576
Views
2
CrossRef citations to date
0
Altmetric
Review Articles

Modulating host gene expression via gut microbiome–microRNA interplay to treat human diseases

, & ORCID Icon
Pages 596-611 | Received 27 Nov 2020, Accepted 18 Mar 2021, Published online: 06 Apr 2021

References

  • Ahmed FE, Jeffries CD, Vos PW, Flake G, Nuovo GJ, Sinar DR, Naziri W, Marcuard SP. 2009. Diagnostic microRNA markers for screening sporadic human colon cancer and active ulcerative colitis in stool and tissue. Cancer Genomics Proteomics. 6:281–295.
  • Alehagen U, Johansson P, Aaseth J, Alexander J, Wågsäter D. 2017. Significant changes in circulating microRNA by dietary supplementation of selenium and coenzyme Q10 in healthy elderly males. A subgroup analysis of a prospective randomized double-blind placebo-controlled trial among elderly Swedish citizens. PLoS One. 12:e0174880.
  • Andrew Walayat MYaDX. 2018. Therapeutic implication of miRNA in human disease. In: Sharad S, Kapur S, editors. Antisense therapy. IntechOpen.
  • Auerbach A, Vyas G, Li A, Halushka M, Witwer K. 2016. Uptake of dietary milk miRNAs by adult humans: a validation study. F1000Res. 5:721.
  • Baier SR, Nguyen C, Xie F, Wood JR, Zempleni J. 2014. MicroRNAs are absorbed in biologically meaningful amounts from nutritionally relevant doses of cow milk and affect gene expression in peripheral blood mononuclear cells, HEK-293 kidney cell cultures, and mouse livers. J Nutr. 144:1495–1500.
  • Barko PC, McMichael MA, Swanson KS, Williams DA. 2018. The gastrointestinal microbiome: a review. J Vet Intern Med. 32:9–25.
  • Barnaba V, Sinigaglia F. 1997. Molecular mimicry and T cell-mediated autoimmune disease. J Exp Med. 185:1529–1531.
  • Bayraktar R, Van Roosbroeck K, Calin GA. 2017. Cell-to-cell communication: microRNAs as hormones. Mol Oncol. 11:1673–1686.
  • Belcheva A. 2017. MicroRNAs at the epicenter of intestinal homeostasis. Bioessays. 39:1600200.
  • Benmoussa A, Lee CHC, Laffont B, Savard P, Laugier J, Boilard E, Gilbert C, Fliss I, Provost P. 2016. Commercial dairy cow milk microRNAs resist digestion under simulated gastrointestinal tract conditions. J Nutr. 146:2206–2215.
  • Bhatia H, Verma G, Datta M. 2014. miR-107 orchestrates ER stress induction and lipid accumulation by post-transcriptional regulation of fatty acid synthase in hepatocytes. Biochim Biophys Acta. 1839:334–343.
  • Biton M, Levin A, Slyper M, Alkalay I, Horwitz E, Mor H, Kredo-Russo S, Avnit-Sagi T, Cojocaru G, Zreik F, et al. 2011. Epithelial microRNAs regulate gut mucosal immunity via epithelium-T cell crosstalk. Nat Immunol. 12:239–246.
  • Bohnsack MT, Czaplinski K, Gorlich D. 2004. Exportin 5 is a RanGTP-dependent dsRNA-binding protein that mediates nuclear export of pre-miRNAs. RNA. 10:185–191.
  • Boleij A, Hechenbleikner EM, Goodwin AC, Badani R, Stein EM, Lazarev MG, Ellis B, Carroll KC, Albesiano E, Wick EC, et al. 2015. The Bacteroides fragilis toxin gene is prevalent in the colon mucosa of colorectal cancer patients. Clin Infect Dis. 60:208–215.
  • Brain O, Owens BMJ, Pichulik T, Allan P, Khatamzas E, Leslie A, Steevels T, Sharma S, Mayer A, Catuneanu AM, et al. 2013. The intracellular sensor NOD2 induces microRNA-29 expression in human dendritic cells to limit IL-23 release. Immunity. 39:521–536.
  • Bravo JA, Forsythe P, Chew MV, Escaravage E, Savignac HM, Dinan TG, Bienenstock J, Cryan JF. 2011. Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Proc Natl Acad Sci USA. 108:16050–16055.
  • Bravo-Parra M, Arenas-Padilla M, Brcenas-Preciado V, Hernández J, Mata-Haro V. 2020. The probiotic BB12 induces microRNAs involved in antigen processing and presentation in porcine monocyte-derived dendritic cells. Int J Mol Sci. 21:687.
  • Cai X, Hagedorn CH, Cullen BR. 2004. Human microRNAs are processed from capped, polyadenylated transcripts that can also function as mRNAs. RNA. 10:1957–1966.
