2,311
Views
28
CrossRef citations to date
0
Altmetric
Review Articles

Inhibition of Streptococcus mutans biofilm formation by strategies targeting the metabolism of exopolysaccharides

, , &
Pages 667-677 | Received 14 Jun 2020, Accepted 08 Apr 2021, Published online: 03 May 2021

References

  • Abranches J, Zeng L, Kajfasz JK, Palmer SR, Chakraborty B, Wen ZT, Richards VP, Brady LJ, Lemos JA. 2018. Biology of oral streptococci. Microbiol Spectrum. 6(5):1–18.
  • Backlund CJ, Worley BV, Schoenfisch MH. 2016. Anti-biofilm action of nitric oxide-releasing alkyl-modified poly(amidoamine) dendrimers against Streptococcus mutans. Acta Biomater. 29:198–205.
  • Bai Y, Yang J, Zarrella TM, Zhang Y, Metzger DW, Bai G. 2014. Cyclic di-AMP impairs potassium uptake mediated by a cyclic di-AMP binding protein in Streptococcus pneumoniae. J Bacteriol. 196:614–623.
  • Barraud N, Kelso MJ, Rice SA, Kjelleberg S. 2015. Nitric oxide: a key mediator of biofilm dispersal with applications in infectious diseases. Curr Pharm Des. 21:31–42.
  • Barzegari A, Kheyrolahzadeh K, Hosseiniyan Khatibi SM, Sharifi S, Memar MY. 2020. The battle of probiotics and their derivatives against biofilms. Infect Drug Resist. 13:659–672.
  • Bem AE, Velikova N, Pellicer MT, van Baarlen P, Marina A, Wells JM. 2015. Bacterial histidine kinases as novel antibacterial drug targets. Acs Chem Biol. 10:213–224.
  • Bijle MN, Neelakantan P, Ekambaram M, Lo ECM, Yiu CKY. 2020. Effect of a novel synbiotic on Streptococcus mutans. Sci Rep. 10:7951.
  • Biswas I, Drake L, Erkina D, Biswas S. 2008. Involvement of sensor kinases in the stress tolerance response of Streptococcus mutans. J Bacteriol. 190:68–77.
  • Bowen WH. 1972. The effect of dextranase on caries activity in monkeys (Macaca irus). Caries Res. 6:75–76.
  • Bowen WH, Burne RA, Wu H, Koo H. 2018. Oral biofilms: pathogens, matrix, and polymicrobial interactions in microenvironments. Trends Microbiol. 26:229–242.
  • Brady LJ, Maddocks SE, Larson MR, Forsgren N, Persson K, Deivanayagam CC, Jenkinson HF. 2010. The changing faces of Streptococcus antigen I/II polypeptide family adhesins. Mol Microbiol. 77:276–286.
  • Cagetti MG, Mastroberardino S, Milia E, Cocco F, Lingstrom P, Campus G. 2013. The use of probiotic strains in caries prevention: a systematic review. Nutrients. 5:2530–2550.
  • Caldwell RC, Sandham HJ, Mann WV, Jr., Finn SB. 1971. The effect of a dextranase mouthwash on dental plaque in young adults and children. J Am Dent Assoc. 82:124–131.
  • Chen H, Zhang B, Weir MD, Homayounfar N, Fay GG, Martinho F, Lei L, Bai Y, Hu T, Xu HHK. 2020. S. mutans gene-modification and antibacterial resin composite as dual strategy to suppress biofilm acid production and inhibit caries. J Dent. 93:103278.
  • Chen J, Li T, Zhou X, Cheng L, Huo Y, Zou J, Li Y. 2017. Characterization of the clustered regularly interspaced short palindromic repeats sites in Streptococcus mutans isolated from early childhood caries patients. Arch Oral Biol. 83:174–180.
  • Cheng L, Li J, He L, Zhou X. 2015. Natural products and caries prevention. Caries Res. 49(1):38–45.
  • Cho KH, Tryon RG, Kim JH. 2020. Screening for diguanylate cyclase (DGC) inhibitors mitigating bacterial biofilm formation. Front Chem. 8:264.
