1,075
Views
8
CrossRef citations to date
0
Altmetric
Review Articles

Combatting intracellular pathogens using bacteriophage delivery

, &
Pages 461-478 | Received 28 Nov 2020, Accepted 08 Mar 2021, Published online: 05 Apr 2021

References

  • Adams KN, Takaki K, Connolly LE, Wiedenhoft H, Winglee K, Humbert O, Edelstein PH, Cosma CL, Ramakrishnan L. 2011. Drug tolerance in replicating mycobacteria mediated by a macrophage-induced efflux mechanism. Cell. 145(1):39–53.
  • Agarwal R, Johnson CT, Imhoff BR, Donlan RM, McCarty NA, García AJ. 2018. Inhaled bacteriophage-loaded polymeric microparticles ameliorate acute lung infections. Nat Biomed Eng. 2(11):841–849.
  • Ahamed ST, Roy B, Basu U, Dutta S, Ghosh AN, Bandyopadhyay B, Giri N. 2019. Genomic and proteomic characterizations of Sfin-1, a novel lytic phage infecting multidrug-resistant shigella spp. and Escherichia coli C. Front Microbiol. 10:1876–1876.
  • Ahmadi H, Barbut S, Lim L-T, Balamurugan S. 2020. Examination of the use of bacteriophage as an additive and determining its best application method to control listeria monocytogenes in a cooked-meat model system. Front Microbiol. 11(779):779.
  • Amarh ED, Dedrick RM, Garlena RA, Russell DA, Jacobs-Sera D, Hatfull GF. 2021. Genome sequence of Mycobacterium abscessus Phage phiT46-1. Microbiol Resour Announc. 10(2):e01421–20.
  • Armstrong JA, Hart PD. 1971. Response of cultured macrophages to Mycobacterium tuberculosis, with observations on fusion of lysosomes with phagosomes. J Exp Med. 134(3 Pt 1):713–740.
  • Azimi T, Mosadegh M, Nasiri MJ, Sabour S, Karimaei S, Nasser A. 2019. Phage therapy as a renewed therapeutic approach to mycobacterial infections: a comprehensive review. Infect Drug Resist. 12:2943–2959.
  • Barrangou R, Fremaux C, Deveau H, Richards M, Boyaval P, Moineau S, Romero DA, Horvath P. 2007. CRISPR provides acquired resistance against viruses in prokaryotes. Science. 315(5819):1709–1712.
  • Bastidas RJ, Elwell CA, Engel JN, Valdivia RH. 2013. Chlamydial intracellular survival strategies. Cold Spring Harb Perspect Med. 3(5):a010256.
  • Baudoux P, Bles N, Lemaire S, Mingeot-Leclercq M-P, Tulkens PM, Van Bambeke F. 2007. Combined effect of pH and concentration on the activities of gentamicin and oxacillin against Staphylococcus aureus in pharmacodynamic models of extracellular and intracellular infections. J Antimicrob Chemother. 59(2):246–253.
  • Beckman KB, Ames BN. 1997. Oxidative decay of DNA. J Biol Chem. 272(32):19633–19636.
  • Bertram C, Hass R. 2008. Cellular responses to reactive oxygen species-induced DNA damage and aging. Biol Chem. 389(3):211–220.
  • Bhattarai SR, Yoo SY, Lee S-W, Dean D. 2012. Engineered phage-based therapeutic materials inhibit Chlamydia trachomatis intracellular infection. Biomaterials. 33(20):5166–5174.
  • Brouillette E, Grondin G, Shkreta L, Lacasse P, Talbot BG. 2003. In vivo and in vitro demonstration that Staphylococcus aureus is an intracellular pathogen in the presence or absence of fibronectin-binding proteins. Microb Pathog. 35(4):159–168.
  • Broxmeyer L, Sosnowska D, Miltner E, Chacón O, Wagner D, McGarvey J, Barletta RG, Bermudez LE. 2002. Killing of Mycobacterium avium and Mycobacterium tuberculosis by a mycobacteriophage delivered by a nonvirulent mycobacterium: a model for phage therapy of intracellular bacterial pathogens. J Infect Dis. 186(8):1155–1160.
  • Bryan D, El-Shibiny A, Hobbs Z, Porter J, Kutter EM. 2016. Bacteriophage T4 infection of stationary phase E. coli: life after log from a phage perspective. Front Microbiol. 7:1391.
  • Bus T, Traeger A, Schubert US. 2018. The great escape: how cationic polyplexes overcome the endosomal barrier. J Mater Chem B. 6(43):6904–6918.
  • Campoccia D, Montanaro L, Arciola CR. 2013. A review of the biomaterials technologies for infection-resistant surfaces. Biomaterials. 34(34):8533–8554.
  • Capparelli R, Parlato M, Borriello G, Salvatore P, Iannelli D. 2007. Experimental phage therapy against Staphylococcus aureus in mice. Antimicrob Agents Chemother. 51(8):2765–2773.
  • Carrigy NB, Larsen SE, Reese V, Pecor T, Harrison M, Kuehl PJ, Hatfull GF, Sauvageau D, Baldwin SL, Finlay WH, et al. 2019. Prophylaxis of Mycobacterium tuberculosis H37Rv infection in a preclinical mouse model via inhalation of nebulized bacteriophage D29. Antimicrob Agents Chemother. 63(12):e00871–19.
