1,182
Views
7
CrossRef citations to date
0
Altmetric
Review Articles

The high osmolarity glycerol (HOG) pathway in fungi

, , , , , , & show all
Pages 657-695 | Received 17 Aug 2021, Accepted 15 Nov 2021, Published online: 10 Dec 2021

References

  • Aghcheh RK, Braus GH. 2018. Importance of stress response mechanisms in filamentous fungi for agriculture and industry. In: Skoneczny M, editor. Stress response mechanisms in fungi: theoretical and practical aspects. Cham: Springer International Publishing; p. 189–222.
  • Aguilera J, Rodríguez‐Vargas S, Prieto JA. 2005. The HOG MAP kinase pathway is required for the induction of methylglyoxal-responsive genes and determines methylglyoxal resistance in Saccharomyces cerevisiae. Mol Microbiol. 56(1):228–239.
  • Ahn CH, Lee S, Cho E, Kim H, Chung B, Park W, Shin J, Oh KB. 2017. A farnesoic acid-responsive transcription factor, Hot1, regulates yeast-hypha morphogenesis in Candida albicans. FEBS Lett. 591(9):1225–1235.
  • Alex LA, Korch C, Selitrennikoff CP, Simon MI. 1998. COS1, a two-component histidine kinase that is involved in hyphal development in the opportunistic pathogen Candida albicans. Proc Natl Acad Sci USA. 95(12):7069–7073.
  • Alic N, Higgins VJ, Pichova A, Breitenbach M, Dawes IW. 2003. Lipid hydroperoxides activate the mitogen-activated protein kinase Mpk1p in Saccharomyces cerevisiae. J Biol Chem. 278(43):41849–41855.
  • Alonso-Monge R, Carvaihlo S, Nombela C, Rial E, Pla J. 2009. The Hog1 MAP kinase controls respiratory metabolism in the fungal pathogen Candida albicans. Microbiology. 155(Pt 2):413–423.
  • Alonso-Monge R, Navarro-Garcia F, Molero G, Diez-Orejas R, Gustin M, Pla J, Sanchez M, Nombela C. 1999. Role of the mitogen-activated protein kinase Hog1p in morphogenesis and virulence of Candida albicans. J Bacteriol. 181(10):3058–3068.
  • Alonso-Monge R, Navarro-García F, Román E, Negredo AI, Eisman B, Nombela C, Pla J. 2003. The Hog1 mitogen-activated protein kinase is essential in the oxidative stress response and chlamydospore formation in Candida albicans. Eukaryot Cell. 2(2):351–361.
  • Alonso-Monge R, Román E, Arana DM, Prieto D, Urrialde V, Nombela C, Pla J. 2010. The Sko1 protein represses the yeast-to-hypha transition and regulates the oxidative stress response in Candida albicans. Fungal Genet Biol. 47(7):587–601.
  • Altwasser R, Baldin C, Weber J, Guthke R, Kniemeyer O, Brakhage AA, Linde J, Valiante V. 2015. Network modeling reveals cross talk of MAP kinases during adaptation to caspofungin stress in Aspergillus fumigatus. PLoS One. 10(9):e0136932.
  • Alves de Castro P, Dos Reis TF, Dolan SK, Oliveira Manfiolli A, Brown NA, Jones GW, Doyle S, Riano-Pachon DM, Squina FM, Caldana C, et al. 2016. The Aspergillus fumigatus SchASCH9 kinase modulates SakAHOG1 MAP kinase activity and it is essential for virulence. Mol Microbiol. 102(4):642–671.
  • Alves R, Barata-Antunes C, Casal M, Brown AJ, Van Dijck P, Paiva S. 2020. Adapting to survive: how Candida overcomes host-imposed constraints during human colonization. PLoS Pathog. 16(5):e1008478.
  • Arana DM, Alonso‐Monge R, Du C, Calderone R, Pla J. 2007. Differential susceptibility of mitogen-activated protein kinase pathway mutants to oxidative-mediated killing by phagocytes in the fungal pathogen Candida albicans. Cell Microbiol. 9(7):1647–1659.
  • Arana DM, Nombela C, Alonso-Monge R, Pla J. 2005. The Pbs2 MAP kinase kinase is essential for the oxidative-stress response in the fungal pathogen Candida albicans. Microbiology. 151(Pt 4):1033–1049.