  • Cernilogar FM, Onorati MC, Kothe GO, Burroughs AM, Parsi KM, Breiling A, Lo Sardo F, Saxena A, Miyoshi K, Siomi H, et al. 2011. Chromatin-associated RNA interference components contribute to transcriptional regulation in Drosophila. Nature. 480:391–395.
  • Chen CZ, Li L, Lodish HF, Bartel DP. 2004. MicroRNAs modulate hematopoietic lineage differentiation. Science. 303:83–86.
  • Chen X, Dai GH, Ren ZM, Tong YL, Yang F, Zhu YQ. 2016. Identification of dietetically absorbed rapeseed (Brassica campestris L.) bee pollen microRNAs in serum of mice. Biomed Res Int. 2016:5413849.
  • Cohen CR, Martinelli NC, Pinto GH, Phaelante A, Silvello D, Recamonde-Mendoza M, Andrades ME, Clausell N, Rohde LE, Ashton-Prolla P, et al. 2016. Abstract 318: vitamin E affects pathological cardiac hypertrophy and microRNAs expression in mice. Circ Res. 119:A318–A318.
  • Condrat CE, Thompson DC, Barbu MG, Bugnar OL, Boboc A, Cretoiu D, Suciu N, Cretoiu SM, Voinea SC. 2020. miRNAs as Biomarkers in Disease: Latest Findings Regarding Their Role in Diagnosis and Prognosis. Cells. 9:276.
  • Correa-Oliveira R, Fachi JL, Vieira A, Sato FT, Vinolo MA. 2016. Regulation of immune cell function by short-chain fatty acids. Clin Transl Immunol. 5:e73.
  • Cox MA, Jackson J, Stanton M, Rojas-Triana A, Bober L, Laverty M, Yang X, Zhu F, Liu J, Wang S, et al. 2009. Short-chain fatty acids act as antiinflammatory mediators by regulating prostaglandin E(2) and cytokines. WJG. 15:5549–5557.
  • Cullen BR. 2004. Transcription and processing of human microRNA precursors. Mol Cell. 16:861–865.
  • Daimiel-Ruiz L, Klett-Mingo M, Konstantinidou V, Micó V, Aranda JF, García B, Martínez-Botas J, Dávalos A, Fernández-Hernando C, Ordovás JM, et al. 2015. Dietary lipids modulate the expression of miR-107, a miRNA that regulates the circadian system. Mol Nutr Food Res. 59:1865–1878.
  • Dalmasso G, Nguyen HTT, Yan Y, Laroui H, Charania MA, Ayyadurai S, Sitaraman SV, Merlin D. 2011. Microbiota modulate host gene expression via microRNAs. PLoS One. 6:e19293
  • Dalmasso G, Nguyen HTT, Yan Y, Laroui H, Srinivasan S, Sitaraman SV, Merlin D. 2010. MicroRNAs determine human intestinal epithelial cell fate. Differentiation. 80:147–154.
  • Das LM, Torres-Castillo MDLA, Gill T, Levine AD. 2013. TGF-β conditions intestinal T cells to express increased levels of miR-155, associated with down-regulation of IL-2 and itk mRNA . Mucosal Immunol. 6:167–176.
  • Davie JR. 2003. Inhibition of histone deacetylase activity by butyrate. J Nutr. 133:2485S–2493S.
  • de Lucia C, Komici K, Borghetti G, Femminella GD, Bencivenga L, Cannavo A, Corbi G, Ferrara N, Houser SR, Koch WJ, et al. 2017. microRNA in cardiovascular aging and age-related cardiovascular diseases. Front Med. 4:74.
  • Deng C, Zhang P, Harper JW, Elledge SJ, Leder P. 1995. Mice lacking p21CIP1/WAF1 undergo normal development, but are defective in G1 checkpoint control. Cell. 82:675–684.
  • Dews M, Homayouni A, Yu D, Murphy D, Sevignani C, Wentzel E, Furth EE, Lee WM, Enders GH, Mendell JT, et al. 2006. Augmentation of tumor angiogenesis by a Myc-activated microRNA cluster. Nat Genet. 38:1060–1065.
  • Dharap A, Pokrzywa C, Murali S, Pandi G, Vemuganti R. 2013. MicroRNA miR-324-3p induces promoter-mediated expression of RelA gene. PLoS One. 8:e79467.
  • Din AU, Hassan A, Zhu Y, Yin T, Gregersen H, Wang G. 2019. Amelioration of TMAO through probiotics and its potential role in atherosclerosis. Appl Microbiol Biotechnol. 103:9217–9228.