  • Cocco F, Carta G, Cagetti MG, Strohmenger L, Lingstrom P, Campus G. 2017. The caries preventive effect of 1-year use of low-dose xylitol chewing gum. A randomized placebo-controlled clinical trial in high-caries-risk adults. Clin Oral Invest. 21:2733–2740.
  • Cross BW, Ruhl S. 2018. Glycan recognition at the saliva - oral microbiome interface. Cell Immunol. 333:19–33.
  • Cugini C, Shanmugam M, Landge N, Ramasubbu N. 2019. The role of exopolysaccharides in oral biofilms. J Dent Res. 98:739–745.
  • Ding Y, Wang W, Fan M, Tong Z, Kuang R, Jiang W, Ni L. 2014. Antimicrobial and anti-biofilm effect of Bac8c on major bacteria associated with dental caries and Streptococcus mutans biofilms. Peptides. 52:61–67.
  • Dufour D, Levesque CM. 2013. Cell death of Streptococcus mutans induced by a quorum-sensing peptide occurs via a conserved streptococcal autolysin. J Bacteriol. 195:105–114.
  • Duque C, Stipp RN, Wang B, Smith DJ, Hofling JF, Kuramitsu HK, Duncan MJ, Mattos-Graner RO. 2011. Downregulation of GbpB, a component of the VicRK regulon, affects biofilm formation and cell surface characteristics of Streptococcus mutans. Infect Immun. 79:786–796.
  • Eguchi Y, Kubo N, Matsunaga H, Igarashi M, Utsumi R. 2011. Development of an antivirulence drug against Streptococcus mutans: repression of biofilm formation, acid tolerance, and competence by a histidine kinase inhibitor, walkmycin C. Antimicrob Agents Chemother. 55:1475–1484.
  • Falony G, Honkala S, Runnel R, Olak J, Nommela R, Russak S, Saag M, Mäkinen PL, Mäkinen K, Vahlberg T, et al. 2016. Long-term effect of erythritol on dental caries development during childhood: a posttreatment survival analysis. Caries Res. 50:579–588.
  • Gerdt JP, Blackwell HE. 2014. Competition studies confirm two major barriers that can preclude the spread of resistance to quorum-sensing inhibitors in bacteria. ACS Chem Biol. 9:2291–2299.
  • Gibbons RJ, Fitzgerald RJ. 1969. Dextran-induced agglutination of Streptococcus mutans, and its potential role in the formation of microbial dental plaques. J Bacteriol. 98:341–346.
  • Gibson GR, Hutkins R, Sanders ME, Prescott SL, Reimer RA, Salminen SJ, Scott K, Stanton C, Swanson KS, Cani PD, et al. 2017. Expert consensus document: the International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nat Rev Gastroenterol Hepatol. 14:491–502.
  • Gong T, Tang B, Zhou X, Zeng J, Lu M, Guo X, Peng X, Lei L, Gong B, Li Y. 2018. Genome editing in Streptococcus mutans through self-targeting CRISPR arrays. Mol Oral Microbiol. 33:440–449.
  • Gotoh Y, Eguchi Y, Watanabe T, Okamoto S, Doi A, Utsumi R. 2010. Two-component signal transduction as potential drug targets in pathogenic bacteria. Curr Opin Microbiol. 13:232–239.
  • Groisman EA. 2016. Feedback control of two-component regulatory systems. Annu Rev Microbiol. 70:103–124.
  • Guggenheim B, Haller R. 1972. Purification and properties of an alpha-(1-]3) glucanohydrolase from Trichoderma harzianum. J Dent Res. 51:394.
  • Guggenheim B, Regolati B, Schmid R, Muhlemann HR. 1980. Effects of the topical application of mutanase on rat caries. Caries Res. 14:128–135.
  • Hayacibara MF, Koo H, Vacca-Smith AM, Kopec LK, Scott-Anne K, Cury JA, Bowen WH. 2004. The influence of mutanase and dextranase on the production and structure of glucans synthesized by streptococcal glucosyltransferases. Carbohydr Res. 339:2127–2137.
