lies at the intersection of overlapping regulons controlled by oxygen and NAD + levels. J Bacteriol. 196(12):2166–2177.
  • Banas JA, Drake DR. 2018. Are the mutans streptococci still considered relevant to understanding the microbial etiology of dental caries? BMC Oral Health. 18(1):129.
  • Banas JA, Fountain TL, Mazurkiewicz JE, Sun K, Margaret VM. 2007. Streptococcus mutans glucan-binding protein-A affects Streptococcus gordonii biofilm architecture. FEMS Microbiol Lett. 267(1):80–88.
  • Bassler BL, Greenberg EP, Stevens AM. 1997. Cross-species induction of luminescence in the quorum-sensing bacterium Vibrio harveyi. J Bacteriol. 179(12):4043–4045.
  • Beg AM, Jones MN, Miller-Torbert T, Holt RG. 2002. Binding of Streptococcus mutans to extracellular matrix molecules and fibrinogen. Biochem Biophy Res Commun. 298(1):75–79.
  • Belli WA, Marquis RE. 1994. Catabolite modification of acid tolerance of Streptococcus mutans GS-5. Oral Microbiol Immunol. 9(1):29–34.
  • Bender GR, Sutton SV, Marquis RE. 1986. Acid tolerance, proton permeabilities, and membrane ATPases of oral streptococci. Infect Immun. 53(2):331–338.
  • Bishop CJ, Aanensen DM, Jordan GE, Kilian M, Hanage WP, Spratt BG. 2009. Assigning strains to bacterial species via the internet. BMC Biol. 7(1):3–20.
  • Bose A, Santosh HN. 2018. Interspecies communication in oral biofilm. JCRI. 5(6):196–199.
  • Bradshaw DJ, McKee AS, Marsh PD. 1989. Effects of carbohydrate pulses and pH on population shifts within oral microbial communities in vitro. J Dent Res. 68(9):1298–1302.
  • Brady LJ, Maddocks SE, Larson MR, Forsgren N, Persson K, Deivanayagam CC, Jenkinson HF. 2010. The changing faces of Streptococcus antigen I/II polypeptide family adhesins. Mol Microbiol. 77(2):276–286.
  • Brunskill EW, Bayles KW. 1996. Identification and molecular characterization of a putative regulatory locus that affects autolysis in Staphylococcus aureus. J Bacteriol. 178(3):611–618.
  • Carlsson J, Griffith CJ. 1974. Fermentation products and bacterial yields in glucose-limited and nitrogen-limited cultures of streptococci. Arch Oral Biol. 19(12):1105–1109.
  • Chen PM, Chen HC, Ho CT, Jung CJ, Lien HT, Chen JY, Chia JS. 2008. The two-component system ScnRK of Streptococcus mutans affects hydrogen peroxide resistance and murine macrophage killing. Microbes Infect. 10(3):293–301.
  • Chen X, Liu C, Peng X, He Y, Liu H, Song Y, Xiong K, Zou L. 2019. Sortase A-mediated modification of the Streptococcus mutans transcriptome and virulence traits . Mol Oral Microbiol. 34(5):219–233.
  • Chen X, Schauder S, Potier N, Van Dorsselaer A, Pelczer I, Bassler BL, Hughson FM. 2002. Structural identification of a bacterial quorum-sensing signal containing boron. Nature. 415(6871):545–549.
  • Chong P, Drake L, Biswa I. 2008. LiaS regulates virulence factor expression in Streptococcus mutans. Infect Immun. 76(7):3093–3099.
  • Cvitkovitch DG, Li YH, Ellen RP. 2003. Quorum sensing and biofilm formation in Streptococcal infections. J Clin Invest. 112(11):1626–1632.
  • Decker EM, Klein C, Schwindt D, Von OC. 2014. Metabolic activity of Streptococcus mutans biofilms and gene expression during exposure to xylitol and sucrose. Int J Oral Sci. 6(4):195–204.
  • Demuth DR, Lammey MS, Huck M, Lally ET, Malamud D. 1990. Comparison of Streptococcus mutans and Streptococcus sanguis receptors for human salivary agglutinin. Microb Pathog. 9(3):199–211.