  • Dinan TG, Cryan JF. 2017. The microbiome-gut-brain axis in health and disease. Gastroenterol Clin North Am. 46:77–89.
  • Fadaka AO, Ojo BA, Adewale OB, Esho T, Pretorius A. 2018. Effect of dietary components on miRNA and colorectal carcinogenesis. Cancer Cell Int. 18:130.
  • Felix TF, Lopez Lapa RM, de Carvalho M, Bertoni N, Tokar T, Oliveira RA, M. Rodrigues MA, Hasimoto CN, Oliveira WK, Pelafsky L, et al. 2019. MicroRNA modulated networks of adaptive and innate immune response in pancreatic ductal adenocarcinoma. PLoS One. 14:e0217421.
  • Feng Q, Chen WD, Wang YD. 2018. Gut microbiota: an integral moderator in health and disease. Front Microbiol. 9:151.
  • Fu Y, Chen J, Huang Z. 2019. Recent progress in microRNA-based delivery systems for the treatment of human disease. ExRNA. 1:24.
  • Guaraldi F, Salvatori G. 2012. Effect of breast and formula feeding on gut microbiota shaping in newborns. Front Cell Infect Microbiol. 2:94.
  • Gurav A, Sivaprakasam S, Bhutia YD, Boettger T, Singh N, Ganapathy V. 2015. Slc5a8, a Na+-coupled high-affinity transporter for short-chain fatty acids, is a conditional tumour suppressor in colon that protects against colitis and colon cancer under low-fibre dietary conditions. Biochem J. 469:267–278.
  • Hammond SM. 2015. An overview of microRNAs. Adv Drug Deliv Rev. 87:3–14.
  • Han J, Lee Y, Yeom KH, Kim YK, Jin H, Kim VN. 2004. The Drosha-DGCR8 complex in primary microRNA processing. Genes Dev. 18:3016–3027.
  • Hanna J, Hossain GS, Kocerha J. 2019. The potential for microRNA therapeutics and clinical research. Front Genet. 10:478.
  • Hasan N, Yang H. 2019. Factors affecting the composition of the gut microbiota, and its modulation. PeerJ. 7:e7502.
  • He L, Hannon GJ. 2004. MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet. 5:522–531.
  • Hewel C, Kaiser J, Wierczeiko A, Linke J, Reinhardt C, Endres K, Gerber S. 2019. Common miRNA patterns of Alzheimer’s disease and Parkinson’s disease and their putative impact on commensal gut microbiota. Front Neurosci. 13:113.
  • Hoban AE, Stilling RM, M Moloney G, Moloney RD, Shanahan F, Dinan TG, Cryan JF, Clarke G. 2017. Microbial regulation of microRNA expression in the amygdala and prefrontal cortex. Microbiome. 5:102.
  • Hu S, Dong TS, Dalal SR, Wu F, Bissonnette M, Kwon JH, Chang EB. 2011. The microbe-derived short chain fatty acid butyrate targets miRNA-dependent p21 gene expression in human colon cancer. PLoS One. 6:e16221.
  • Hu S, Liu L, Chang EB, Wang JY, Raufman JP. 2015. Butyrate inhibits pro-proliferative miR-92a by diminishing c-Myc-induced miR-17-92a cluster transcription in human colon cancer cells. Mol Cancer. 14:180.
  • Humphreys KJ, Cobiac L, Le Leu RK, Van der Hoek MB, Michael MZ. 2013. Histone deacetylase inhibition in colorectal cancer cells reveals competing roles for members of the oncogenic miR-17-92 cluster. Mol Carcinog. 52:459–474.
  • Humphreys KJ, Conlon MA, Young GP, Topping DL, Hu Y, Winter JM, Bird AR, Cobiac L, Kennedy NA, Michael MZ, et al. 2014. Dietary manipulation of oncogenic microRNA expression in human rectal mucosa: a randomized trial. Cancer Prev Res. 7:786–795.
  • Ipsaro JJ, Joshua-Tor L. 2015. From guide to target: molecular insights into eukaryotic RNA-interference machinery. Nat Struct Mol Biol. 22:20–28.
  • Ji Y, Li X, Zhu Y, Li N, Zhang N, Niu M. 2018. Faecal microRNA as a biomarker of the activity and prognosis of inflammatory bowel diseases. Biochem Biophys Res Commun. 503:2443–2450.
  • John B, Enright AJ, Aravin A, Tuschl T, Sander C, Marks DS. 2004. Human MicroRNA targets. PLoS Biol. 2:e363.
  • Kho ZY, Lal SK. 2018. The human gut microbiome – a potential controller of wellness and disease. Front Microbiol. 9:1835.
  • Khoo HE, Azlan A, Tang ST, Lim SM. 2017. Anthocyanidins and anthocyanins: colored pigments as food, pharmaceutical ingredients, and the potential health benefits. Food Nutr Res. 61:1361779.