  • Carvalho C, Costa AR, Silva F, Oliveira A. 2017. Bacteriophages and their derivatives for the treatment and control of food-producing animal infections. Crit Rev Microbiol. 43(5):583–601.
  • Chadha P, Katare OP, Chhibber S. 2017. Liposome loaded phage cocktail: enhanced therapeutic potential in resolving Klebsiella pneumoniae mediated burn wound infections. Burns. 43(7):1532–1543.
  • Chhibber S, Kaur J, Kaur S. 2018. Liposome entrapment of bacteriophages improves wound healing in a diabetic mouse MRSA infection. Front Microbiol. 9:561.
  • Cinquerrui S, Mancuso F, Vladisavljević GT, Bakker SE, Malik DJ. 2018. Nanoencapsulation of bacteriophages in liposomes prepared using microfluidic hydrodynamic flow focusing. Front Microbiol. 9:2172.
  • Citorik RJ, Mimee M, Lu TK. 2014. Bacteriophage-based synthetic biology for the study of infectious diseases. Curr Opin Microbiol. 19:59–69.
  • Cogan NG. 2006. Effects of persister formation on bacterial response to dosing. J Theor Biol. 238(3):694–703.
  • Colom J, Cano-Sarabia M, Otero J, Aríñez-Soriano J, Cortés P, Maspoch D, Llagostera M. 2017. Microencapsulation with alginate/CaCO3: a strategy for improved phage therapy. Sci Rep. 7:41441.
  • Comeau AM, Tétart F, Trojet SN, Prère M-F, Krisch HM. 2007. Phage-Antibiotic Synergy (PAS): beta-lactam and quinolone antibiotics stimulate virulent phage growth. PLoS One. 2(8):e799.
  • Danelishvili L, Young LS, Bermudez LE. 2006. In vivo efficacy of phage therapy for Mycobacterium avium infection as delivered by a nonvirulent mycobacterium. Microb Drug Resist. 12(1):1–6.
  • Dedrick RM, Guerrero-Bustamante CA, Garlena RA, Russell DA, Ford K, Harris K, Gilmour KC, Soothill J, Jacobs-Sera D, Schooley RT, et al. 2019. Engineered bacteriophages for treatment of a patient with a disseminated drug-resistant Mycobacterium abscessus. Nat Med. 25(5):730–733.
  • Doore SM, Schrad JR, Dean WF, Dover JA, Parent KN. 2018. Phages Isolated during a dysentery outbreak reveal uncommon structures and broad species diversity. J Virol. 92(8):e02117-17.
  • Dor-On E, Solomon B. 2015. Targeting glioblastoma via intranasal administration of Ff bacteriophages. Front Microbiol. 6:530.
  • Duerr DM, White SJ, Schluesener HJ. 2004. Identification of peptide sequences that induce the transport of phage across the gastrointestinal mucosal barrier. J Virol Methods. 116(2):177–180.
  • Dupuis M-È, Villion M, Magadán AH, Moineau S. 2013. CRISPR-Cas and restriction-modification systems are compatible and increase phage resistance. Nat Commun. 4:2087.
  • Enikeeva FN, Severinov KV, Gelfand MS. 2010. Restriction-modification systems and bacteriophage invasion: who wins? J Theor Biol. 266(4):550–559.
  • Fang FC. 2011. Antimicrobial actions of reactive oxygen species. mBio. 2(5):e00141–11.
  • Faruque SM, Chowdhury N, Khan R, Hasan MR, Nahar J, Islam MJ, Yamasaki S, Ghosh AN, Nair GB, Sack DA, et al. 2003. Shigella dysenteriae type 1-specific bacteriophage from environmental waters in Bangladesh. Appl Environ Microbiol. 69(12):7028–7031.
  • Fenaroli F, Robertson JD, Scarpa E, Gouveia VM, Di Guglielmo C, De Pace C, Elks PM, Poma A, Evangelopoulos D, Canseco JO, et al. 2020. Polymersomes eradicating intracellular bacteria. ACS Nano. 14(7):8287–8298.
  • Fenton OS, Olafson KN, Pillai PS, Mitchell MJ, Langer R. 2018. Advances in biomaterials for drug delivery. Adv Mater. 30(29):e1705328.
  • Fisher RA, Gollan B, Helaine S. 2017. Persistent bacterial infections and persister cells. Nat Rev Microbiol. 15(8):453–464.
  • Ford ME, Sarkis GJ, Belanger AE, Hendrix RW, Hatfull GF. 1998. Genome structure of mycobacteriophage D29: implications for phage evolution. J Mol Biol. 279(1):143–164.
  • Ford ME, Stenstrom C, Hendrix RW, Hatfull GF. 1998. Mycobacteriophage TM4: genome structure and gene expression. Tuber Lung Dis. 79(2):63–73.
  • Forti F, Roach DR, Cafora M, Pasini ME, Horner DS, Fiscarelli EV, Rossitto M, Cariani L, Briani F, Debarbieux L, et al. 2018. Design of a broad-range bacteriophage cocktail that reduces Pseudomonas aeruginosa biofilms and treats acute infections in two animal models. Antimicrob Agents Chemother. 62(6):e02573-17.
  • Fraunholz M, Sinha B. 2012. Intracellular Staphylococcus aureus: live-in and let die. Front Cell Infect Microbiol. 2:43.
