557
Views
9
CrossRef citations to date
0
Altmetric
Review Articles

Nanophotocatalysts against viruses and antibiotic-resistant bacteria: recent advances

ORCID Icon
Pages 67-82 | Received 27 Jan 2021, Accepted 02 Jun 2021, Published online: 26 Jun 2021

References

  • Akhavan O, Choobtashani M, Ghaderi E. 2012. Protein degradation and RNA efflux of viruses photocatalyzed by graphene-tungsten oxide composite under visible light irradiation. J Phys Chem C. 116(17):9653–9659.
  • Alharbi NS, Hu B, Hayat T, Rabah SO, Alsaedi A, Zhuang L, Wang X. 2020. Efficient elimination of environmental pollutants through sorption-reduction and photocatalytic degradation using nanomaterials. Front Chem Sci Eng. 14(6):1124–1135.
  • Almashhori K, Ali TT, Saeed A, Alwafi R, Aly M, Al-Hazmi FE. 2020. Antibacterial and photocatalytic activities of controllable (anatase/rutile) mixed phase TiO2 nanophotocatalysts synthesized via a microwave-assisted sol–gel method. New J Chem. 44(2):562–570.
  • Arnone RD, Walling JP. 2007. Waterborne pathogens in urban watersheds. J Water Health. 5(1):149–162.
  • Bradford SA, Morales VL, Zhang W, Harvey RW, Packman AI, Mohanram A, Welty C. 2013. Transport and fate of microbial pathogens in agricultural settings. Critic Rev Environ Sci Tech. 43(8):775–893.
  • Cai L, Jia H, He L, Wei X, Feng H, Fan G, Ma X, Ma G, Sun X. 2021. The photocatalytic antibacterial molecular mechanisms towards Pseudomonas syringae pv. tabaci by g‐C3N4 nanosheets: insights from the cytomembrane, biofilm and motility disrupting. Pest Manag Sci. 77(5):2302–2314.
  • Cesewski E, Johnson BN. 2020. Electrochemical biosensors for pathogen detection. Biosens Bioelectron. 159:112214.
  • Chandra R, Singh V, Tomar S, Nath M. 2019. Multi-core-shell composite SnO2NPs@ZIF-8: potential antiviral agent and effective photocatalyst for waste-water treatment. Environ Sci Pollut Res Int. 26(23):23346–23358.
  • Chen X, Mao SS. 2007. Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chem Rev. 107(7):2891–2959.
  • Cheng R, Kang M, Shen Z-p, Shi L, Zheng X. 2019. Visible-light-driven photocatalytic inactivation of bacteriophage f2 by Cu-TiO2 nanofibers in the presence of humic acid. J Environ Sci (China). 77:383–391.
  • Cheng R, Shen L, Wang Q, Xiang S, Shi L, Zheng X, Lv W. 2018. Photocatalytic Membrane Reactor (PMR) for virus removal in drinking water: effect of humic acid. Catalysts. 8(7):284.
  • Cheng R, Shen L-J, Yu J-H, Xiang S-Y, Zheng X. 2018. Photocatalytic inactivation of bacteriophage f2 with Ag3PO4/g-C3N4 composite under visible light irradiation: performance and mechanism. Catalysts. 8(10):406.
  • Choi S-Y, Cho B. 2018. Extermination of influenza virus H1N1 by a new visible-light-induced photocatalyst under fluorescent light. Virus Res. 248:71–73.
  • Cui H, Jiang J, Gu W, Sun C, Wu D, Yang T, Yang G. 2010. Photocatalytic inactivation efficiency of anatase Nano-TiO(2) Sol on the H(9) N(2) avian influenza virus. Photochem Photobiol. 86(5):1135–1139.
  • Ding N, Chang X, Shi N, Yin X, Qi F, Sun Y. 2019. Enhanced inactivation of antibiotic-resistant bacteria isolated from secondary effluents by g-C3N4 photocatalysis. Environ Sci Pollut Res Int. 26(18):18730–18738.