  • Arastehfar A, Carvalho A, Houbraken J, Lombardi L, Garcia-Rubio R, Jenks JD, Rivero-Menendez O, Aljohani R, Jacobsen ID, Berman J, et al. 2021. Aspergillus fumigatus and aspergillosis: from basics to clinics. Stud Mycol. 100:100115.
  • Argimon S, Fanning S, Blankenship JR, Mitchell AP. 2011. Interaction between the Candida albicans high-osmolarity glycerol (HOG) pathway and the response to human beta-defensins 2 and 3. Eukaryot Cell. 10(2):272–275.
  • Aslankoohi E, Rezaei MN, Vervoort Y, Courtin C, Verstrepen KJ. 2015. Glycerol production by fermenting yeast cells is essential for optimal bread dough fermentation. PLoS One. 10(3):e0119364.
  • Aslankoohi E, Zhu B, Rezaei MN, Voordeckers K, De Maeyer D, Marchal K, Dornez E, Courtin CM, Verstrepen KJ. 2013. Dynamics of the Saccharomyces cerevisiae transcriptome during bread dough fermentation. Appl Environ Microbiol. 79(23):7325–7333.
  • Attfield PV. 1997. Stress tolerance: the key to effective strains of industrial baker's yeast. Nat Biotechnol. 15(13):1351–1357.
  • Auesukaree C. 2017. Molecular mechanisms of the yeast adaptive response and tolerance to stresses encountered during ethanol fermentation. J Biosci Bioeng. 124(2):133–142.
  • Azad GK, Singh V, Thakare MJ, Baranwal S, Tomar RS. 2014. Mitogen-activated protein kinase Hog1 is activated in response to curcumin exposure in the budding yeast Saccharomyces cerevisiae. BMC Microbiol. 14:317.
  • Babazadeh R, Lahtvee PJ, Adiels CB, Goksör M, Nielsen JB, Hohmann S. 2017. The yeast osmostress response is carbon source dependent. Sci Rep. 7(1):990.
  • Babele PK, Thakre PK, Kumawat R, Tomar RS. 2018. Zinc oxide nanoparticles induce toxicity by affecting cell wall integrity pathway, mitochondrial function and lipid homeostasis in Saccharomyces cerevisiae. Chemosphere. 213:65–75.
  • Bahn YS, Geunes-Boyer S, Heitman J. 2007. Ssk2 mitogen-activated protein kinase kinase kinase governs divergent patterns of the stress-activated Hog1 signaling pathway in Cryptococcus neoformans. Eukaryot Cell. 6(12):2278–2289.
  • Bahn YS, Kojima K, Cox GM, Heitman J. 2005. Specialization of the HOG pathway and its impact on differentiation and virulence of Cryptococcus neoformans. Mol Biol Cell. 16(5):2285–2300.
  • Bahn YS, Kojima K, Cox GM, Heitman J. 2006. A unique fungal two-component system regulates stress responses, drug sensitivity, sexual development, and virulence of Cryptococcus neoformans. Mol Biol Cell. 17(7):3122–3135.
  • Bai C, Tesker M, Engelberg D. 2015. The yeast Hot1 transcription factor is critical for activating a single target gene, STL1. Mol Biol Cell. 26(12):2357–2374.
  • Bai C, Tesker M, Melamed-Kadosh D, Engelberg D, Admon A. 2020. Hog1-induced transcription of RTC3 and HSP12 is robust and occurs in cells lacking Msn2, Msn4, Hot1 and Sko1. PLoS One. 15(8):e0237540.
  • Banerjee D, Bloom AL, Panepinto JC. 2016. Opposing PKA and Hog1 signals control the post-transcriptional response to glucose availability in Cryptococcus neoformans. Mol Microbiol. 102(2):306–320.
  • Basso V, Znaidi S, Lagage V, Cabral V, Schoenherr F, LeibundGut-Landmann S, d'Enfert C, Bachellier-Bassi S. 2017. The two-component response regulator Skn7 belongs to a network of transcription factors regulating morphogenesis in Candida albicans and independently limits morphogenesis-induced ROS accumulation. Mol Microbiol. 106(1):157–182.
  • Bermejo C, Rodríguez E, García R, Rodríguez-Peña JM, Rodríguez de la Concepción ML, Rivas C, Arias P, Nombela C, Posas F, Arroyo J. 2008. The sequential activation of the yeast HOG and SLT2 pathways is required for cell survival to cell wall stress. MBoC. 19(3):1113–1124.