  • Koh A, De Vadder F, Kovatcheva-Datchary P, Bäckhed F. 2016. From dietary fiber to host physiology: short-chain fatty acids as key bacterial metabolites. Cell. 165:1332–1345.
  • Kostic AD, Chun E, Robertson L, Glickman JN, Gallini CA, Michaud M, Clancy TE, Chung DC, Lochhead P, Hold GL, et al. 2013. Fusobacterium nucleatum potentiates intestinal tumorigenesis and modulates the tumor-immune microenvironment. Cell Host Microbe. 14:207–215.
  • Kura B, Parikh M, Slezak J, Pierce GN. 2019. The influence of diet on microRNAs that impact cardiovascular disease. Molecules. 24:1509.
  • Lee H, Li C, Zhang Y, Zhang D, Otterbein LE, Jin Y. 2019. Caveolin-1 selectively regulates microRNA sorting into microvesicles after noxious stimuli. J Exp Med. 216:2202–2220.
  • Lee I, Ajay SS, Yook JI, Kim HS, Hong SH, Kim NH, Dhanasekaran SM, Chinnaiyan AM, Athey BD. 2009. New class of microRNA targets containing simultaneous 5'-UTR and 3'-UTR interaction sites. Genome Res. 19:1175–1183.
  • Lee RC, Feinbaum RL, Ambros V. 1993. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell. 75:843–854.
  • Lee Y, Ahn C, Han J, Choi H, Kim J, Yim J, Lee J, Provost P, Rådmark O, Kim S, et al. 2003. The nuclear RNase III Drosha initiates microRNA processing. Nature. 425:415–419.
  • Lee Y, Kim M, Han J, Yeom KH, Lee S, Baek SH, Kim VN. 2004. MicroRNA genes are transcribed by RNA polymerase II. Embo J. 23:4051–4060.
  • Leitao AL, Costa MC, Gabriel AF, Enguita FJ. 2020. Interspecies communication in holobionts by non-coding RNA exchange. Int J Mol Sci. 21:2333.
  • Li QJ, Chau J, Ebert PJR, Sylvester G, Min H, Liu G, Braich R, Manoharan M, Soutschek J, Skare P, et al. 2007. miR-181a is an intrinsic modulator of T cell sensitivity and selection. Cell. 129:147–161.
  • Li X, Zhang Y, Shi Y, Dong G, Liang J, Han Y, Wang X, Zhao Q, Ding J, Wu K, et al. 2011. MicroRNA-107, an oncogene microRNA that regulates tumour invasion and metastasis by targeting DICER1 in gastric cancer. J Cell Mol Med. 15:1887–1895.
  • Liang G, Zhu Y, Sun B, Shao YHua, Jing AHua, Wang JHua, Xiao Z. 2014. Assessing the survival of exogenous plant microRNA in mice. Food Sci Nutr. 2:380–388.
  • Liao Y, Lonnerdal B. 2010. miR-584 mediates post-transcriptional expression of lactoferrin receptor in Caco-2 cells and in mouse small intestine during the perinatal period. Int J Biochem Cell Biol. 42:1363–1369.
  • Liu J, Carmell MA, Rivas FV, Marsden CG, Thomson JM, Song JJ, Hammond SM, Joshua-Tor L, Hannon GJ. 2004. Argonaute2 is the catalytic engine of mammalian RNAi. Science. 305:1437–1441.
  • Liu S, da Cunha AP, Rezende RM, Cialic R, Wei Z, Bry L, Comstock LE, Gandhi R, Weiner HL. 2016. The host shapes the gut microbiota via fecal microRNA. Cell Host Microbe. 19:32–43.
  • Liu S, Weiner HL. 2016. Control of the gut microbiome by fecal microRNA. Microb Cell. 3:176–177.
  • Lu LF, Thai TH, Calado DP, Chaudhry A, Kubo M, Tanaka K, Loeb GB, Lee H, Yoshimura A, Rajewsky K, et al. 2009. Foxp3-dependent microRNA155 confers competitive fitness to regulatory T cells by targeting SOCS1 protein. Immunity. 30:80–91.
  • Ma F, Xu S, Liu X, Zhang Q, Xu X, Liu M, Hua M, Li N, Yao H, Cao X, et al. 2011. The microRNA miR-29 controls innate and adaptive immune responses to intracellular bacterial infection by targeting interferon-γ. Nat Immunol. 12:861–869.
  • Ma H, Chen P, Sang C, Huang D, Geng Q, Wang L. 2018. Modulation of apoptosis-related microRNAs following myocardial infarction in fat-1 transgenic mice vs wild-type mice. J Cell Mol Med. 22:5698–5707.