  • Endo-Kimura M, Kowalska E. 2020. Plasmonic photocatalysts for microbiological applications. Catalysts. 10(8):824.
  • Etacheri V, Michlits G, Seery MK, Hinder SJ, Pillai SC. 2013. A highly efficient TiO(2-x)C(x) nano-heterojunction photocatalyst for visible light induced antibacterial applications. ACS Appl Mater Interfaces. 5(5):1663–1672.
  • Fang Y, Zheng Y, Fang T, Chen Y, Zhu Y, Liang Q, Sheng H, Li Z, Chen C, Wang X. 2020. Photocatalysis: an overview of recent developments and technological advancements. Sci China Chem. 63(2):149–181.
  • Gall AM, Mariñas BJ, Lu Y, Shisler JL. 2015. Waterborne viruses: a barrier to safe drinking water. PLoS Pathog. 11(6):e1004867.
  • Guo C, Wang K, Hou S, Wan L, Lv J, Zhang Y, Qu X, Chen S, Xu J. 2017. H2O2 and/or TiO2 photocatalysis under UV irradiation for the removal of antibiotic resistant bacteria and their antibiotic resistance genes. J Hazard Mater. 323(Pt B):710–718.
  • Han D, Han Y, Li J, Liu X, Yeung KWK, Zheng Y, Cui Z, Yang X, Liang Y, Li Z, et al. 2020. Enhanced photocatalytic activity and photothermal effects of cu-doped metal-organic frameworks for rapid treatment of bacteria-infected wounds. Appl Catal B. 261:118248.
  • Hao M, Qiu M, Yang H, Hu B, Wang X. 2021. Recent advances on preparation and environmental applications of MOF-derived carbons in catalysis. Sci Total Environ. 760:143333.
  • Horovitz I, Avisar D, Luster E, Lozzi L, Luxbacher T, Mamane H. 2018. MS2 bacteriophage inactivation using a N-doped TiO2-coated photocatalytic membrane reactor: influence of water-quality parameters. Chem Eng J. 354:995–1006.
  • Hu X, Mu L, Wen J, Zhou Q. 2012. Covalently synthesized graphene oxide-aptamer nanosheets for efficient visible-light photocatalysis of nucleic acids and proteins of viruses. Carbon. 50(8):2772–2781.
  • Hwangbo M, Claycomb EC, Liu Y, Alivio TEG, Banerjee S, Chu K-H. 2019. Effectiveness of zinc oxide-assisted photocatalysis for concerned constituents in reclaimed wastewater: 1,4-dioxane, trihalomethanes, antibiotics, antibiotic resistant bacteria (ARB), and antibiotic resistance genes (ARGs). Sci Total Environ. 649:1189–1197.
  • Ishiguro H, Nakano R, Yao Y, Kajioka J, Fujishima A, Sunada K, Minoshima M, Hashimoto K, Kubota Y. 2011. Photocatalytic inactivation of bacteriophages by TiO2-coated glass plates under low-intensity, long-wavelength UV irradiation. Photochem Photobiol Sci. 10(11):1825–1829.
  • Jiménez-Tototzintle M, Ferreira IJ, da Silva Duque S, Guimarães Barrocas PR, Saggioro EM. 2018. Removal of contaminants of emerging concern (CECs) and antibiotic resistant bacteria in urban wastewater using UVA/TiO2/H2O2 photocatalysis. Chemosphere. 210:449–457.
  • Karaolia P, Michael-Kordatou I, Hapeshi E, Drosou C, Bertakis Y, Christofilos D, Armatas GS, Sygellou L, Schwartz T, Xekoukoulotakis NP, et al. 2018. Removal of antibiotics, antibiotic-resistant bacteria and their associated genes by graphene-based TiO2 composite photocatalysts under solar radiation in urban wastewaters. Appl Catal, B. 224:810–824.