  • Deng DM, Liu MJ, Ten CJM, Crielaard W. 2007. The VicRK system of Streptococcus mutans responds to oxidative stress. J Dent Res. 86(7):606–610.
  • Dmitriev A, Mohapatra SS, Chong P, Neely M, Biswas S, Biswas I. 2011. CovR-controlled global regulation of gene expression in Streptococcus mutans. PLoS One. 6(5):e20127.
  • Dufour D, Cordova M, Cvitkovitch DG, Lévesque CM. 2011. Regulation of the competence pathway as a novel role associated with a streptococcal bacteriocin. J Bacteriol. 193(23):6552–6559.
  • Federle MJ, Bassler BL. 2003. Interspecies communication in bacteria. J Clin Invest. 112(9):1291–1299.
  • Fitzgerald RJ, Keyes PH. 1960. Demonstration of the etiologic role of streptococci in experimental caries in the hamster. J Am Dent Assoc. 61(1):9–19.
  • Forester H, Hunter N, Knox KW. 1983. Characteristics of a high molecular weight extracellular protein of Streptococcus mutans. Microbiology. 129(9):2779–2788.
  • Fujita K, Matsumoto‐Nakano M, Inagaki S, Ooshima T. 2007. Biological functions of glucan-binding protein B of Streptococcus mutans . Oral Microbiol Immunol. 22(5):289–292.
  • Galvão LCC, Miller JH, Kajfasz JK, Scott-Anne K, Freires IA, Franco GCN, Abranches J, Rosalen PL, Lemos JA. 2015. Transcriptional and phenotypic characterization of novel Spx-regulated genes in Streptococcus mutans. PLoS One. 10(4):e0124969.
  • Galvão LCC, Rosalen PL, Rivera-Ramos I, Franco GCN, Kajfasz JK, Abranches J, Bueno-Silva B, Koo H, Lemos JA. 2017. Inactivation of the spxA1 or spxA2 gene of Streptococcus mutans decreases virulence in the rat caries model. Mol Oral Microbiol. 32(2):142–153.
  • Gong Y, Tian XL, Sutherland T, Sisson G, Mai J, Ling J, Li YH. 2009. Global transcriptional analysis of acid-inducible genes in Streptococcus mutans: multiple two-component systems involved in acid adaptation. Microbiology (Reading, Engl). 155(Pt 10):3322–3332.
  • Gonzalez K, Faustoferri RC, Quivey RG. 2012. Role of DNA base excision repair in the mutability and virulence of Streptococcus mutans. Mol Microbiol. 85(2):361–377.
  • Griswold AR, Jameson-Lee M, Burne RA. 2006. Regulation and physiologic significance of the agmatine deiminase system of Streptococcus mutans UA159. J Bacteriol. 188(3):834–841.
  • Guo L, McLean JS, Lux R, He X, Shi W. 2015. The well-coordinated linkage between acidogenicity and aciduricity via insoluble glucans on the surface of Streptococcus mutans. Sci Rep. 5:18015.
  • Hata S, Mayanagi H. 2003. Acid diffusion through extracellular polysaccharides produced by various mutants of Streptococcus mutans. Arch Oral Biol. 48(6):431–438.
  • He Z, Liang J, Tang Z, Ma R, Peng H, Huang Z. 2015. Role of the luxS gene in initial biofilm formation by Streptococcus mutans. J Mol Microbiol Biotechnol. 25(1):60–68.
  • Hojo S, Takahashi N, Yamada T. 1991. Acid profile in carious dentin. J Dent Res. 70(3):182–186.
  • Hossain MS, Biswas I. 2012. An extracelluar protease, SepM, generates functional competence-stimulating peptide in Streptococcus mutans UA159. J Bacteriol. 194(21):5886–5896.
  • Huang R, Li M, Gregory RL. 2011. Bacterial interactions in dental biofilm. Virulence. 2(5):435–444.