  • Majewska M, Szczepanik M. 2006. [The role of Toll-like receptors (TLR) in innate and adaptive immune responses and their function in immune response regulation]. Postepy Hig Med Dosw. 60:52–63.
  • Marin JJ, Bujanda L, Banales JM. 2014. MicroRNAs and cholestatic liver diseases. Curr Opin Gastroenterol. 30:303–309.
  • Masotti A. 2012. Interplays between gut microbiota and gene expression regulation by miRNAs. Front Cell Infect Microbiol. 2:137.
  • McNamara J, Murray TA. 2016. Connections between herpes simplex virus type 1 and Alzheimer’s disease pathogenesis. Curr Alzheimer Res. 13:996–1005.
  • Millard AL, Mertes PM, Ittelet D, Villard F, Jeannesson P, Bernard J. 2002. Butyrate affects differentiation, maturation and function of human monocyte-derived dendritic cells and macrophages. Clin Exp Immunol. 130:245–255.
  • Mirmonsef P, Zariffard MR, Gilbert D, Makinde H, Landay AL, Spear GT. 2012. Short-chain fatty acids induce pro-inflammatory cytokine production alone and in combination with toll-like receptor ligands. Am J Reprod Immunol. 67:391–400.
  • Miro-Blanch J, Yanes O. 2019. Epigenetic regulation at the interplay between gut microbiota and host metabolism. Front Genet. 10:638.
  • Moloney GM, O'Leary OF, Salvo-Romero E, Desbonnet L, Shanahan F, Dinan TG, Clarke G, Cryan JF. 2017. Microbial regulation of hippocampal miRNA expression: Implications for transcription of kynurenine pathway enzymes. Behav Brain Res. 334:50–54.
  • Nguyen HTT, Dalmasso G, Müller S, Carrière J, Seibold F, Darfeuille-Michaud A. 2014. Crohn’s disease-associated adherent invasive Escherichia coli modulate levels of microRNAs in intestinal epithelial cells to reduce autophagy. Gastroenterology. 146:508–519.
  • Nicholson JK, Holmes E, Kinross J, Burcelin R, Gibson G, Jia W, Pettersson S. 2012. Host-gut microbiota metabolic interactions. Science. 336:1262–1267.
  • O'Brien J, Hayder H, Zayed Y, Peng C. 2018. Overview of microRNA biogenesis, mechanisms of actions, and circulation. Front Endocrinol (Lausanne). 9:402.,
  • Oliphant K, Allen-Vercoe E. 2019. Macronutrient metabolism by the human gut microbiome: major fermentation by-products and their impact on host health. Microbiome. 7:91.
  • Orom UA, Nielsen FC, Lund AH. 2008. MicroRNA-10a binds the 5'UTR of ribosomal protein mRNAs and enhances their translation. Mol Cell. 30:460–471.
  • Pant K, Yadav AK, Gupta P, Islam R, Saraya A, Venugopal SK. 2017. Butyrate induces ROS-mediated apoptosis by modulating miR-22/SIRT-1 pathway in hepatic cancer cells. Redox Biol. 12:340–349.
  • Park J, Kim M, Kang SG, Jannasch AH, Cooper B, Patterson J, Kim CH. 2015. Short-chain fatty acids induce both effector and regulatory T cells by suppression of histone deacetylases and regulation of the mTOR-S6K pathway. Mucosal Immunol. 8:80–93.
  • Peck BCE, Mah AT, Pitman WA, Ding S, Lund PK, Sethupathy P. 2017. Functional transcriptomics in diverse intestinal epithelial cell types reveals robust microRNA sensitivity in intestinal stem cells to microbial status. J Biol Chem. 292:2586–2600.
  • Pereira BLB, Reis PP, Severino FE, Felix TF, Braz MG, Nogueira FR, Silva RAC, Cardoso AC, Lourenço MAM, Figueiredo AM, et al. 2017. Tomato (Lycopersicon esculentum) or lycopene supplementation attenuates ventricular remodeling after myocardial infarction through different mechanistic pathways. J Nutr Biochem. 46:117–124.
  • Pong SK, Gullerova M. 2018. Noncanonical functions of microRNA pathway enzymes – Drosha, DGCR8, Dicer and Ago proteins. FEBS Lett. 592:2973–2986.
  • Rand TA, Petersen S, Du F, Wang X. 2005. Argonaute2 cleaves the anti-guide strand of siRNA during RISC activation. Cell. 123:621–629.
  • Rath S, Heidrich B, Pieper DH, Vital M. 2017. Uncovering the trimethylamine-producing bacteria of the human gut microbiota. Microbiome. 5:54.