  • He J, Hwang G, Liu Y, Gao L, Kilpatrick-Liverman L, Santarpia P, Zhou X, Koo H. 2016. l-arginine modifies the exopolysaccharide matrix and thwarts Streptococcus mutans outgrowth within mixed-species oral biofilms. J Bacteriol. 198:2651–2661.
  • He J, Yin W, Galperin MY, Chou SH. 2020. Cyclic di-AMP, a second messenger of primary importance: tertiary structures and binding mechanisms. Nucleic Acids Res. 48:2807–2829.
  • He Z, Wang Q, Hu Y, Liang J, Jiang Y, Ma R, Tang Z, Huang Z. 2012. Use of the quorum sensing inhibitor furanone C-30 to interfere with biofilm formation by Streptococcus mutans and its luxS mutant strain. Int J Antimicrob Agents. 40:30–35.
  • Hidalgo-Cantabrana C, Goh YJ, Pan MC, Sanozky-Dawes R, Barrangou R. 2019. Genome editing using the endogenous type I CRISPR-Cas system in Lactobacillus crispatus. P Natl Acad Sci USA. 116:15774–15783.
  • Inoue M, Yakushiji T, Katsuki M, Kudo N, Koga T. 1988. Reduction of the adherence of Streptococcus sobrinus insoluble alpha-D-glucan by endo-(1----3)-alpha-D-glucanase. Carbohydr Res. 182:277–286.
  • Jakubovics NS, Shields RC, Rajarajan N, Burgess JG. 2013. Life after death: the critical role of extracellular DNA in microbial biofilms. Lett Appl Microbiol. 57:467–475.
  • Kaplan JB. 2009. Therapeutic potential of biofilm-dispersing enzymes. Int J Artif Organs. 32:545–554.
  • Kaplan JB. 2010. Biofilm dispersal: mechanisms, clinical implications, and potential therapeutic uses. J Dent Res. 89:205–218.
  • Karygianni L, Attin T, Thurnheer T. 2020. Combined DNase and proteinase treatment interferes with composition and structural integrity of multispecies oral biofilms. J Clin Med. 9(4):983.
  • Kaur G, Rajesh S, Princy SA. 2015. Plausible drug targets in the Streptococcus mutans quorum sensing pathways to combat dental biofilms and associated risks. Indian J Microbiol. 55:349–356.
  • Keyes PH, Hicks MA, Goldman M, McCabe RM, Fitzgerald RJ. 1971. Dispersion of dextranous bacterial plaques on human teeth with dextranase. J Am Dent Assoc. 82:136–141.
  • Klein MI, Hwang G, Santos PH, Campanella OH, Koo H. 2015. Streptococcus mutans-derived extracellular matrix in cariogenic oral biofilms. Front Cell Infect Microbiol. 5:10.
  • Koo H, Allan RN, Howlin RP, Stoodley P, Hall-Stoodley L. 2017. Targeting microbial biofilms: current and prospective therapeutic strategies. Nat Rev Microbiol. 15:740–755.
  • Koo H, Falsetta ML, Klein MI. 2013. The exopolysaccharide matrix: a virulence determinant of cariogenic biofilm. J Dent Res. 92:1065–1073.
  • Koul S, Prakash J, Mishra A, Kalia VC. 2016. Potential emergence of multi-quorum sensing inhibitor resistant (MQSIR) bacteria. Indian J Microbiol. 56:1–18.
  • Kubo S, Kubota H, Ohnishi Y, Morita T, Matsuya T, Matsushiro A. 1993. Expression and secretion of an Arthrobacter dextranase in the oral bacterium Streptococcus gordonii. Infect Immun. 61:4375–4381.
  • Kumar A, Alam A, Rani M, Ehtesham NZ, Hasnain SE. 2017. Biofilms: survival and defense strategy for pathogens. Int J Med Microbiol. 307:481–489.