  • Hung DCI, Downey JS, Ayala EA, Kreth J, Mair R, Senadheera DB, Qi F, Cvitkovitch DG, Shi W, Goodman SD. 2011. Characterization of DNA binding sites of the ComE response regulator from Streptococcus mutans. J Bacteriol. 193(14):3642–3652.
  • Imlay JA. 2013. The molecular mechanisms and physiological consequences of oxidative stress: lessons from a model bacterium. Nat Rev Microbiol. 11(7):443–454.
  • Jakubovics NS. 2010. Talk of the town: interspecies communication in oral biofilms. Mol Oral Microbiol. 25(1):4–14.
  • Kajfasz JK, Ganguly T, Hardin EL, Abranches J, Lemos JA. 2017. Transcriptome responses of Streptococcus mutans to peroxide stress: identification of novel antioxidant pathways regulated by Spx. Sci Rep. 7(1):1–13.
  • Kajfasz JK, Rivera-Ramos I, Scott-Anne K, Gregoire S, Abranches J, Lemos JA. 2015. Transcription of oxidative stress genes is directly activated by SpxA1 and, to a lesser extent, by SpxA2 in Streptococcus mutans. J Bacteriol. 197(13):2160–2170.
  • Kaur G, Rajesh S, Princy SA. 2015. Plausible drug targets in the Streptococcus mutans quorum sensing pathways to combat dental biofilms and associated risks. Indian J Microbiol. 55(4):349–356.
  • Kawada-Matsuo M, Komatsuzawa H. 2017. Role of Streptococcus mutans two-component systems in antimicrobial peptide resistance in the oral cavity. Jpn Dent Sci Rev. 53(3):86–94.
  • Kawada‐Matsuo M, Shibata Y, Yamashita Y. 2009. Role of two component signaling response regulators in acid tolerance of Streptococcus mutans. Oral Microbiol Immunol. 24(2):173–176.
  • Khan R, Rukke HV, Høvik H, Åmdal HA, Chen T, Morrison DA, Petersen FC. 2016. Comprehensive transcriptome profiles of Streptococcus mutans UA159 map core streptococcal competence genes. mSystems. 1(2). DOI:10.1128/mSystems.00038-15.
  • Kilian M, Chapple ILC, Hannig M, Marsh PD, Meuric V, Pedersen AML, Tonetti MS, Wade WG, Zaura E. 2016. The oral microbiome - an update for oral healthcare professionals. Br Dent J. 221(10):657–666.
  • Kim D, Sengupta A, Niepa THR, Lee B-H, Weljie A, Freitas-Blanco VS, Murata RM, Stebe KJ, Lee D, Koo H. 2017. Candida albicans stimulates Streptococcus mutans microcolony development via cross-kingdom biofilm-derived metabolites. Sci Rep. 7(1):41314–41332.
  • Kleerebezem M, Quadri LE, Kuipers OP, De Vos WM. 1997. Quorum sensing by peptide pheromones and two-component signal-transduction systems in Gram-positive bacteria . Mol Microbiol. 24(5):895–904.
  • Klein C, Entian KD. 1994. Genes involved in self-protection against the lantibiotic subtilin produced by Bacillus subtilis ATCC 6633. Appl Environ Microbiol. 60(8):2793–2801.
  • Klein C, Kaletta C, Entian KD. 1993. Biosynthesis of the lantibiotic subtilin is regulated by a histidine kinase/response regulator system. Appl Environ Microbiol. 59(1):296–303.
  • Koga T, Okahashi N, Takahashi I, Kanamoto T, Asakawa H, Iwaki M. 1990. Surface hydrophobicity, adherence, and aggregation of cell surface protein antigen mutants of Streptococcus mutans serotype c. Infect Immun. 58(2):289–296.
  • Koo H, Andes DR, Krysan DJ. 2018. Candida–streptococcal interactions in biofilm-associated oral diseases. PLoS Pathog. 14(12):e1007342.
  • Kreth J, Hung DCI, Merritt J, Perry J, Zhu L, Goodman SD, Cvitkovitch DG, Shi W, Qi F. 2007. The response regulator ComE in Streptococcus mutans functions both as a transcription activator of mutacin production and repressor of CSP biosynthesis. Microbiology (Reading, Engl). 153(Pt 6):1799–1807.