  • Bersching K, Jacob S. 2021. The molecular mechanism of fludioxonil action is different to osmotic stress sensing. JoF. 7(5):393.
  • Bicknell AA, Tourtellotte J, Niwa M. 2010. Late phase of the endoplasmic reticulum stress response pathway is regulated by Hog1 MAP kinase. J Biol Chem. 285(23):17545–17555.
  • Bilsland E, Molin C, Swaminathan S, Ramne A, Sunnerhagen P. 2004. Rck1 and Rck2 MAPKAP kinases and the HOG pathway are required for oxidative stress resistance. Mol Microbiol. 53(6):1743–1756.
  • Bilsland-Marchesan E, Ariño J, Saito H, Sunnerhagen P, Posas F. 2000. Rck2 kinase is a substrate for the osmotic stress-activated mitogen-activated protein kinase Hog1. Mol Cell Biol. 20(11):3887–3895.
  • Bleoanca I, Bahrim G. 2013. Overview on brewing yeast stress factors. Rom Biotechnol Lett. 18:8559–8572.
  • Bloom ALM, Goich D, Knowles CM, Panepinto JC. 2021. Glucan unmasking identifies regulators of temperature-induced translatome reprogramming in C. neoformans. mSphere. 6(1):e01281-20.
  • Bohmer I, Spadinger A, Ebel F. 2020. Functional comparison of the group III hybrid histidine kinases TcsC of Aspergillus fumigatus and NikA of Aspergillus nidulans. Med Mycol. 58(3):362–371.
  • Brandhorst TT, Kean IR, Lawry SM, Wiesner DL, Klein BS. 2019. Phenylpyrrole fungicides act on triosephosphate isomerase to induce methylglyoxal stress and alter hybrid histidine kinase activity. Sci Rep. 9(1):5047.
  • Brewster JL, Gustin MC. 2014. Hog1: 20 years of discovery and impact. Sci Signal. 7:re7.
  • Brown GD, Denning DW, Gow NA, Levitz SM, Netea MG, White TC. 2012. Hidden killers: human fungal infections. Sci Transl Med. 4:165rv13.
  • Brown NA, Goldman GH. 2016. The contribution of Aspergillus fumigatus stress responses to virulence and antifungal resistance. J Microbiol. 54(3):243–253.
  • Bruce CR, Smith DA, Rodgers D, da Silva Dantas A, MacCallum DM, Morgan BA, Quinn J. 2011. Identification of a novel response regulator, Crr1, that is required for hydrogen peroxide resistance in Candida albicans. PLoS One. 6(12):e27979.
  • Bruder Nascimento ACD, Reis TF, de Castro PA, Hori JI, Bom VL, de Assis LJ, Ramalho LN, Rocha MC, Malavazi I, Brown NA, et al. 2016. Mitogen activated protein kinases SakA(HOG1) and MpkC collaborate for Aspergillus fumigatus virulence. Mol Microbiol. 100(5):841–859.
  • Buschart A, Gremmer K, El-Mowafy M, van den Heuvel J, Mueller PP, Bilitewski U. 2012. A novel functional assay for fungal histidine kinases group III reveals the role of HAMP domains for fungicide sensitivity. J Biotechnol. 157(1):268–277.
  • Capaldi AP, Kaplan T, Liu Y, Habib N, Regev A, Friedman N, O'Shea EK. 2008. Structure and function of a transcriptional network activated by the MAPK Hog1. Nat Genet. 40(11):1300–1306.
  • Cardona F, Carrasco P, Pérez-Ortín JE, del Olmo M, Aranda A. 2007. A novel approach for the improvement of stress resistance in wine yeasts. Int J Food Microbiol. 114(1):83–91.
  • Casagrande VD, Vescovo V, Militti C, Mangiapelo E, Frontali L, Negri R, Bianchi MM. 2009. Cesium chloride sensing and signaling in Saccharomyces cerevisiae: an interplay among the HOG and CWI MAPK pathways and the transcription factor Yaf9. FEMS Yeast Res. 9(3):400–410.
  • Chang CK, Kao MC, Lan CY. 2021. Antimicrobial activity of the peptide LfcinB15 against Candida albicans. JoF. 7(7):519.