  • Riaz Rajoka MS, Jin M, Haobin Z, Li Q, Shao D, Huang Q, Shi J. 2018. Impact of dietary compounds on cancer-related gut microbiota and microRNA. Appl Microbiol Biotechnol. 102:4291–4303.
  • Robinson CJ, Bohannan BJ, Young VB. 2010. From structure to function: the ecology of host-associated microbial communities. Microbiol Mol Biol Rev. 74:453–476.
  • Rodriguez A, Griffiths-Jones S, Ashurst JL, Bradley A. 2004. Identification of mammalian microRNA host genes and transcription units. Genome Res. 14:1902–1910.
  • Roessler C, Kuhlmann K, Hellwing C, Leimert A, Schumann J. 2017. Impact of polyunsaturated fatty acids on miRNA profiles of monocytes/macrophages and endothelial cells – a pilot study. Int J Mol Sci. 18:284.
  • Rupaimoole R, Slack FJ. 2017. MicroRNA therapeutics: towards a new era for the management of cancer and other diseases. Nat Rev Drug Discov. 16:203–222.
  • Rupp LJ, Brady BL, Carpenter AC, De Obaldia ME, Bhandoola A, Bosselut R, Muljo SA, Bassing CH. 2014. The microRNA biogenesis machinery modulates lineage commitment during αβ T cell development. J Immunol. 193:4032–4042.
  • Schonauen K, Le N, von Arnim U, Schulz C, Malfertheiner P, Link A. 2018. Circulating and fecal microRNAs as biomarkers for inflammatory bowel diseases. Inflamm Bowel Dis. 24:1547–1557.
  • Sheane B, Smyth P, Scott K, Aziz R, Buckley M, Lodge E, Kiely N, Kingston M, McGovern E, Healy M, et al. 2015. An association between microRNA-21 expression and vitamin D deficiency in coronary artery disease. MIRNA. 4:57–63.
  • Shurtleff MJ, Temoche-Diaz MM, Karfilis KV, Ri S, Schekman R. 2016. Y-box protein 1 is required to sort microRNAs into exosomes in cells and in a cell-free reaction. Elife. 5:e19276.
  • Siddesha JM, Valente AJ, Yoshida T, Sakamuri SSVP, Delafontaine P, Iba H, Noda M, Chandrasekar B. 2014. Docosahexaenoic acid reverses angiotensin II-induced RECK suppression and cardiac fibroblast migration. Cell Signal. 26:933–941.
  • Singh N, Shirdel EA, Waldron L, Zhang RH, Jurisica I, Comelli EM. 2012. The murine caecal microRNA signature depends on the presence of the endogenous microbiota. Int J Biol Sci. 8:171–186.
  • Sly LM, Rauh MJ, Kalesnikoff J, Song CH, Krystal G. 2004. LPS-induced upregulation of SHIP is essential for endotoxin tolerance. Immunity. 21:227–239.
  • Spinler JK, Oezguen N, Runge JK, Luna RA, Karri V, Yang J, Hirschi KD. 2020. Dietary impact of a plant-derived microRNA on the gut microbiome. ExRNA. 2:11.
  • Stilling RM, Moloney GM, Ryan FJ, Hoban AE, Bastiaanssen TF, Shanahan F, Clarke G, Claesson MJ, Dinan TG, Cryan JF, et al. 2018. Social interaction-induced activation of RNA splicing in the amygdala of microbiome-deficient mice. Elife. 7:e33070.
  • Switlik WZ, Bielecka-Kowalska A, Karbownik MS, Kordek R, Jabłkowski M, Szemraj J. 2019. Forms of diagnostic material as sources of miRNA biomarkers in hepatocellular carcinoma: a preliminary study. Biomark Med. 13:523–534.
  • Takagi T, Naito Y, Mizushima K, Hirata I, Yagi N, Tomatsuri N, Ando T, Oyamada Y, Isozaki Y, Hongo H, et al. 2010. Increased expression of microRNA in the inflamed colonic mucosa of patients with active ulcerative colitis. J Gastroenterol Hepatol. 25 Suppl 1:S129–S133.
  • Takahashi H, Kanno T, Nakayamada S, Hirahara K, Sciumè G, Muljo SA, Kuchen S, Casellas R, Wei L, Kanno Y, et al. 2012. TGF-β and retinoic acid induce the microRNA miR-10a, which targets Bcl-6 and constrains the plasticity of helper T cells . Nat Immunol. 13:587–595.
  • Teng Y, Ren Y, Sayed M, Hu X, Lei C, Kumar A, Hutchins E, Mu J, Deng Z, Luo C, et al. 2018. Plant-derived exosomal microRNAs shape the gut microbiota. Cell Host Microbe. 24:637–652.e8.