  • Krzyściak W, Jurczak A, Kościelniak D, Bystrowska B, Skalniak A. 2014. The virulence of Streptococcus mutans and the ability to form biofilms. Eur J Clin Microbiol Infect Dis. 33(4):499–515.
  • Lee SF, Delaney GD, Elkhateeb M. 2004. A two-component covRS regulatory system regulates expression of fructosyltransferase and a novel extracellular carbohydrate in Streptococcus mutans. Infect Immun. 72(7):3968–3973.
  • Lemme A, Sztajer H, Wagner-Döbler I. 2010. Characterization of mleR, a positive regulator of malolactic fermentation and part of the acid tolerance response in Streptococcus mutans. BMC Microbiol. 10(1):58.
  • Lemos JA, Burne RA. 2008. A model of efficiency: stress tolerance by Streptococcus mutans. Microbiology (Reading, Engl). 154(Pt 11):3247–3255.
  • Len AC, Cordwell SJ, Harty DW, Jacques NA. 2003. Cellular and extracellular proteome analysis of Streptococcus mutans grown in a chemostat. Proteomics. 3(5):627–646.
  • Lenander-Lumikari M, Loimaranta V. 2000. Saliva and dental caries. Adv Dent Res. 14(1):40–47.
  • Levesque CM, Mair RW, Perry JA, Lau PCY, Li YH, Cvitkovitch DG. 2007. Systemic inactivation and phenotypic characterization of two-component systems in expression of Streptococcus mutans virulence properties . Lett Appl Microbiol. 45(4):398–404.
  • Levine RS, Rowles SL. 1973. Further studies on the remineralization of human carious dentine in vitro. Arch Oral Biol. 18(11):1351–1356.
  • Li YH, Lau PC, Lee JH, Ellen RP, Cvitkovitch DG. 2001. Natural genetic transformation of streptococcus mutans growing in biofilms. J Bacteriol. 183(3):897–908.
  • Li YH, Tang N, Aspiras MB, Lau PC, Lee JH, Ellen RP, Cvitkovitch DG. 2002. A quorum-sensing signaling system essential for genetic competence in Streptococcus mutans is involved in biofilm formation. J Bacteriol. 184(10):2699–2708.
  • Li YH, Tian XL, Layton G, Norgaard C, Sisson G. 2008. Additive attenuation of virulence and cariogenic potential of Streptococcus mutans by simultaneous inactivation of the ComCDE quorum-sensing system and HK/RR11 two-component regulatory system. Microbiology (Reading, Engl.). 154(Pt 11):3256–3265.
  • Li Z, Xiang Z, Zeng J, Li Y, Li J. 2018. A GntR family transcription factor in Streptococcus mutans regulates biofilm formation and expression of multiple sugar transporter genes. Front Microbiol. 9:3224.
  • Li Y-H, Lau PCY, Tang N, Svensäter G, Ellen RP, Cvitkovitch DG. 2002. Novel two-component regulatory system involved in biofilm formation and acid resistance in Streptococcus mutans. JB. 184(22):6333–6342.
  • Listl S, Galloway J, Mossey PA, Marcenes W. 2015. Global economic impact of dental diseases. J Dent Res. 94(10):1355–1361.
  • Liu Y, Burne RA. 2009. Multiple two-component systems of Streptococcus mutans regulate agmatine deiminase gene expression and stress tolerance. J Bacteriol. 191(23):7363–7366.
  • Liu S, Li H, Guo Z, Guan J, Sun Y, Zhang K. 2019. Insight into the effect of small RNA srn225147 on mutacin IV in Streptococcus mutans. Indian J Microbiol. 59(4):445–450.
  • Liu S, Tao Y, Yu L, Zhuang P, Zhi Q, Zhou Y, Lin H. 2016. Analysis of small RNAs in Streptococcus mutans under acid stress—a new insight for caries research. IJMS. 17(9):1529.
  • Loesche WJ. 1976. Chemotherapy of dental plaque infections. Oral Sci Rev. 9:65–107.