  • Freeman EC, Weiland LM, Meng WS. 2013. Modeling the proton sponge hypothesis: examining proton sponge effectiveness for enhancing intracellular gene delivery through multiscale modeling. J Biomater Sci Polym Ed. 24(4):398–416.
  • Fu D, Roufogalis BD. 2007. Actin disruption inhibits endosomal traffic of P-glycoprotein-EGFP and resistance to daunorubicin accumulation. Am J Physiol Cell Physiol. 292(4):C1543–C1552.
  • Fulgione A, Ianniello F, Papaianni M, Contaldi F, Sgamma T, Giannini C, Pastore S, Velotta R, Della Ventura B, Roveri N, et al. 2019. Biomimetic hydroxyapatite nanocrystals are an active carrier for Salmonella bacteriophages. Int J Nanomedicine. 14:2219–2232.
  • Gaillard JL, Berche P, Mounier J, Richard S, Sansonetti P. 1987. In vitro model of penetration and intracellular growth of Listeria monocytogenes in the human enterocyte-like cell line Caco-2. Infect Immun. 55(11):2822–2829.
  • Galan JE. 1994. Interactions of bacteria with non-phagocytic cells. Current Opinion in Immunology. 6(4):590–595.
  • Garai P, Berry L, Moussouni M, Bleves S, Blanc-Potard A-B. 2019. Killing from the inside: Intracellular role of T3SS in the fate of Pseudomonas aeruginosa within macrophages revealed by mgtC and oprF mutants. PLoS Pathog. 15(6):e1007812.
  • Garcia E, Elliott JM, Ramanculov E, Chain PSG, Chu MC, Molineux IJ. 2003. The genome sequence of Yersinia pestis bacteriophage phiA1122 reveals an intimate history with the coliphage T3 and T7 genomes. J Bacteriol. 185(17):5248–5262.
  • García P, Martínez B, Obeso JM, Lavigne R, Lurz R, Rodríguez A. 2009. Functional genomic analysis of two Staphylococcus aureus phages isolated from the dairy environment. Appl Environ Microbiol. 75(24):7663–7673.
  • Gestin M, Dowaidar M, Langel U. 2017. Uptake mechanism of cell-penetrating peptides. Adv Exp Med Biol. 1030:255–264.
  • Gordillo Altamirano FL, Barr JJ. 2019. Phage therapy in the postantibiotic era. Clin Microbiol Reviews. 32(2):e00066-18.
  • Gordillo Altamirano FL, Barr JJ. 2020. Unlocking the next generation of phage therapy: the key is in the receptors. Curr Opin Biotechnol. 68:115–123.
  • Górski A, Borysowski J, Miȩdzybrodzki R. 2020. Bacteriophage interactions with epithelial cells: therapeutic implications. Front Microbiol. 11(3580):631161.
  • Grant SS, Hung DT. 2013. Persistent bacterial infections, antibiotic tolerance, and the oxidative stress response. Virulence. 4(4):273–283.
  • Greenwood DJ, Dos Santos MS, Huang S, Russell MRG, Collinson LM, MacRae JI, West A, Jiang H, Gutierrez MG. 2019. Subcellular antibiotic visualization reveals a dynamic drug reservoir in infected macrophages. Science. 364(6447):1279–1282.
  • Gu J, Liu X, Li Y, Han W, Lei L, Yang Y, Zhao H, Gao Y, Song J, Lu R, et al. 2012. A method for generation phage cocktail with great therapeutic potential. PLoS One. 7(3):e31698.
  • Guang-Han O, Leang-Chung C, Vellasamy KM, Mariappan V, Li-Yen C, Vadivelu J. 2016. Experimental phage therapy for Burkholderia pseudomallei infection. PLoS One. 11(7):e0158213.
  • Guenther S, Huwyler D, Richard S, Loessner MJ. 2009. Virulent bacteriophage for efficient biocontrol of Listeria monocytogenes in ready-to-eat foods. Appl Environ Microbiol. 75(1):93–100.
  • Haddad Kashani H, Schmelcher M, Sabzalipoor H, Seyed Hosseini E, Moniri R. 2017. Recombinant endolysins as potential therapeutics against antibiotic-resistant Staphylococcus aureus: current status of research and novel delivery strategies. Clin Microbiol Reviews. 31(1):e00071–17.
  • Helaine S, Cheverton AM, Watson KG, Faure LM, Matthews SA, Holden DW. 2014. Internalization of Salmonella by macrophages induces formation of nonreplicating persisters. Science. 343(6167):204–208.
  • Hodyra-Stefaniak K, Miernikiewicz P, Drapała J, Drab M, Jończyk-Matysiak E, Lecion D, Kaźmierczak Z, Beta W, Majewska J, Harhala M, et al. 2015. Mammalian host-versus-phage immune response determines phage fate in vivo. Sci Rep. 5:14802.
  • Hori M, Yonekura S-I, Nohmi T, Gruz P, Sugiyama H, Yonei S, Zhang-Akiyama Q-M. 2010. Error-prone translesion DNA synthesis by Escherichia coli DNA polymerase IV (DinB) on templates containing 1,2-dihydro-2-oxoadenine. J Nucleic Acids. 2010:807579.
  • Hsia R, Ohayon H, Gounon P, Dautry-Varsat A, Bavoil PM. 2000. Phage infection of the obligate intracellular bacterium, Chlamydia psittaci strain guinea pig inclusion conjunctivitis. Microbes Infect. 2(7):761–772.