  • Khaiboullina S, Uppal T, Dhabarde N, Subramanian VR, Verma SC. 2020. In vitro inactivation of human coronavirus by titania nanoparticle coatings and UVC radiation: throwing light on SARS-CoV-2. Viruses. 13(1):19..
  • Kim J, Jang J. 2018. Inactivation of airborne viruses using vacuum ultraviolet photocatalysis for a flow-through indoor air purifier with short irradiation time. Aerosol Sci Technol. 52(5):557–566.
  • Koe WS, Lee JW, Chong WC, Pang YL, Sim LC. 2020. An overview of photocatalytic degradation: photocatalysts, mechanisms, and development of photocatalytic membrane. Environ Sci Pollut Res Int. 27(3):2522–2565.
  • Li D, Gu AZ, He M, Shi H-C, Yang W. 2009. UV inactivation and resistance of rotavirus evaluated by integrated cell culture and real-time RT-PCR assay. Water Res. 43(13):3261–3269.
  • Li D, Yu P, Zhou X, Kim J-H, Zhang Y, Alvarez PJJ. 2020. Hierarchical Bi2O2CO3 wrapped with modified graphene oxide for adsorption-enhanced photocatalytic inactivation of antibiotic resistant bacteria and resistance genes. Water Res. 184:116157.
  • Li M, Li D, Zhou Z, Wang P, Mi X, Xia Y, Wang H, Zhan S, Li Y, Li L. 2020. Plasmonic Ag as electron-transfer mediators in Bi2MoO6/Ag-AgCl for efficient photocatalytic inactivation of bacteria. Chem Eng J. 382:122762.
  • Li Q, Page MA, Mariñas BJ, Shang JK. 2008. Treatment of coliphage MS2 with palladium-modified nitrogen-doped titanium oxide photocatalyst illuminated by visible light. Environ Sci Technol. 42(16):6148–6153.
  • Li Y, Li X, Zhang H, Fan J, Xiang Q. 2020. Design and application of active sites in g-C3N4-based photocatalysts. J Mater Sci Technol. 56:69–88.
  • Li Y, Xu H, Ouyang S, Ye J. 2016. Metal-organic frameworks for photocatalysis. Phys Chem Chem Phys. 18(11):7563–7572.
  • Li Y, Zhang C, Shuai D, Naraginti S, Wang D, Zhang W. 2016. Visible-light-driven photocatalytic inactivation of MS2 by metal-free g-C3N4: virucidal performance and mechanism. Water Res. 106:249–258.
  • Liga MV, Bryant EL, Colvin VL, Li Q. 2011. Virus inactivation by silver doped titanium dioxide nanoparticles for drinking water treatment. Water Res. 45(2):535–544.
  • Liu H, Ma S, Shao L, Liu H, Gao Q, Li B, Fu H, Fu S, Ye H, Zhao F, et al. 2020. Defective engineering in graphitic carbon nitride nanosheet for efficient photocatalytic pathogenic bacteria disinfection. Appl Catal B. 261:118201.
  • Liu M, Sunada K, Hashimoto K, Miyauchi M. 2015. Visible-light sensitive Cu(ii)-TiO2 with sustained anti-viral activity for efficient indoor environmental remediation. J Mater Chem A. 3(33):17312–17319.
  • Liu X, Ma R, Zhuang L, Hu B, Chen J, Liu X, Wang X. 2021. Recent developments of doped g-C3N4 photocatalysts for the degradation of organic pollutants. Crit Rev Environ Sci Technol. 51(8):751–790.
  • Manoharan RK, Mahalingam S, Gangadaran P, Ahn Y-H. 2020. Antibacterial and photocatalytic activities of 5-nitroindole capped bimetal nanoparticles against multidrug resistant bacteria. Colloids Surf B Biointerfaces. 188:110825.
  • Miklos DB, Remy C, Jekel M, Linden KG, Drewes JE, Hübner U. 2018. Evaluation of advanced oxidation processes for water and wastewater treatment–a critical review. Water Res. 139:118–131.