  • Magalhães PP, Paulino TP, Thedei G, Jr, Ciancaglini P. 2005. Kinetic characterization of P-type membrane ATPase from Streptococcus mutans. Comp Biochem Physiol B, Biochem Mol Biol. 140(4):589–597.
  • Mahajan A, Singh B, Kashyap D, Kumar A, Mahajan P. 2013. Interspecies communication and periodontal disease. ScientificWorldJournal. 2013:765434.
  • Marcenes W, Kassebaum NJ, Bernabé E, Flaxman A, Naghavi M, Lopez A, Murray CJ. 2013. Global burden of oral conditions in 1990-2010: a systematic analysis. J Dent Res. 92(7):592–597.
  • Marquis RE. 1995. Oxygen metabolism, oxidative stress and acid-base physiology of dental plaque biofilms. J Ind Microbiol. 15(3):198–207.
  • Marsh PD. 1994. Microbial ecology of dental plaque and its significance in health and disease. Adv Dent Res. 8(2):263–271.
  • Marsh PD, Featherstone A, McKee AS, Hallsworth AS, Robinson C, Weatherell JA, Newman HN, Pitter AF. 1989. A microbiological study of early caries of approximal surfaces in schoolchildren. J Dent Res. 68(7):1151–1154.
  • Mashburn‐Warren L, Morrison DA, Federle MJ. 2010. A novel double-tryptophan peptide pheromone controls competence in Streptococcus spp. via an Rgg regulator . Mol Microbiol. 78(3):589–606.
  • Matsumi Y, Fujita K, Takashima Y, Yanagida K, Morikawa Y, Matsumoto‐Nakano M. 2015. Contribution of glucan-binding protein A to firm and stable biofilm formation by Streptococcus mutans . Mol Oral Microbiol. 30(3):217–226.
  • Matsumoto-Nakano M. 2018. Role of Streptococcus mutans surface proteins for biofilm formation. Jpn Dent Sci Rev. 54(1):22–29.
  • Mattos-Graner RO, Jin S, King WF, Chen T, Smith DJ, Duncan MJ. 2001. Cloning of the Streptococcus mutans gene encoding glucan binding protein B and analysis of genetic diversity and protein production in clinical isolates. Infect Immun. 69(11):6931–6941.
  • McLaughlin RE, Ferretti JJ, Hynes WL. 1999. Nucleotide sequence of the streptococcin A-FF22 lantibiotic regulon: model for production of the lantibiotic SA-FF22 by strains of Streptococcus pyogenes. FEMS Microbiol Lett. 175(2):171–177.
  • Meiers JC, Wirthlin MR, Shklair IL. 1982. A microbiological analysis of human early carious and non-carious fissures. J Dent Res. 61(3):460–464.
  • Merritt J, Qi F. 2012. The mutacins of Streptococcus mutans: regulation and ecology. Mol Oral Microbiol. 27(2):57–69.
  • Mishra A, Pandey RK, Manickam N. 2015. The significance of gtf genes in caries expression: a rapid identification of Streptococcus mutans from dental plaque of child patients. J Indian Soc Pedod Prev Dent. 33(2):134–137.
  • Momeni SS, Beno SM, Baker JL, Edlund A, Ghazal T, Childers NK, Wu H. 2020. Caries-associated biosynthetic gene clusters in Streptococcus mutans. J Dent Res. 99(8):969–976.
  • Nath K, Thaiss CA. 2019. Digitalizing the microbiome for human health. Msystems. 4(3). DOI:10.1128/mSystems.00129-19.
  • Nilsson M, Jakobsen TH, Givskov M, Twetman S, Tolker-Nielsen T. 2019. Oxidative stress response plays a role in antibiotic tolerance of Streptococcus mutans biofilms. Microbiology. 165(3):334–342.
  • Nomura R, Matayoshi S, Otsugu M, Kitamura T, Teramoto N, Nakano K. 2020. Contribution of severe dental caries induced by Streptococcus mutans to the pathogenicity of infective endocarditis. Infect Immun. 88(7):5223–5234.