  • Hussain S, Joo J, Kang J, Kim B, Braun GB, She Z-G, Kim D, Mann AP, Mölder T, Teesalu T, et al. 2018. Antibiotic-loaded nanoparticles targeted to the site of infection enhance antibacterial efficacy. Nat Biomed Eng. 2(2):95–103.
  • Hybiske K, Stephens RS. 2007. Mechanisms of host cell exit by the intracellular bacterium Chlamydia. Proc Natl Acad Sci U S A. 104(27):11430–11435.
  • Ibarra JA, Steele-Mortimer O. 2009. Salmonella-the ultimate insider. Salmonella virulence factors that modulate intracellular survival. Cell Microbiol. 11(11):1579–1586.
  • Jamwal SV, Mehrotra P, Singh A, Siddiqui Z, Basu A, Rao KVS. 2016. Mycobacterial escape from macrophage phagosomes to the cytoplasm represents an alternate adaptation mechanism. Sci Rep. 6:23089.
  • Jault P, Leclerc T, Jennes S, Pirnay JP, Que Y-A, Resch G, Rousseau AF, Ravat F, Carsin H, Le Floch R, et al. 2019. Efficacy and tolerability of a cocktail of bacteriophages to treat burn wounds infected by Pseudomonas aeruginosa (PhagoBurn): a randomised, controlled, double-blind phase 1/2 trial. Lancet Infect Dis. 19(1):35–45.
  • Jensen VB, Harty JT, Jones BD. 1998. Interactions of the invasive pathogens Salmonella typhimurium, Listeria monocytogenes, and Shigella flexneri with M cells and murine Peyer's patches. Infect Immun. 66(8):3758–3766.
  • Jung L-s, Ding T, Ahn J. 2017. Evaluation of lytic bacteriophages for control of multidrug-resistant Salmonella typhimurium. Ann Clin Microbiol Antimicrob. 16(1):66.
  • Kalapala YC, Sharma PR, Agarwal R. 2020. Antimycobacterial potential of mycobacteriophage under disease-mimicking conditions. Front Microbiol. 11:583661.
  • Kamaly N, Yameen B, Wu J, Farokhzad OC. 2016. Degradable controlled-release polymers and polymeric nanoparticles: mechanisms of controlling drug release. Chem Rev. 116(4):2602–2663.
  • Kamaruzzaman NF, Kendall S, Good L. 2017. Targeting the hard to reach: challenges and novel strategies in the treatment of intracellular bacterial infections. Br J Pharmacol. 174(14):2225–2236.
  • Kaur S, Harjai K, Chhibber S. 2014. Bacteriophage-aided intracellular killing of engulfed methicillin-resistant Staphylococcus aureus (MRSA) by murine macrophages. Appl Microbiol Biotechnol. 98(10):4653–4661.
  • Kim A, Shin T-H, Shin S-M, Pham CD, Choi D-K, Kwon M-H, Kim Y-S. 2012. Cellular internalization mechanism and intracellular trafficking of filamentous M13 phages displaying a cell-penetrating transbody and TAT peptide. PLoS One. 7(12):e51813.
  • Kim H, Barroso M, Samanta R, Greenberger L, Sztul E. 1997. Experimentally induced changes in the endocytic traffic of P-glycoprotein alter drug resistance of cancer cells. Am J Physiol. 273(2 Pt 1):C687–C702.
  • Kim K-P, Cha J-D, Jang E-H, Klumpp J, Hagens S, Hardt W-D, Lee K-Y, Loessner MJ. 2008. PEGylation of bacteriophages increases blood circulation time and reduces T-helper type 1 immune response. Microb Biotechnol. 1(3):247–257.
  • Kolenda C, Josse J, Medina M, Fevre C, Lustig S, Ferry T, Laurent F. 2019. Evaluation of the activity of a combination of three bacteriophages alone or in association with antibiotics on Staphylococcus aureus embedded in biofilm or internalized in osteoblasts. Antimicrob Agents Chemother. 64(3):e02231–19.
  • Kortright KE, Chan BK, Koff JL, Turner PE. 2019. Phage therapy: a renewed approach to combat antibiotic-resistant bacteria. Cell Host Microbe. 25(2):219–232.
  • Krut O, Bekeredjian-Ding I. 2018. Contribution of the immune response to phage therapy. J Immunol. 200(9):3037–3044.
  • Kumar Y, Cocchiaro J, Valdivia RH. 2006. The obligate intracellular pathogen Chlamydia trachomatis targets host lipid droplets. Curr Biol. 16(16):1646–1651.
  • Lapenkova MB, Smirnova NS, Rutkevich PN, Vladimirsky MA. 2018. Evaluation of the efficiency of lytic Mycobacteriophage D29 on the model of M. tuberculosis-infected macrophage RAW 264 cell line. Bull Exp Biol Med. 164(3):344–346.
  • Lee S, Kim MG, Lee HS, Heo S, Kwon M, Kim GBae. 2017. Isolation and characterization of listeria phages for control of growth of Listeria monocytogenes in Milk. Korean J Food Sci Anim Resour. 37(2):320–328.
  • Lehti TA, Pajunen MI, Skog MS, Finne J. 2017. Internalization of a polysialic acid-binding Escherichia coli bacteriophage into eukaryotic neuroblastoma cells. Nat Commun. 8(1):1915.