  • Lafond M, Shekhar H, Panmanee W, Collins SD, Palaniappan A, McDaniel CT, Hassett DJ, Holland CK. 2019. Bactericidal activity of lipid-shelled nitric oxide-loaded microbubbles. Front Pharmacol. 10:1540.
  • Lai X, Liu X, Liu X, Deng T, Feng Y, Tian X, Lyu M, Wang AS. 2019. The marine Catenovulum agarivorans MNH15 and dextranase: removing dental plaque. Mar Drugs. 17(10):592.
  • Lei L, Stipp RN, Chen T, Wu SZ, Hu T, Duncan MJ. 2018. Activity of Streptococcus mutans VicR is modulated by antisense RNA. J Dent Res. 97:1477–1484.
  • Lei L, Yang Y, Mao M, Li H, Li M, Yang Y, Yin J, Hu T. 2015. Modulation of biofilm exopolysaccharides by the Streptococcus mutans vicX. Gene Front Microbiol. 6:1432.
  • Lei L, Zhang B, Mao M, Chen H, Wu S, Deng Y, Yang Y, Zhou H, Hu T. 2020. Carbohydrate metabolism regulated by antisense vicR RNA in cariogenicity. J Dent Res. 99:204–213.
  • Liu C, Worthington RJ, Melander C, Wu H. 2011. A new small molecule specifically inhibits the cariogenic bacterium Streptococcus mutans in multispecies biofilms. Antimicrob Agents Chemother. 55:2679–2687.
  • Liu Y, Kamesh AC, Xiao YH, Sun V, Hayes M, Daniell H, Koo H. 2016. Topical delivery of low-cost protein drug candidates made in chloroplasts for biofilm disruption and uptake by oral epithelial cells. Biomaterials. 105:156–166.
  • Lodi CS, Manarelli MM, Sassaki KT, Fraiz FC, Delbem ACB, Martinhon CCR. 2010. Evaluation of fermented milk containing probiotic on dental enamel and biofilm: in situ study. Arch Oral Biol. 55:29–33.
  • Makarova KS, Haft DH, Barrangou R, Brouns SJ, Charpentier E, Horvath P, Moineau S, Mojica FJ, Wolf YI, Yakunin AF, et al. 2011. Evolution and classification of the CRISPR-Cas systems. Nat Rev Microbiol. 9:467–477.
  • Mao MY, Yang YM, Li KZ, Lei L, Li M, Yang Y, Tao X, Yin JX, Zhang R, Ma XR, et al. 2016. The rnc gene promotes exopolysaccharide synthesis and represses the vicRKX gene expressions via microRNA-size small RNAs in Streptococcus mutans. Front Microbiol. 7:687.
  • Marcenes W, Kassebaum NJ, Bernabe E, Flaxman A, Naghavi M, Lopez A, Murray CJ. 2013. Global burden of oral conditions in 1990-2010: a systematic analysis. J Dent Res. 92:592–597.
  • Markowiak P, Slizewska K. 2017. Effects of probiotics, prebiotics, and synbiotics on human health. Nutrients. 9(9):1021.
  • Martins ML, Leite KLF, Pacheco-Filho EF, Pereira AFM, Romanos MTV, Maia LC, Fonseca-Gonçalves A, Padilha WWN, Cavalcanti YW. 2018. Efficacy of red propolis hydro-alcoholic extract in controlling Streptococcus mutans biofilm build-up and dental enamel demineralization. Arch Oral Biol. 93:56–65.
  • Mosaddad SA, Tahmasebi E, Yazdanian A, Rezvani MB, Seifalian A, Yazdanian M, Tebyanian H. 2019. Oral microbial biofilms: an update. Eur J Clin Microbiol Infect Dis. 38:2005–2019.
  • Muras A, Mayer C, Romero M, Camino T, Ferrer MD, Mira A, Otero A. 2018. Inhibition of Steptococcus mutans biofilm formation by extracts of Tenacibaculum sp. 20J, a bacterium with wide-spectrum quorum quenching activity. J Oral Microbiol. 10:1429788.