  • Chang N, Yao S, Chen D, Zhang L, Huang J, Zhang L. 2018. The Hog1 positive regulated YCT1 gene expression under cadmium tolerance of budding yeast. FEMS Microbiol Lett. 365:fny170.
  • Chang WH, Liang SH, Deng FS, Lin CH. 2016. The conserved dual phosphorylation sites of the Candida albicans Hog1 protein are crucial for white-opaque switching, mating, and pheromone-stimulated cell adhesion. Med Mycol. 54(6):628–640.
  • Chang Y-L, Tseng S-F, Huang Y-C, Shen Z-J, Hsu P-H, Hsieh M-H, Yang C-W, Tognetti S, Canal B, Subirana L, et al. 2017. Yeast Cip1 is activated by environmental stress to inhibit Cdk1-G1 cyclins via Mcm1 and Msn2/4. Nat Commun. 8(1):56.
  • Chapeland-Leclerc F, Dilmaghani A, Ez-Zaki L, Boisnard SD, Silva B, Gaslonde T, Poree FH, Ruprich-Robert G. 2015. Systematic gene deletion and functional characterization of histidine kinase phosphorelay receptors (HKRs) in the human pathogenic fungus Aspergillus fumigatus. Fungal Genet Biol. 84:1–11.
  • Chauhan N, Inglis D, Roman E, Pla J, Li D, Calera JA, Calderone R. 2003. Candida albicans response regulator gene SSK1 regulates a subset of genes whose functions are associated with cell wall biosynthesis and adaptation to oxidative stress. Eukaryot Cell. 2(5):1018–1024.
  • Cheetham J, MacCallum DM, Doris KS, da Silva Dantas A, Scorfield S, Odds F, Smith DA, Quinn J. 2011. MAPKKK-independent regulation of the Hog1 stress-activated protein kinase in Candida albicans. J Biol Chem. 286(49):42002–42016.
  • Cheetham J, Smith DA, da Silva Dantas A, Doris KS, Patterson MJ, Bruce CR, Quinn J. 2007. A single MAPKKK regulates the Hog1 MAPK pathway in the pathogenic fungus Candida albicans. Mol Biol Cell. 18(11):4603–4614.
  • Chien CT, Chen YC, Liu YC, Liang SH, Lin HH, Lin CH. 2018. The antimicrobial photodynamic inactivation resistance of Candida albicans is modulated by the Hog1 pathway and the Cap1 transcription factor. Med Mycol. 57:618–627.
  • Choi YH, Jun SC, Lee MW, Yu JH, Shin KS. 2021. Characterization of the mbsA gene encoding a putative APSES transcription factor in Aspergillus fumigatus. IJMS. 22(7):3777.
  • Chow J, Dionne HM, Prabhakar A, Mehrotra A, Somboonthum J, Gonzalez B, Edgerton M, Cullen PJ. 2019. Aggregate filamentous growth responses in yeast. mSphere. 4:e00702-18.
  • Chun CD, Liu OW, Madhani HD. 2007. A link between virulence and homeostatic responses to hypoxia during infection by the human fungal pathogen Cryptococcus neoformans. PLoS Pathog. 3(2):e22.
  • Clemons KV, Miller TK, Selitrennikoff CP, Stevens DA. 2002. Fos-1, a putative histidine kinase as a virulence factor for systemic aspergillosis. Med Mycol. 40(3):259–262.
  • Correia I, Alonso-Monge R, Pla J. 2017. The Hog1 MAP kinase promotes the recovery from cell cycle arrest induced by hydrogen peroxide in Candida albicans. Front Microbiol. 7:2133.
  • Correia I, Prieto D, Román E, Wilson D, Hube B, Alonso-Monge R, Pla J. 2020a. Cooperative role of MAPK pathways in the interaction of Candida albicans with the host epithelium. Microorganisms. 8(1):48.
  • Correia I, Wilson D, Hube B, Pla J. 2020b. Characterization of a Candida albicans mutant defective in all MAPKs highlights the major role of Hog1 in the MAPK signaling network. JoF. 6(4):230.
  • Cray JA, Russell JT, Timson DJ, Singhal RS, Hallsworth JE. 2013. A universal measure of chaotropicity and kosmotropicity. Environ Microbiol. 15(1):287–296.
  • Cui S, Hassan RY, Heintz-Buschart A, Bilitewski U. 2016. Regulation of Candida albicans interaction with macrophages through the activation of HOG pathway by genistein. Molecules. 21(2):162.