  • Moon EW, Lee H-W, Rok JH, Ha J-H. 2020. Photocatalytic inactivation of viral particles of human norovirus by Cu-doped TiO2 non-woven fabric under UVA-LED wavelengths. Sci Total Environ. 749:141574.
  • Moor KJ, Kim JH. 2014. Simple synthetic method toward solid supported C60 visible light-activated photocatalysts. Environ Sci Technol. 48(5):2785–2791.
  • Nakano R, Ishiguro H, Yao Y, Kajioka J, Fujishima A, Sunada K, Minoshima M, Hashimoto K, Kubota Y. 2012. Photocatalytic inactivation of influenza virus by titanium dioxide thin film. Photochem Photobiol Sci. 11(8):1293–1298.
  • Park D, Shahbaz HM, Kim S-H, Lee M, Lee W, Oh J-W, Lee D-U, Park J. 2016. Inactivation efficiency and mechanism of UV-TiO2 photocatalysis against murine norovirus using a solidified agar matrix. Int J Food Microbiol. 238:256–264.
  • Pradhan N, Pal A, Pal T. 2001. Catalytic reduction of aromatic nitro compounds by coinage metal nanoparticles. Langmuir. 17 (5):1800–1802.
  • Rahman KU, Ferreira-Neto EP, Rahman GU, Parveen R, Monteiro AS, Rahman G, Le QV, Domeneguetti RR, Ribeiro SJL, Ullah S. 2021. Flexible bacterial cellulose-based BC-SiO2-TiO2-Ag membranes with self-cleaning, photocatalytic, antibacterial and UV-shielding properties as a potential multifunctional material for combating infections and environmental applications. J Environ Chem Eng. 9(1):104708.
  • Ren S, Boo C, Guo N, Wang S, Elimelech M, Wang Y. 2018. Photocatalytic reactive ultrafiltration membrane for removal of antibiotic resistant bacteria and antibiotic resistance genes from wastewater effluent. Environ Sci Technol. 52(15):8666–8673.
  • Shiraki K, Yamada H, Yoshida Y, Ohno A, Watanabe T, Watanabe T, Watanabe H, Watanabe H, Watanabe H, Yamaguchi M, et al. 2017. Improved photocatalytic air cleaner with decomposition of aldehyde and aerosol-associated influenza virus infectivity in indoor air. Aerosol Air Qual Res. 17(11):2901–2912.
  • Sinha AK, Basu M, Sarkar S, Pradhan M, Pal T. 2013. Synthesis of gold nanochains via photoactivation technique and their catalytic applications. J Colloid Interface Sci. 398:13–21.
  • Sundara Selvam PS, Chinnadurai GS, Ganesan D, Perumal P, Kandan V. 2021. Cadmium oxide-zinc oxide nanocomposites synthesized using waste eggshell membrane and its in-vitro assessments of the antimicrobial activities and minimum inhibitory concentration. J Inorg Organomet Polym. 31(2):816–835.
  • Takehara K, Yamazaki K, Miyazaki M, Yamada Y, Ruenphet S, Jahangir A, Shoham D, Okamura M, Nakamura M. 2010. Inactivation of avian influenza virus H1N1 by photocatalyst under visible light irradiation. Virus Res. 151(1):102–103.
  • Tang C, Liu C, Han Y, Guo Q, Ouyang W, Feng H, Wang M, Xu F. 2019. Nontoxic carbon quantum dots/g‐C3N4 for efficient photocatalytic inactivation of staphylococcus aureus under visible light. Adv Healthcare Mater. 8(10):1801534.
  • Tsai TM, Chang HH, Chang KC, Liu YL, Tseng CC. 2010. A comparative study of the bactericidal effect of photocatalytic oxidation by TiO2 on antibiotic‐resistant and antibiotic‐sensitive bacteria. J Chem Technol Biotechnol. 85(12):1642–1653.
  • Venieri D, Gounaki I, Binas V, Zachopoulos A, Kiriakidis G, Mantzavinos D. 2015. Inactivation of MS2 coliphage in sewage by solar photocatalysis using metal-doped TiO2. Appl Catal, B. 178:54–64.