  • Leitner L, Sybesma W, Chanishvili N, Goderdzishvili M, Chkhotua A, Ujmajuridze A, Schneider MP, Sartori A, Mehnert U, Bachmann LM, et al. 2017. Bacteriophages for treating urinary tract infections in patients undergoing transurethral resection of the prostate: a randomized, placebo-controlled, double-blind clinical trial. BMC Urol. 17(1):90.
  • Lemaire S, Tulkens PM, Van Bambeke F. 2011. Contrasting effects of acidic pH on the extracellular and intracellular activities of the anti-gram-positive fluoroquinolones moxifloxacin and delafloxacin against Staphylococcus aureus. Antimicrob Agents Chemother. 55(2):649–658.
  • Loh B, Gondil VS, Manohar P, Khan FM, Yang H, Leptihn S. 2020. Encapsulation and delivery of therapeutic phages. Appl Environ Microbiol. 87(5):01979–01920.
  • Lu TK, Collins JJ. 2007. Dispersing biofilms with engineered enzymatic bacteriophage. Proc Natl Acad Sci U S A. 104(27):11197–11202.
  • Ma Y, Pacan JC, Wang Q, Xu Y, Huang X, Korenevsky A, Sabour PM. 2008. Microencapsulation of bacteriophage Felix O1 into chitosan-alginate microspheres for oral delivery. Appl Environ Microbiol. 74(15):4799–4805.
  • Madani F, Lindberg S, Langel U, Futaki S, Gräslund A. 2011. Mechanisms of cellular uptake of cell-penetrating peptides. J Biophys. 2011:414729.
  • Mahichi F, Synnott AJ, Yamamichi K, Osada T, Tanji Y. 2009. Site-specific recombination of T2 phage using IP008 long tail fiber genes provides a targeted method for expanding host range while retaining lytic activity. FEMS Microbiol Lett. 295(2):211–217.
  • Malik DJ, Sokolov IJ, Vinner GK, Mancuso F, Cinquerrui S, Vladisavljevic GT, Clokie MRJ, Garton NJ, Stapley AGF, Kirpichnikova A. 2017. Formulation, stabilisation and encapsulation of bacteriophage for phage therapy. Adv Colloid Interface Sci. 249:100–133.
  • Malik-Kale P, Winfree S, Steele-Mortimer O. 2012. The bimodal lifestyle of intracellular Salmonella in epithelial cells: replication in the cytosol obscures defects in vacuolar replication. PLoS One. 7(6):e38732.
  • Manning AJ, Kuehn MJ. 2011. Contribution of bacterial outer membrane vesicles to innate bacterial defense. BMC Microbiol. 11:258.
  • Matsubara T, Emoto W, Kawashiro K. 2007. A simple two-transition model for loss of infectivity of phages on exposure to organic solvent. Biomol Eng. 24(2):269–271.
  • Mayer O, Jain P, Weisbrod TR, Biro D, Ho L, Jacobs-Sera D, Hatfull GF, Jacobs WR. 2016. Fluorescent reporter DS6A mycobacteriophages reveal unique variations in infectibility and phage production in mycobacteria. J Bacteriol. 198(23):3220–3232.
  • McClarty G. 1994. Chlamydiae and the biochemistry of intracellular parasitism. Trends Microbiol. 2(5):157–164.
  • Melo LDR, Oliveira H, Pires DP, Dabrowska K, Azeredo J. 2020. Phage therapy efficacy: a review of the last 10 years of preclinical studies. Crit Rev Microbiol. 46(1):78–99.
  • Merabishvili M, Pirnay J-P, Verbeken G, Chanishvili N, Tediashvili M, Lashkhi N, Glonti T, Krylov V, Mast J, Van Parys L, et al. 2009. Quality-controlled small-scale production of a well-defined bacteriophage cocktail for use in human clinical trials. PLoS One. 4(3):e4944.
  • Michot J-M, Seral C, Van Bambeke F, Mingeot-Leclercq M-P, Tulkens PM. 2005. Influence of efflux transporters on the accumulation and efflux of four quinolones (ciprofloxacin, levofloxacin, garenoxacin, and moxifloxacin) in J774 macrophages. Antimicrob Agents Chemother. 49(6):2429–2437.
  • Mohamed A, Taha O, El-Sherif HM, Connerton PL, Hooton SPT, Bassim ND, Connerton IF, El-Shibiny A. 2020. Bacteriophage ZCSE2 is a potent antimicrobial against Salmonella enterica Serovars: ultrastructure, genomics and efficacy. Viruses. 12(4):424.
  • Mohan Raj JR, Karunasagar I. 2019. Phages amid antimicrobial resistance. Crit Rev Microbiol. 45(5–6):701–711.
  • Møller-Olsen C, Ho SFS, Shukla RD, Feher T, Sagona AP. 2018. Engineered K1F bacteriophages kill intracellular Escherichia coli K1 in human epithelial cells. Sci Rep. 8(1):17559.
  • Møller-Olsen C, Ross T, Leppard KN, Foisor V, Smith C, Grammatopoulos DK, Sagona AP. 2020. Bacteriophage K1F targets Escherichia coli K1 in cerebral endothelial cells and influences the barrier function. Sci Rep. 10(1):8903.
  • Monsur KA, Rahman MA, Huq F, Islam MN, Northrup RS, Hirschhorn N. 1970. Effect of massive doses of bacteriophage on excretion of vibrios, duration of diarrhoea and output of stools in acute cases of cholera. Bull World Health Organ. 42(5):723–732.