  • Tili E, Michaille JJ, Cimino A, Costinean S, Dumitru CD, Adair B, Fabbri M, Alder H, Liu CG, Calin GA, et al. 2007. Modulation of miR-155 and miR-125b levels following lipopolysaccharide/TNF-alpha stimulation and their possible roles in regulating the response to endotoxin shock. J Immunol. 179:5082–5089.
  • Valinezhad Orang A, Safaralizadeh R, Kazemzadeh-Bavili M. 2014. Mechanisms of miRNA-Mediated Gene Regulation from Common Downregulation to mRNA-Specific Upregulation. Int J Genomics. 2014:970607
  • Vasudevan S, Steitz JA. 2007. AU-rich-element-mediated upregulation of translation by FXR1 and Argonaute 2. Cell. 128:1105–1118.
  • Ventura A, Young AG, Winslow MM, Lintault L, Meissner A, Erkeland SJ, Newman J, Bronson RT, Crowley D, Stone JR, et al. 2008. Targeted deletion reveals essential and overlapping functions of the miR-17 through 92 family of miRNA clusters. Cell. 132:875–886.
  • Viennois E, Chassaing B, Tahsin A, Pujada A, Wang L, Gewirtz AT, Merlin D. 2019. Host-derived fecal microRNAs can indicate gut microbiota healthiness and ability to induce inflammation. Theranostics. 9:4542–4557.
  • Vigorito E, Perks KL, Abreu-Goodger C, Bunting S, Xiang Z, Kohlhaas S, Das PP, Miska EA, Rodriguez A, Bradley A, et al. 2007. microRNA-155 regulates the generation of immunoglobulin class-switched plasma cells. Immunity. 27:847–859.
  • Vikram A, Kim YR, Kumar S, Li Q, Kassan M, Jacobs JS, Irani K. 2016. Vascular microRNA-204 is remotely governed by the microbiome and impairs endothelium-dependent vasorelaxation by downregulating Sirtuin1. Nat Commun. 7:12565.
  • Vinolo MAR, Rodrigues HG, Hatanaka E, Sato FT, Sampaio SC, Curi R. 2011. Suppressive effect of short-chain fatty acids on production of proinflammatory mediators by neutrophils. J Nutr Biochem. 22:849–855.
  • Wahlstrom A, Sayin SI, Marschall HU, Bäckhed F. 2016. Intestinal crosstalk between bile acids and microbiota and its impact on host metabolism. Cell Metab. 24:41–50.
  • Wan J, Xia L, Xu W, Lu N. 2016. Expression and function of miR-155 in diseases of the gastrointestinal tract. Int J Mol Sci. 17:709.
  • Wang D, Xia M, Yan X, Li D, Wang L, Xu Y, Jin T, Ling W. 2012. Gut microbiota metabolism of anthocyanin promotes reverse cholesterol transport in mice via repressing miRNA-10b. Circ Res. 111:967–981.
  • Wang H, Lv Y, Wang C, Leng D, Yan Y, Blessing Fasae M, Madiha Zahra S, Jiang Y, Wang Z, Yang B, et al. 2019. Systematic analysis of intestinal microRNAs expression in HCC: identification of suitable reference genes in fecal samples. Front Genet. 10:687.
  • Wang J, Iwanowycz S, Yu F, Jia X, Leng S, Wang Y, Li W, Huang S, Ai W, Fan D, et al. 2016. microRNA-155 deficiency impairs dendritic cell function in breast cancer. Oncoimmunology. 5:e1232223.
  • Wang XQ, Zhang AH, Miao JH, Sun H, Yan GL, Wu FF, Wang XJ. 2018. Gut microbiota as important modulator of metabolism in health and disease. RSC Adv. 8:42380–42389.
  • Wang XW, Heegaard NH, Orum H. 2012. MicroRNAs in liver disease. Gastroenterology. 142:1431–1443.
  • Winter J, Jung S, Keller S, Gregory RI, Diederichs S. 2009. Many roads to maturity: microRNA biogenesis pathways and their regulation. Nat Cell Biol. 11:228–234.
  • Witwer KW. 2012. XenomiRs and miRNA homeostasis in health and disease: evidence that diet and dietary miRNAs directly and indirectly influence circulating miRNA profiles. RNA Biol. 9:1147–1154.
  • Wu F, Zhang S, Dassopoulos T, Harris ML, Bayless TM, Meltzer SJ, Brant SR, Kwon JH. 2010. Identification of microRNAs associated with ileal and colonic Crohn’s disease. Inflamm Bowel Dis. 16:1729–1738.
  • Xiao C, Calado DP, Galler G, Thai TH, Patterson HC, Wang J, Rajewsky N, Bender TP, Rajewsky K. 2007. MiR-150 controls B cell differentiation by targeting the transcription factor c-Myb. Cell. 131:146–159.