  • da Silva Dantas A, Patterson MJ, Smith DA, MacCallum DM, Erwig LP, Morgan BA, Quinn J. 2010. Thioredoxin regulates multiple hydrogen peroxide-induced signaling pathways in Candida albicans. Mol Cell Biol. 30(19):4550–4563.
  • Das S, Bhuyan R, Bagchi A, Saha T. 2019. Network analysis of hyphae forming proteins in Candida albicans identifies important proteins responsible for pathovirulence in the organism. Heliyon. 5(6):e01916.
  • Day AM, Herrero-de-Dios CM, MacCallum DM, Brown AJP, Quinn J. 2017a. Stress-induced nuclear accumulation is dispensable for Hog1-dependent gene expression and virulence in a fungal pathogen. Sci Rep. 7(1):14340.
  • Day AM, Quinn J. 2019. Stress-activated protein kinases in human fungal pathogens. Front Cell Infect Microbiol. 9:261.
  • Day AM, Smith DA, Ikeh MA, Haider M, Herrero-de-Dios CM, Brown AJ, Morgan BA, Erwig LP, MacCallum DM, Quinn J. 2017b. Blocking two-component signalling enhances Candida albicans virulence and reveals adaptive mechanisms that counteract sustained SAPK activation. PLoS Pathog. 13(1):e1006131.
  • de Assis LJ, Manfiolli A, Mattos E, Fabri J, Malavazi I, Jacobsen ID, Brock M, Cramer RA, Thammahong A, Hagiwara D, et al. 2018. Protein kinase A and high-osmolarity glycerol response pathways cooperatively control cell wall carbohydrate mobilization in Aspergillus fumigatus. mBio. 9(6):e01952-18.
  • de Bruin RA, McDonald WH, Kalashnikova TI, Yates J III, Wittenberg C. 2004. Cln3 activates G1-specific transcription via phosphorylation of the SBF bound repressor Whi5. Cell. 117(7):887–898.
  • de Castro PA, Chen C, de Almeida RS, Freitas FZ, Bertolini MC, Morais ER, Brown NA, Ramalho LN, Hagiwara D, Mitchell TK, et al. 2014. ChIP-seq reveals a role for CrzA in the Aspergillus fumigatus high-osmolarity glycerol response (HOG) signalling pathway. Mol Microbiol. 94(3):655–674.
  • de Castro PA, Colabardini A, Manfiolli AO, Chiaratto J, Silva LP, Mattos EC, Palmisano G, Almeida F, Persinoti GF, Ries LNA, et al. 2019. Aspergillus fumigatus calcium-responsive transcription factors regulate cell wall architecture promoting stress tolerance, virulence and caspofungin resistance. PLoS Genet. 15(12):e1008551.
  • De Nadal E, Casadomé L, Posas F. 2003. Targeting the MEF2-like transcription factor Smp1 by the stress-activated Hog1 mitogen-activated protein kinase. Mol Cell Biol. 23(1):229–237.
  • De Nadal E, Posas F. 2010. Multilayered control of gene expression by stress-activated protein kinases. Embo J. 29(1):4–13.
  • De Nadal E, Posas F. 2015. Osmostress-induced gene expression-a model to understand how stress-activated protein kinases (SAPKs) regulate transcription. Febs J. 282(17):3275–3285.
  • Defosse TA, Sharma A, Mondal AK, Dugé de Bernonville T, Latgé JP, Calderone R, Giglioli‐Guivarc'h N, Courdavault V, Clastre M, Papon N. 2015. Hybrid histidine kinases in pathogenic fungi. Mol Microbiol. 95(6):914–924.
  • Del Vescovo V, Casagrande V, Bianchi MM, Piccinni E, Frontali L, Militti C, Fardeau V, Devaux F, Di Sanza C, Presutti C, et al. 2008. Role of Hog1 and Yaf9 in the transcriptional response of Saccharomyces cerevisiae to cesium chloride. Physiol Genomics. 33(1):110–120.
  • Delgado-Jarana J, Sousa S, González F, Rey M, Llobell A. 2006. ThHog1 controls the hyperosmotic stress response in Trichoderma harzianum. Microbiology. 152(Pt 6):1687–1700.