  • Moons P, Faster D, Aertsen A. 2013. Lysogenic conversion and phage resistance development in phage exposed Escherichia coli biofilms. Viruses. 5(1):150–161.
  • Mortality GBD. 2016. Causes of Death C. Global, regional, and national life expectancy, all-cause mortality, and cause-specific mortality for 249 causes of death, 1980–2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet. 388(10053):1459–1544.
  • Moulder JW. 1985. Comparative biology of intracellular parasitism. Microbiol Rev. 49(3):298–337.
  • Nguyen S, Baker K, Padman BS, Patwa R, Dunstan RA, Weston TA, Schlosser K, Bailey B, Lithgow T, Lazarou M, et al. 2017. Bacteriophage transcytosis provides a mechanism to cross epithelial cell layers. mBio. 8(6):01874–01817.
  • Nichterlein T, Kretschmar M, Schadt A, Meyer A, Wildfeuer A, Laufen H, Hof H. 1998. Reduced intracellular activity of antibiotics against Listeria monocytogenes in multidrug resistant cells. Int J Antimicrob Agents. 10(2):119–125.
  • Nieth A, Verseux C, Barnert S, Süss R, Römer W. 2015. A first step toward liposome-mediated intracellular bacteriophage therapy. Expert Opin Drug Deliv. 12(9):1411–1424.
  • Nieth A, Verseux C, Römer W. 2015. A question of attire: dressing up bacteriophage therapy for the battle against antibiotic-resistant intracellular bacteria. Springer Science Reviews. 3(1):1–11.
  • Nitta SK, Numata K. 2013. Biopolymer-based nanoparticles for drug/gene delivery and tissue engineering. Int J Mol Sci. 14(1):1629–1654.
  • Nobrega FL, Costa AR, Santos JF, Siliakus MF, van Lent JWM, Kengen SWM, Azeredo J, Kluskens LD. 2016. Genetically manipulated phages with improved pH resistance for oral administration in veterinary medicine. Sci Rep. 6(1):39235.
  • Odenholt I, Gustafsson I, Löwdin E, Cars O. 2003. Suboptimal antibiotic dosage as a risk factor for selection of penicillin-resistant Streptococcus pneumoniae: in vitro kinetic model. Antimicrob Agents Chemother. 47(2):518–523.
  • Ong CT, Babalola CP, Nightingale CH, Nicolau DP. 2005. Penetration, efflux and intracellular activity of tigecycline in human polymorphonuclear neutrophils (PMNs). J Antimicrob Chemother. 56(3):498–501.
  • Ooi ML, Drilling AJ, Morales S, Fong S, Moraitis S, Macias-Valle L, Vreugde S, Psaltis AJ, Wormald P-J. 2019. Safety and tolerability of bacteriophage therapy for chronic rhinosinusitis due to Staphylococcus aureus. JAMA Otolaryngol Head Neck Surg. 145(8):723–729.
  • Otero J, García-Rodríguez A, Cano-Sarabia M, Maspoch D, Marcos R, Cortés P, Llagostera M. 2019. Biodistribution of liposome-encapsulated bacteriophages and their transcytosis during oral phage therapy. Front Microbiol. 10:689.
  • Patel JC, Galán JE. 2005. Manipulation of the host actin cytoskeleton by Salmonella-all in the name of entry. Curr Opin Microbiol. 8(1):10–15.
  • Pei Y, Mohamed MF, Seleem MN, Yeo Y. 2017. Particle engineering for intracellular delivery of vancomycin to methicillin-resistant Staphylococcus aureus (MRSA)-infected macrophages. J Control Release. 267:133–143.
  • Peng L, Chen B-w, Luo Y-a, Wang G-z. 2006. Effect of mycobacteriophage to intracellular mycobacteria in vitro. Chin Med J (Engl). 119(8):692–695.
  • Peng X, Jiang G, Liu W, Zhang Q, Qian W, Sun J. 2016. Characterization of differential pore-forming activities of ESAT-6 proteins from Mycobacterium tuberculosis and Mycobacterium smegmatis. FEBS Lett. 590(4):509–519.
  • Piuri M, Hatfull GF. 2006. A peptidoglycan hydrolase motif within the mycobacteriophage TM4 tape measure protein promotes efficient infection of stationary phase cells. Mol Microbiol. 62(6):1569–1585.
  • Pizarro-Cerdá J, Kühbacher A, Cossart P. 2012. Entry of Listeria monocytogenes in mammalian epithelial cells: an updated view. Cold Spring Harb Perspect Med. 2(11):a010009–a010009.
  • Poole K. 2005. Efflux-mediated antimicrobial resistance. J Antimicrob Chemother. 56(1):20–51.
  • Porter J, Anderson J, Carter L, Donjacour E, Paros M. 2016. In vitro evaluation of a novel bacteriophage cocktail as a preventative for bovine coliform mastitis. J Dairy Sci. 99(3):2053–2062.
  • Puapermpoonsiri U, Spencer J, van der Walle CF. 2009. A freeze-dried formulation of bacteriophage encapsulated in biodegradable microspheres. Eur J Pharm Biopharm. 72(1):26–33.
  • Ramón-García S, Martín C, Thompson CJ, Aínsa JA. 2009. Role of the Mycobacterium tuberculosis P55 efflux pump in intrinsic drug resistance, oxidative stress responses, and growth. Antimicrob Agents Chemother. 53(9):3675–3682.