  • O’Toole GA, Kolter R. 1998. Initiation of biofilm formation in Pseudomonas fluorescens WCS365 proceeds via multiple, convergent signalling pathways: a genetic analysis. Mol Microbiol. 28(3):449–461.
  • Okinaga T, Niu G, Xie Z, Qi F, Merritt J. 2010. The hdrRM operon of Streptococcus mutans encodes a novel regulatory system for coordinated competence development and bacteriocin production. J Bacteriol. 192(7):1844–1852.
  • Ooshima T, Matsumura M, Hoshino T, Kawabata S, Sobue S, Fujiwara T. 2001. Contributions of three glycosyltransferases to sucrose-dependent adherence of Streptococcus mutans . J Dent Res. 80(7):1672–1677.
  • Ouyang J, Tian XL, Versey J, Wishart A, Li YH. 2010. The BceABRS four-component system regulates the bacitracin-induced cell envelope stress response in Streptococcus mutans. Antimicrob Agents Chemother. 54(9):3895–3906.
  • Packer L, Witt EH, Tritschler HJ. 1995. Alpha-lipoic acid as a biological antioxidant. Free Radic Biol Med. 19(2):227–250.
  • Parashar A, Parashar S, Zingade A, Gupta S, Sanikop S. 2015. Interspecies communication in oral biofilm: an ocean of information. Int J Oral Sci. 12(2):37–42.
  • Pereira CS, Thompson JA, Xavier KB. 2013. AI-2-mediated signalling in bacteria. FEMS Microbiol Rev. 37(2):156–181.
  • Perry JA, Levesque CM, Suntharaligam P, Mair RW, Bu M, Cline RT, Peterson SN, Cvitkovitch DG. 2008. Involvement of Streptococcus mutans regulator RR11 in oxidative stress response during biofilm growth and in the development of genetic competence. Lett Appl Microbiol. 47(5):439–444.
  • Petersen FC, Fimland G, Scheie AA. 2006. Purification and functional studies of a potent modified quorum-sensing peptide and a two-peptide bacteriocin in Streptococcus mutans . Mol Microbiol. 61(5):1322–1334.
  • Pitts NB, Zero DT, Marsh PD, Ekstrand K, Weintraub JA, Ramos-Gomez F, Tagami J, Twetman S, Tsakos G, Ismail A. 2017. Dental caries. Nat Rev. 3(1):1–6.
  • Qi F, Merritt J, Lux R, Shi W. 2004. Inactivation of the ciaH gene in Streptococcus mutans diminishes mutacin production and competence development, alters sucrose-dependent biofilm formation, and reduces stress tolerance. Infect Immun. 72(8):4895–4899.
  • Quivey RG, Jr Kuhnert WL, Hahn K. 2001. Genetics of acid adaptation in oral streptococci. Crit Rev Oral Biol Med. 12(4):301–314.
  • Rainey K, Michalek SM, Wen ZT, Wu H. 2018. Glycosyltransferase-mediated biofilm matrix dynamics and virulence of Streptococcus mutans. Appl Environ Microbiol. 85(5). DOI:10.1128/AEM.02247-18.
  • Rainey K, Wilson L, Barnes S, Wu H. 2019. Quantitative proteomics uncovers the interaction between a virulence factor and mutanobactin synthetases in Streptococcus mutans. MSphere. 4(5):e00429–19.
  • Reck M, Tomasch J, Wagner-Döbler I. 2015. The alternative sigma factor SigX controls bacteriocin synthesis and competence, the two quorum sensing regulated traits in Streptococcus mutans. PLoS Genet. 11(7):e1005353.
  • Rickard AH, Campagna SR, Kolenbrander PE. 2008. Autoinducer-2 is produced in saliva-fed flow conditions relevant to natural oral biofilms . J Appl Microbiol. 105(6):2096–2103.
  • Rickard AH, Palmer RJ, Jr Blehert DS, Campagna SR, Semmelhack MF, Egland PG, Bassler BL, Kolenbrander PE. 2006. Autoinducer 2: a concentration-dependent signal for mutualistic bacterial biofilm growth. Mol Microbiol. 60(6):1446–1456.