  • Xia P, Cao S, Zhu B, Liu M, Shi M, Yu J, Zhang Y. 2020. Designing a 0D/2D S-scheme heterojunction over polymeric carbon nitride for visible-light photocatalytic inactivation of bacteria. Angew Chem Int Ed Engl. 59(13):5218–5225.
  • Xiao J-D, Jiang H-L. 2019. Metal-organic frameworks for photocatalysis and photothermal catalysis. Acc Chem Res. 52(2):356–366.
  • Xiong P, Hu J. 2013. Inactivation/reactivation of antibiotic-resistant bacteria by a novel UVA/LED/TiO2 system. Water Res. 47(13):4547–4555.
  • Xu C, Nasrollahzadeh M, Sajjadi M, Maham M, Luque R, Puente-Santiago AR. 2019. Benign-by-design nature-inspired nanosystems in biofuels production and catalytic applications. Renew Sustain Energy Rev. 112:195–252.
  • You J, Guo Y, Guo R, Liu X. 2019. A review of visible light-active photocatalysts for water disinfection: features and prospects. Chem Eng J. 373:624–641.
  • Yu BF, Hu ZB, Liu M, Yang HL, Kong QX, Liu YH. 2009. Review of research on air-conditioning systems and indoor air quality control for human health. Int J Refrig. 32(1):3–20.
  • Yu P, Zhou X, Li Z, Yan Y. 2020. Inactivation and change of tetracycline-resistant Escherichia coli in secondary effluent by visible light-driven photocatalytic process using Ag/AgBr/g-C3N4. Sci Total Environ. 705:135639.
  • Yu Z, Rabiee H, Guo J. 2021. Synergistic effect of sulfidated nano zerovalent iron and persulfate on inactivating antibiotic resistant bacteria and antibiotic resistance genes. Water Res. 198:117141.
  • Zhang C, Li Y, Li J. 2020. Improved disinfection performance towards human adenoviruses using an efficient metal-free heterojunction in a vis-LED photocatalytic membrane reactor: operation analysis and optimization. Chem Eng J. 392:123687.
  • Zhang C, Li Y, Shuai D, Shen Y, Wang D-B. 2019. Progress and challenges in photocatalytic disinfection of waterborne viruses: a review to fill current knowledge gaps. Chem Eng J. 355:399–415.
  • Zhang C, Li Y, Shuai D, Shen Y, Xiong W, Wang L. 2019. Graphitic carbon nitride (g-C3N4)-based photocatalysts for water disinfection and microbial control: a review. Chemosphere. 214:462–479.
  • Zhang C, Li Y, Zhang W, Wang P, Wang C. 2018. Metal-free virucidal effects induced by g-C3N4 under visible light irradiation: statistical analysis and parameter optimization. Chemosphere. 195:551–558.
  • Zhang C, Zhang M, Li Y, Shuai D. 2019. Visible-light-driven photocatalytic disinfection of human adenovirus by a novel heterostructure of oxygen-doped graphitic carbon nitride and hydrothermal carbonation carbon. Appl Catal, B. 248:11–21.
  • Zhang X, Lin M, Lin X, Zhang C, Wei H, Zhang H, Yang B. 2014. Polypyrrole-enveloped Pd and Fe3O4 nanoparticle binary hollow and bowl-like superstructures as recyclable catalysts for industrial wastewater treatment. ACS Appl Mater Interfaces. 6 (1):450–458.
  • Zheng X, Shen Z-p, Cheng C, Shi L, Cheng R, Yuan D-h. 2018. Photocatalytic disinfection performance in virus and virus/bacteria system by Cu-TiO2 nanofibers under visible light. Environ Pollut. 237:452–459.
  • Zuo X, Chu X, Hu J. 2015. Effects of water matrix on virus inactivation using common virucidal techniques for condensate urine disinfection. Chemosphere. 136:118–124.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.