  • Reyes-Robles T, Dillard RS, Cairns LS, Silva-Valenzuela CA, Housman M, Ali A, Wright ER, Camilli A. 2018. Vibrio cholerae outer membrane vesicles inhibit bacteriophage infection. J Bacteriol. 200(15):e00792–17.
  • Riley LW. 1995. Determinants of cell entry and intracellular survival of Mycobacterium tuberculosis. Trends Microbiol. 3(1):27–31. 1995/01/01/
  • Rowe SE, Wagner NJ, Li L, Beam JE, Wilkinson AD, Radlinski LC, Zhang Q, Miao EA, Conlon BP. 2020. Reactive oxygen species induce antibiotic tolerance during systemic Staphylococcus aureus infection. Nat Microbiol. 5(2):282–290.
  • Sarker SA, Sultana S, Reuteler G, Moine D, Descombes P, Charton F, Bourdin G, McCallin S, Ngom-Bru C, Neville T, et al. 2016. Oral phage therapy of acute bacterial diarrhea with two coliphage preparations: a randomized trial in children from Bangladesh. EBioMedicine. 4:124–137.
  • Scholl D, Merril C. 2005. The genome of bacteriophage K1F, a T7-like phage that has acquired the ability to replicate on K1 strains of Escherichia coli. J Bacteriol. 187(24):8499–8503.
  • Seral C, Barcia-Macay M, Mingeot-Leclercq MP, Tulkens PM, Van Bambeke F. 2005. Comparative activity of quinolones (ciprofloxacin, levofloxacin, moxifloxacin and garenoxacin) against extracellular and intracellular infection by Listeria monocytogenes and Staphylococcus aureus in J774 macrophages. J Antimicrob Chemother. 55(4):511–517.
  • Seral C, Carryn S, Tulkens PM, Van Bambeke F. 2003. Influence of P-glycoprotein and MRP efflux pump inhibitors on the intracellular activity of azithromycin and ciprofloxacin in macrophages infected by Listeria monocytogenes or Staphylococcus aureus. J Antimicrob Chemother. 51(5):1167–1173.
  • Seral C, Michot J-M, Chanteux H, Mingeot-Leclercq M-P, Tulkens PM, Van Bambeke F. 2003. Influence of P-glycoprotein inhibitors on accumulation of macrolides in J774 murine macrophages. Antimicrob Agents Chemother. 47(3):1047–1051.
  • Singla S, Harjai K, Katare OP, Chhibber S. 2016. Encapsulation of bacteriophage in liposome accentuates its entry in to macrophage and shields it from neutralizing antibodies. PLoS One. 11(4):e0153777.
  • Sinha B, Herrmann M. 2005. Mechanism and consequences of invasion of endothelial cells by Staphylococcus aureus. Thromb Haemost. 94(2):266–277.
  • Śliwa-Dominiak J, Suszyńska E, Pawlikowska M, Deptuła W. 2013. Chlamydia bacteriophages. Arch Microbiol. 195(10–11):765–771.
  • Sousa JAM, Rocha EPC. 2019. Environmental structure drives resistance to phages and antibiotics during phage therapy and to invading lysogens during colonisation. Sci Rep. 9(1):3149.
  • Spooner R, Yilmaz O. 2011. The role of reactive-oxygen-species in microbial persistence and inflammation. Int J Mol Sci. 12(1):334–352.
  • Srivastava AS, Chauhan DP, Carrier E. 2004. In utero detection of T7 phage after systemic administration to pregnant mice. Biotechniques. 37(1):81–83.
  • Sukumaran SK, Shimada H, Prasadarao NV. 2003. Entry and intracellular replication of Escherichia coli K1 in macrophages require expression of outer membrane protein A. Infect Immun. 71(10):5951–5961.
  • Swift BMC, Gerrard ZE, Huxley JN, Rees CED. 2014. Factors affecting phage D29 infection: a tool to investigate different growth states of mycobacteria. PLoS One. 9(9):e106690.
  • Tagliaferri TL, Jansen M, Horz H-P. 2019. Fighting pathogenic bacteria on two fronts: phages and antibiotics as combined strategy. Front Cell Infect Microbiol. 9(22):22.
  • Takeuchi I, Osada K, Azam AH, Asakawa H, Miyanaga K, Tanji Y. 2016. The presence of two receptor-binding proteins contributes to the wide host range of staphylococcal twort-like phages. Appl Environ Microbiol. 82(19):5763–5774.
  • Tang M, Pham P, Shen X, Taylor JS, O'Donnell M, Woodgate R, Goodman MF. 2000. Roles of E. coli DNA polymerases IV and V in lesion-targeted and untargeted SOS mutagenesis. Nature. 404(6781):1014–1018.
  • Tian Y, Wu M, Liu X, Liu Z, Zhou Q, Niu Z, Huang Y. 2015. Probing the endocytic pathways of the filamentous bacteriophage in live cells using ratiometric pH fluorescent indicator. Adv Healthc Mater. 4(3):413–419.
  • Toti US, Guru BR, Hali M, McPharlin CM, Wykes SM, Panyam J, Whittum-Hudson JA. 2011. Targeted delivery of antibiotics to intracellular chlamydial infections using PLGA nanoparticles. Biomaterials. 32(27):6606–6613.