  • Righolt AJ, Jevdjevic M, Marcenes W, Listl S. 2018. Global-, regional-, and country-level economic impacts of dental diseases in 2015. J Dent Res. 97(5):501–507.
  • Rioux KM, Santiago-Narvaez B. 2019. The role of CodY in hydrogen peroxide tolerance and biofilm formation of Streptococcus mutans. Honors Program Theses. 78. https://scholarship.rollins.edu/honors/78.
  • Rosier BT, De Jager M, Zaura E, Krom BP. 2014. Historical and contemporary hypotheses on the development of oral diseases: are we there yet? Front Cell Infect Microbiol. 4:92.
  • Russell RB. 1979. Wall-associated protein antigens of Streptococcus mutans. Microbiology. 114(1):109–115.
  • Russell MW, Lehner T. 1978. Characterisation of antigens extracted from cells and culture fluids of Streptococcus mutans serotype c. Arch Oral Biol. 23(1):7–15.
  • Santiago B, MacGilvray M, Faustoferri RC, Quivey RG. 2012. The branched-chain amino acid aminotransferase encoded by ilvE is involved in acid tolerance in Streptococcus mutans. J Bacteriol. 194(8):2010–2019.
  • Sato Y, Yamamoto Y, Kizaki H. 1997. Cloning and sequence analysis of the gbpC gene encoding a novel glucan-binding protein of Streptococcus mutans. Infect Immun. 65(2):668–675.
  • Senadheera MD, Guggenheim B, Spatafora GA, Huang YC, Choi J, Hung DC, Treglown JS, Goodman SD, Ellen RP, Cvitkovitch DG. 2005. A VicRK signal transduction system in Streptococcus mutans affects gtfBCD, gbpB, and ftf expression, biofilm formation, and genetic competence development. JB. 187(12):4064–4076.
  • Shah DS, Russell RR. 2004. A novel glucan-binding protein with lipase activity from the oral pathogen Streptococcus mutans. Microbiology (Reading, Engl). 150(Pt 6):1947–1956.
  • Shanker E, Federle MJ. 2017. Quorum sensing regulation of competence and bacteriocins in Streptococcus pneumoniae and mutans. Genes. 8(1):15.
  • Sheng J, Marquis RE. 2007. Malolactic fermentation by Streptococcus mutans. FEMS Microbiol Lett. 272(2):196–201.
  • Shields RC, O’Brien G, Maricic N, Kesterson A, Grace M, Hagen SJ, Burne RA. 2017. Genome-wide screens reveal new gene products that influence genetic competence in Streptococcus mutans. J Bacteriol. 200(2). DOI:10.1128/JB.00508-17.
  • Son M, Ahn SJ, Guo Q, Burne RA, Hagen SJ. 2012. Microfluidic study of competence regulation in Streptococcus mutans: environmental inputs modulate bimodal and unimodal expression of comX. Mol Microbiol. 86(2):258–272.
  • Son M, Shields RC, Ahn SJ, Burne RA, Hagen SJ. 2015. Bidirectional signaling in the competence regulatory pathway of Streptococcus mutans. FEMS Microbiol Lett. 362(19):fnv159.
  • Song L, Sudhakar P, Wang W, Conrads G, Brock A, Sun J, Wagner-Döbler I, Zeng AP. 2012. A genome-wide study of two-component signal transduction systems in eight newly sequenced mutans streptococci strains. BMC Genomics. 13(1):128.
  • Stookey GK. 2008. The effect of saliva on dental caries. J Am Dent Assoc. 139:11S–17S.
  • Suntharalingam P, Senadheera MD, Mair RW, Lévesque CM, Cvitkovitch DG. 2009. The LiaFSR system regulates the cell envelope stress response in Streptococcus mutans. J Bacteriol. 191(9):2973–2984.
  • Sztajer H, Lemme A, Vilchez R, Schulz S, Geffers R, Yip CY, Levesque CM, Cvitkovitch DG, Wagner-Döbler I. 2008. Autoinducer-2-regulated genes in Streptococcus mutans UA159 and global metabolic effect of the luxS mutation. J Bacteriol. 190(1):401–415.