  • Xie G, Wang X, Huang F, Zhao A, Chen W, Yan J, Zhang Y, Lei S, Ge K, Zheng X, et al. 2016. Dysregulated hepatic bile acids collaboratively promote liver carcinogenesis. Int J Cancer. 139:1764–1775.
  • Xie G, Wang X, Zhao A, Yan J, Chen W, Jiang R, Ji J, Huang F, Zhang Y, Lei S, et al. 2017. Sex-dependent effects on gut microbiota regulate hepatic carcinogenic outcomes. Sci Rep. 7:45232.
  • Xing Y, Liu Z, Yang G, Gao D, Niu X. 2015. MicroRNA expression profiles in rats with selenium deficiency and the possible role of the Wnt/β-catenin signaling pathway in cardiac dysfunction . Int J Mol Med. 35:143–152.
  • Xu W, San Lucas A, Wang Z, Liu Y. 2014. Identifying microRNA targets in different gene regions. BMC Bioinformatics. 15 Suppl 7:S4.
  • Xue X, Cao AT, Cao X, Yao S, Carlsen ED, Soong L, Liu CG, Liu X, Liu Z, Duck LW, et al. 2014. Downregulation of microRNA-107 in intestinal CD11c(+) myeloid cells in response to microbiota and proinflammatory cytokines increases IL-23p19 expression. Eur J Immunol. 44:673–682.
  • Xue X, Feng T, Yao S, Wolf KJ, Liu CG, Liu X, Elson CO, Cong Y. 2011. Microbiota downregulates dendritic cell expression of miR-10a, which targets IL-12/IL-23p40. J Immunol. 187:5879–5886.
  • Yang J, Farmer LM, Agyekum AAA, Elbaz-Younes I, Hirschi KD. 2015. Detection of an abundant plant-based small RNA in healthy consumers. PLoS One. 10:e0137516.
  • Yang Y, Weng W, Peng J, Hong L, Yang L, Toiyama Y, Gao R, Liu M, Yin M, Pan C, et al. 2017. Fusobacterium nucleatum increases proliferation of colorectal cancer cells and tumor development in mice by activating toll-like receptor 4 signaling to nuclear factor-κB, and up-regulating expression of microRNA-21 . Gastroenterology. 152:851–866 e24.
  • Yau TO, Tang CM, Harriss EK, Dickins B, Polytarchou C. 2019. Faecal microRNAs as a non-invasive tool in the diagnosis of colonic adenomas and colorectal cancer: a meta-analysis. Sci Rep. 9:9491.
  • Ye D, Guo S, Al-Sadi R, Ma TY. 2011. MicroRNA regulation of intestinal epithelial tight junction permeability. Gastroenterology. 141:1323–1333.
  • Yuan C, Burns MB, Subramanian S, Blekhman R. 2018. Interaction between host microRNAs and the gut microbiota in colorectal cancer. mSystems. 3:e00205-17.
  • Yuan C, Steer CJ, Subramanian S. 2019. Host(-)MicroRNA(-)Microbiota Interactions in Colorectal Cancer. Genes. 10:270.
  • Zempleni J, Baier SR, Howard KM, Cui J. 2015. Gene regulation by dietary microRNAs. Can J Physiol Pharmacol. 93:1097–1102.
  • Zhang J, Zhou W, Liu Y, Liu T, Li C, Wang L. 2018. Oncogenic role of microRNA-532-5p in human colorectal cancer via targeting of the 5'UTR of RUNX3. Oncol Lett. 15:7215–7220.
  • Zhang L, Hou D, Chen X, Li D, Zhu L, Zhang Y, Li J, Bian Z, Liang X, Cai X, et al. 2012. Exogenous plant MIR168a specifically targets mammalian LDLRAP1: evidence of cross-kingdom regulation by microRNA. Cell Res. 22:107–126.
  • Zhao Y, Lukiw WJ. 2018. Microbiome-mediated upregulation of microRNA-146a in sporadic Alzheimer’s disease. Front Neurol. 9:145.
  • Zhou G, Zhou Y, Chen X. 2017. New insight into inter-kingdom communication: horizontal transfer of mobile small RNAs. Front Microbiol. 8:768.
  • Zhou QQi, Souba WW, Croce CM, Verne GN. 2010. MicroRNA-29a regulates intestinal membrane permeability in patients with irritable bowel syndrome. Gut. 59:775–784.
  • Zhou Z, Li X, Liu J, Dong L, Chen Q, Liu J, Kong H, Zhang Q, Qi X, Hou D, et al. 2015. Honeysuckle-encoded atypical microRNA2911 directly targets influenza A viruses. Cell Res. 25:39–49.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.