  • Tran Van Nhieu G, Bourdet-Sicard R, Duménil G, Blocker A, Sansonetti PJ. 2000. Bacterial signals and cell responses during Shigella entry into epithelial cells. Cell Microbiol. 2(3):187–193.
  • Trastoy R, Manso T, Fernández-García L, Blasco L, Ambroa A, Pérez del Molino ML, Bou G, García-Contreras R, Wood TK, Tomás M. 2018. Mechanisms of bacterial tolerance and persistence in the gastrointestinal and respiratory environments. Clin Microbiol Reviews. 31(4):e00023-18.
  • Trigo G, Martins TG, Fraga AG, Longatto-Filho A, Castro AG, Azeredo J, Pedrosa J. 2013. Phage therapy is effective against infection by Mycobacterium ulcerans in a murine footpad model. PLoS Negl Trop Dis. 7(4):e2183.
  • United States of America clinical trial database. n.d. https://www.clinicaltrials.gov/.
  • Van Belleghem J, Dąbrowska K, Vaneechoutte M, Barr J, Bollyky P. 2018. Interactions between bacteriophage, bacteria, and the mammalian immune system. Viruses. 11(1):10.
  • Van Nhieu GT, Isberg RR. 1991. The Yersinia pseudotuberculosis invasin protein and human fibronectin bind to mutually exclusive sites on the alpha 5 beta 1 integrin receptor. J Biol Chem. 266(36):24367–24375.
  • Vinner GK, Richards K, Leppanen M, et al. 2019. Microencapsulation of enteric bacteriophages in a pH-responsive solid oral dosage formulation using a scalable membrane emulsification process. Pharmaceutics. 11(9):475.
  • Watson BNJ, Vercoe RB, Salmond GPC, Westra ER, Staals RHJ, Fineran PC. 2019. Type I-F CRISPR-Cas resistance against virulent phages results in abortive infection and provides population-level immunity. Nat Commun. 10(1):5526.
  • Wayne LG, Sohaskey CD. 2001. Nonreplicating persistence of mycobacterium tuberculosis. Annu Rev Microbiol. 55:139–163.
  • Wijagkanalan W, Kawakami S, Takenaga M, Igarashi R, Yamashita F, Hashida M. 2008. Efficient targeting to alveolar macrophages by intratracheal administration of mannosylated liposomes in rats. J Control Release. 125(2):121–130.
  • Wittebole X, De Roock S, Opal SM. 2014. A historical overview of bacteriophage therapy as an alternative to antibiotics for the treatment of bacterial pathogens. Virulence. 5(1):226–235.
  • World Health Organization. 2019. Tuberculosis [Report]. WHO fact sheets. 14 October 2020. https://www.who.int/teams/global-tuberculosis-programme/tb-reports
  • Xu H, Bao X, Wang Y, Xu Y, Deng B, Lu Y, Hou J. 2018. Engineering T7 bacteriophage as a potential DNA vaccine targeting delivery vector. Virol J. 15(1):49.
  • Xue Y, Zhai S, Wang Z, Ji Y, Wang G, Wang T, Wang X, Xi H, Cai R, Zhao R, et al. 2020. The yersinia phage X1 administered orally efficiently protects a murine chronic enteritis model against Yersinia enterocolitica infection. Front Microbiol. 11:351.
  • Yang C, Krishnamurthy S, Liu J, Liu S, Lu X, Coady DJ, Cheng W, De Libero G, Singhal A, Hedrick JL, et al. 2016. Broad-spectrum antimicrobial star polycarbonates functionalized with mannose for targeting bacteria residing inside immune cells. Adv Healthc Mater. 5(11):1272–1281.
  • Yang Y, Shen W, Zhong Q, Chen Q, He X, Baker JL, Xiong K, Jin X, Wang J, Hu F, et al. 2020. Development of a bacteriophage cocktail to constrain the emergence of phage-resistant Pseudomonas aeruginosa. Front Microbiol. 11:327.
  • Yehl K, Lemire S, Yang AC, Ando H, Mimee M, Torres MDT, de la Fuente-Nunez C, Lu TK. 2019. Engineering phage host-range and suppressing bacterial resistance through phage Tail Fiber mutagenesis. Cell. 179(2):459–469.e9. 2019/10/03/
  • Żaczek M, Górski A, Skaradzińska A, Łusiak-Szelachowska M, Weber-Dąbrowska B. 2019. Phage penetration of eukaryotic cells: practical implications. Future Virology. 14(11):745–760.
  • Zhang H, Fouts DE, DePew J, Stevens RH. 2013. Genetic modifications to temperate Enterococcus faecalis phage Ef11 that abolish the establishment of lysogeny and sensitivity to repressor, and increase host range and productivity of lytic infection. Microbiology (Reading). 159(Pt 6):1023–1035.
  • Zhang L, Sun L, Wei R, Gao Q, He T, Xu C, Liu X, Wang R. 2017. Intracellular Staphylococcus aureus control by virulent bacteriophages within MAC-T bovine mammary epithelial cells. Antimicrob Agents Chemother. 61(2):e01990–16.
  • Zhao X, Wu W, Qi Z, Cui Y, Yan Y, Guo Z, Wang Z, Wang H, Deng H, Xue Y, et al. 2011. The complete genome sequence and proteomics of Yersinia pestis phage Yep-phi. J Gen Virol. 92(Pt 1):216–221.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.