  • Takahashi S, Abbe K, Yamada T. 1982. Purification of pyruvate formate-lyase from Streptococcus mutans and its regulatory properties. J Bacteriol. 149(3):1034–1040.
  • Tamura H, Yamada A, Kato H. 2012. Characterization of Streptococcus criceti insertion sequence ISScr1. Genes Genet Syst. 87(3):153–160.
  • Tremblay YD, Lo H, Li YH, Halperin SA, Lee SF. 2009. Expression of the Streptococcus mutans essential two-component regulatory system VicRK is pH and growth-phase dependent and controlled by the LiaFSR three-component regulatory system. Microbiology (Reading, Engl). 155(Pt 9):2856–2865.
  • Tsuda H, Yamashita Y, Shibata Y, Nakano Y, Koga T. 2002. Genes involved in bacitracin resistance in Streptococcus mutans. Antimicrob Agents Chemother. 46(12):3756–3764.
  • Underhill SA, Shields RC, Kaspar JR, Haider M, Burne RA, Hagen SJ. 2018. Intracellular signaling by the comRS system in Streptococcus mutans genetic competence. MSphere. 3(5). DOI:10.1128/mSphere.00444-18.
  • van der Ploeg JR. 2005. Regulation of bacteriocin production in Streptococcus mutans by the quorum-sensing system required for development of genetic competence. J Bacteriol. 187(12):3980–3989.
  • Vendeville A, Winzer K, Heurlier K, Tang CM, Hardie KR. 2005. Making ‘sense’ of metabolism: autoinducer-2, LuxS and pathogenic bacteria. Nat Rev Microbiol. 3(5):383–396.
  • Wang BY, Kuramitsu HK. 2005. Interactions between oral bacteria: inhibition of Streptococcus mutans bacteriocin production by Streptococcus gordonii. Appl Environ Microbiol. 71(1):354–362.
  • Wen ZT, Burne RA. 2004. LuxS-mediated signaling in Streptococcus mutans is involved in regulation of acid and oxidative stress tolerance and biofilm formation. J Bacteriol. 186(9):2682–2691.
  • Winzer K, Hardie KR, Williams P. 2003. LuxS and autoinducer-2: their contribution to quorum sensing and metabolism in bacteria. Adv Appl Microbiol. 53:291–396.
  • Xavier KB, Bassler BL. 2005. Interference with AI-2-mediated bacterial cell-cell communication. Nature. 437(7059):750–753.
  • Xia L, Xia W, Li S, Li W, Liu J, Ding H, Li J, Li H, Chen Y, Su X, et al. 2012. Identification and expression of small non-coding RNA, L10-Leader, in different growth phases of Streptococcus mutans. Nucleic Acid Ther. 22(3):177–186.
  • Yamada TA, Carlsson J. 1975. Regulation of lactate dehydrogenase and change of fermentation products in streptococci. J Bacteriol. 124(1):55–61.
  • Yamamoto Y, Sato Y, Takahashi-Abbe S, Takahashi N, Kizaki H. 2000. Characterization of the Streptococcus mutans pyruvate formate-lyase (PFL)-activating enzyme gene by complementary reconstitution of the in vitro PFL-reactivating system. Infect Immun. 68(8):4773–4777.
  • Zeng L, Das S, Burne RA. 2011. Genetic analysis of the functions and interactions of components of the LevQRST signal transduction complex of Streptococcus mutans. PLoS One. 6(2):e17335.
  • Zeng L, Wen ZT, Burne RA. 2006. A novel signal transduction system and feedback loop regulate fructan hydrolase gene expression in Streptococcus mutans. Mol Microbiol. 62(1):187–200.
  • Zhang J, Biswas I. 2009. A phenotypic microarray analysis of a Streptococcus mutans liaS mutant. Microbiology (Reading, Engl.). 155(Pt 1):61–68.
  • Zhu W, Liu S, Zhuang P, Liu J, Wang Y, Lin H. 2017. Characterization of acid-tolerance-associated small RNAs in clinical isolates of Streptococcus mutans: potential biomarkers for caries prevention. Mol Med Rep. 16(6):9242–9250.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.