  • Nascimento MM, Browngardt C, Xiaohui X, Klepac-Ceraj V, Paster BJ, Burne RA. 2014. The effect of arginine on oral biofilm communities. Mol Oral Microbiol. 29:45–54.
  • Nunpan S, Suwannachart C, Wayakanon K. 2019. Effect of prebiotics-enhanced probiotics on the growth of Streptococcus mutans. Int J Microbiol. 2019:4623807.
  • Oka S, Okabe M, Tsubura S, Mikami M, Imai A. 2020. Properties of fucoidans beneficial to oral healthcare. Odontology. 108:34–42.
  • Otsuka R, Imai S, Murata T, Nomura Y, Okamoto M, Tsumori H, Kakuta E, Hanada N, Momoi Y. 2015. Application of chimeric glucanase comprising mutanase and dextranase for prevention of dental biofilm formation. Microbiol Immunol. 59:28–36.
  • Pan W, Fan M, Wu H, Melander C, Liu C. 2015. A new small molecule inhibits Streptococcus mutans biofilms in vitro and in vivo. J Appl Microbiol. 119:1403–1411.
  • Philip N, Bandara H, Leishman SJ, Walsh LJ. 2019. Inhibitory effects of fruit berry extracts on Streptococcus mutans biofilms. Euro J Oral Sci. 127:122–129.
  • Pleszczynska M, Marek-Kozaczuk M, Wiater A, Szczodrak J. 2007. Paenibacillus strain MP-1: a new source of mutanase. Biotechnol Lett. 29:755–759.
  • Pleszczynska M, Wiater A, Bachanek T, Szczodrak J. 2017. Enzymes in therapy of biofilm-related oral diseases. Biotechnol Appl Biochem. 64:337–346.
  • Pleszczynska M, Wiater A, Janczarek M, Szczodrak J. 2015. (1-->3)-alpha-D-Glucan hydrolases in dental biofilm prevention and control: a review. Int J Biol Macromol. 79:761–778.
  • Razak FA, Baharuddin BA, Akbar EFM, Norizan AH, Ibrahim NF, Musa MY. 2017. Alternative sweeteners influence the biomass of oral biofilm. Arch Oral Biol. 80:180–184.
  • Ren Z, Cui T, Zeng J, Chen L, Zhang W, Xu X, Cheng L, Li M, Li J, Zhou X, et al. 2016. Molecule targeting glucosyltransferase inhibits Streptococcus mutans biofilm formation and virulence. Antimicrob Agents Chemother. 60:126–135.
  • Ren Z, Kim D, Paula AJ, Hwang G, Liu Y, Li J, Daniell H, Koo H. 2019. Dual-targeting approach degrades biofilm matrix and enhances bacterial killing. J Dent Res. 98:322–330.
  • Rodriguez G, Ruiz B, Faleiros S, Vistoso A, Marro ML, Sanchez J, Urzúa I, Cabello R. 2016. Probiotic compared with standard milk for high-caries children: a cluster randomized trial. J Dent Res. 95:402–407.
  • Romling U, Galperin MY, Gomelsky M. 2013. Cyclic di-GMP: the first 25 years of a universal bacterial second messenger. Microbiol Mol Biol Rev. 77:1–52.
  • Rosales-Hurtado M, Meffre P, Szurmant H, Benfodda Z. 2020. Synthesis of histidine kinase inhibitors and their biological properties. Med Res Rev. 40:1440–1495.
  • Saeki EK, Kobayashi RKT, Nakazato G. 2020. Quorum sensing system: target to control the spread of bacterial infections. Microb Pathog. 142:104068.
  • Sanders Mary E. 2008. Probiotics: definition, sources, selection, and uses. Clin Infect Dis. 46:S58–S61.
  • Schachtele CF, Staat RH, Harlander SK. 1975. Dextranases from oral bacteria: inhibition of water-insoluble glucan production and adherence to smooth surfaces by Streptococcus mutans. Infect Immun. 12:309–317.
  • Scharnow AM, Solinski AE, Wuest WM. 2019. Targeting S. mutans biofilms: a perspective on preventing dental caries. Medchemcomm. 10:1057–1067.
  • Schlafer S, Meyer RL, Dige I, Regina VR. 2017. Extracellular DNA contributes to dental biofilm stability. Caries Res. 51:436–442.
  • Schwendicke F, Horb K, Kneist S, Dorfer C, Paris S. 2014. Effects of heat-inactivated Bifidobacterium BB12 on cariogenicity of Streptococcus mutans in vitro. Arch Oral Biol. 59:1384–1390.
  • Scoffield J, Michalek S, Harber G, Eipers P, Morrow C, Wu H. 2019. Dietary nitrite drives disease outcomes in oral polymicrobial infections. J Dent Res. 98:1020–1026.
  • Senadheera D, Cvitkovitch DG. 2008. Quorum sensing and biofilm formation by Streptococcus mutans. Adv Exp Med Biol. 631:178–188.
  • Sharma S, Lavender S, Woo J, Guo L, Shi W, Kilpatrick-Liverman L, Gimzewski JK. 2014. Nanoscale characterization of effect of L-arginine on Streptococcus mutans biofilm adhesion by atomic force microscopy. Microbiology. 160:1466–1473.
  • Slobodnikova L, Fialova S, Rendekova K, Kovac J, Mucaji P. 2016. Antibiofilm activity of plant polyphenols. Molecules. 21(12):1717.
  • Soderling E, Alaraisanen L, Scheinin A, Makinen KK. 1987. Effect of xylitol and sorbitol on polysaccharide production by and adhesive properties of Streptococcus mutans. Caries Res. 21:109–116.
  • Soderling EM, Hietala-Lenkkeri AM. 2010. Xylitol and erythritol decrease adherence of polysaccharide-producing oral streptococci. Curr Microbiol. 60:25–29.
  • Stumpp N, Premnath P, Schmidt T, Ammermann J, Drager G, Reck M, Jansen R, Stiesch M, Wagner-Döbler I, Kirschning A. 2015. Synthesis of new carolacton derivatives and their activity against biofilms of oral bacteria. Org Biomol Chem. 13:5765–5774.
  • Taipale TJ, Pienihakkinen K, Isolauri E, Jokela JT, Soderling EM. 2016. Bifidobacterium animalis subsp lactis BB-12 in reducing the risk of infections in early childhood. Pediatr Res. 79:65–69.
  • Takahashi N, Nyvad B. 2011. The role of bacteria in the caries process: ecological perspectives. J Dent Res. 90:294–303.
  • Tang B, Gong T, Zhou X, Lu M, Zeng J, Peng X, Wang S, Li Y. 2019. Deletion of cas3 gene in Streptococcus mutans affects biofilm formation and increases fluoride sensitivity. Arch Oral Biol. 99:190–197.
  • Thabuis C, Cheng CY, Wang X, Pochat M, Han A, Miller L, Wils D, Guerin-Deremaux L. 2013. Effects of maltitol and xylitol chewing-gums on parameters involved in dental caries development. Euro J Paediatric Dent. 14:303–308.
  • Tiwari S, Jamal SB, Hassan SS, Carvalho P, Almeida S, Barh D, Ghosh P, Silva A, Castro TLP, Azevedo V. 2017. Two-component signal transduction systems of pathogenic bacteria as targets for antimicrobial therapy: an overview. Front Microbiol. 8:1878.
  • Twetman S, Stecksen-Blicks C. 2008. Probiotics and oral health effects in children. Int J Paediatric Dentistry. 18:3–10.
  • Viegas SC, Silva IJ, Saramago M, Domingues S, Arraiano CM. 2011. Regulation of the small regulatory RNA MicA by ribonuclease III: a target-dependent pathway. Nucleic Acids Res. 39:2918–2930.
  • Wang B, Kuramitsu HK. 2005. Inducible antisense RNA expression in the characterization of gene functions in Streptococcus mutans. Infect Immun. 73:3568–3576.
  • Wasfi R, Abd El-Rahman OA, Zafer MM, Ashour HM. 2018. Probiotic Lactobacillus sp inhibit growth, biofilm formation and gene expression of caries-inducing Streptococcus mutans. J Cell Mol Med. 22:1972–1983.
  • Watthanasaen S, Merchant AT, Luengpailin S, Chansamak N, Pisek A, Pitiphat W. 2017. Xylitol-containing chewing gum for caries prevention in students with disabilities: a randomised trial. Oral Health Prevent Dent. 15:519–527.
  • Wenderska IB, Lukenda N, Cordova M, Magarvey N, Cvitkovitch DG, Senadheera DB. 2012. A novel function for the competence inducing peptide, XIP, as a cell death effector of Streptococcus mutans. Fems Microbiol Lett. 336:104–112.
  • Wolska KI, Grudniak AM, Rudnicka Z, Markowska K. 2016. Genetic control of bacterial biofilms. J Appl Genet. 57:225–238.
  • Worthington RJ, Blackledge MS, Melander C. 2013. Small-molecule inhibition of bacterial two-component systems to combat antibiotic resistance and virulence. Future Med Chem. 5:1265–1284.
  • Wu CY, Su TY, Wang MY, Yang SF, Mar K, Hung SL. 2018. Inhibitory effects of tea catechin epigallocatechin-3-gallate against biofilms formed from Streptococcus mutans and a probiotic lactobacillus strain. Arch Oral Biol. 94:69–77.
  • Wu S, Liu Y, Zhang H, Lei L. 2020. Nano-graphene oxide with antisense vicR RNA reduced exopolysaccharide synthesis and biofilm aggregation for Streptococcus mutans. Dent Mater J. 39:278–286.
  • Xavier JB, Picioreanu C, Rani SA, van Loosdrecht MCM, Stewart PS. 2005. Biofilm-control strategies based on enzymic disruption of the extracellular polymeric substance matrix--a modelling study. Microbiology. 151:3817–3832.
  • Xiao J, Klein MI, Falsetta ML, Lu B, Delahunty CM, Yates JR, 3rd, Heydorn A, Koo H. 2012. The exopolysaccharide matrix modulates the interaction between 3D architecture and virulence of a mixed-species oral biofilm. PLoS Pathog. 8:e1002623.
  • Yang Y, Mao M, Lei L, Li M, Yin J, Ma X, Tao X, Yang Y, Hu T. 2019. Regulation of water-soluble glucan synthesis by the Streptococcus mutans dexA gene effects biofilm aggregation and cariogenic pathogenicity. Mol Oral Microbiol. 34:51–63.
  • Yoo S, Murata RM, Duarte S. 2011. Antimicrobial traits of tea- and cranberry-derived polyphenols against Streptococcus mutans. Caries Res. 45:327–335.
  • Yoshioka K, Kunieda T, Asami Y, Guo H, Miyata H, Yoshida-Tanaka K, Sujino Y, Piao W, Kuwahara H, Nishina K, et al. 2019. Highly efficient silencing of microRNA by heteroduplex oligonucleotides. Nucleic Acids Res. 47:7321–7332.
  • Zaura E, Twetman S. 2019. Critical appraisal of oral pre- and probiotics for caries prevention and care. Caries Res. 53:514–526.
  • Zhang C, Kuang X, Zhou Y, Peng X, Guo Q, Yang T, Zhou X, Luo Y, Xu X. 2019. A novel small molecule, ZY354, inhibits dental caries-associated oral biofilms. Antimicrob Agents Chemother. 63(5):e02414.
  • Zhang Q, Nijampatnam B, Hua Z, Nguyen T, Zou J, Cai X, Michalek SM, Velu SE, Wu H. 2017. Structure-based discovery of small molecule inhibitors of cariogenic virulence. Sci Rep. 7:5974.
  • Zhang T, Chu J, Zhou X. 2015. Anti-carious effects of Galla chinensis: a systematic review. Phytother Res. 29:1837–1842.
  • Zheng X, He J, Wang L, Zhou S, Peng X, Huang S, Zheng L, Cheng L, Hao Y, Li J, et al. 2017. Ecological effect of arginine on oral microbiota. Sci Rep. 7:7206.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.