  • Deng FS, Lin CH. 2018. Cpp1 phosphatase mediated signaling crosstalk between Hog1 and Cek1 mitogen-activated protein kinases is involved in the phenotypic transition in Candida albicans. Med Mycol. 56(2):242–252.
  • Deveau A, Piispanen AE, Jackson AA, Hogan DA. 2010. Farnesol induces hydrogen peroxide resistance in Candida albicans yeast by inhibiting the Ras-cyclic AMP signaling pathway. Eukaryot Cell. 9(4):569–577.
  • Dichtl K, Samantaray S, Wagener J. 2016. Cell wall integrity signalling in human pathogenic fungi. Cell Microbiol. 18(9):1228–1238.
  • Diner P, Veide Vilg J, Kjellen J, Migdal I, Andersson T, Gebbia M, Giaever G, Nislow C, Hohmann S, Wysocki R, et al. 2011. Design, synthesis, and characterization of a highly effective Hog1 inhibitor: a powerful tool for analyzing MAP kinase signaling in yeast. PLoS One. 6(5):e20012.
  • Dolz-Edo L, Rienzo A, Poveda-Huertes D, Pascual-Ahuir A, Proft M. 2013. Deciphering dynamic dose responses of natural promoters and single cis elements upon osmotic and oxidative stress in yeast. Mol Cell Biol. 33(11):2228–2240.
  • Du C, Calderone R, Richert J, Li D. 2005. Deletion of the SSK1 response regulator gene in Candida albicans contributes to enhanced killing by human polymorphonuclear neutrophils. Infect Immun. 73(2):865–871.
  • Du C, Sarfati J, Latgé JP, Calderone R. 2006. The role of the sakA (Hog1) and tcsB (sln1) genes in the oxidant adaptation of Aspergillus fumigatus. Med Mycol. 44(3):211–218.
  • Dunayevich P, Baltanás R, Clemente JA, Couto A, Sapochnik D, Vasen G, Colman-Lerner A. 2018. Heat-stress triggers MAPK crosstalk to turn on the hyperosmotic response pathway. Sci Rep. 8(1):15168.
  • Duran R, Cary JW, Calvo AM. 2010. Role of the osmotic stress regulatory pathway in morphogenesis and secondary metabolism in filamentous fungi. Toxins. 2(4):367–381.
  • Eardley J, Timson DJ. 2020. Yeast cellular stress: impacts on bioethanol production. Fermentation. 6(4):109.
  • Eisman B, Alonso-Monge R, Román E, Arana D, Nombela C, Pla J. 2006. The Cek1 and Hog1 mitogen-activated protein kinases play complementary roles in cell wall biogenesis and chlamydospore formation in the fungal pathogen Candida albicans. Eukaryot Cell. 5(2):347–358.
  • El-Mowafy M, Bahgat MM, Bilitewski U. 2013. Deletion of the HAMP domains from the histidine kinase CaNik1p of Candida albicans or treatment with fungicides activates the MAP kinase Hog1p in S. cerevisiae transformants. BMC Microbiol. 13:209.
  • Ene IV, Walker LA, Schiavone M, Lee KK, Martin-Yken H, Dague E, Gow NA, Munro CA, Brown AJ. 2015. Cell wall remodeling enzymes modulate fungal cell wall elasticity and osmotic stress resistance. mBio. 6(4):e00986.
  • Enjalbert B, Nantel A, Whiteway M. 2003. Stress-induced gene expression in Candida albicans: absence of a general stress response. Mol Biol Cell. 14(4):1460–1467.
  • Enjalbert B, Smith DA, Cornell MJ, Alam I, Nicholls S, Brown AJ, Quinn J. 2006. Role of the Hog1 stress-activated protein kinase in the global transcriptional response to stress in the fungal pathogen Candida albicans. Mol Biol Cell. 17(2):1018–1032.
  • Fabri J, Godoy NL, Rocha MC, Munshi M, Cocio TA, von Zeska Kress MR, Fill TP, da Cunha AFD, Poeta M, Malavazi I. 2018. The AGC kinase YpkA regulates sphingolipids biosynthesis and physically interacts with SakA MAP kinase in Aspergillus fumigatus. Front Microbiol. 9:3347.
  • Fassler JS, West AH. 2011. Fungal Skn7 stress responses and their relationship to virulence. Eukaryot Cell. 10(2):156–167.
  • Fiedurek J. 1998. Effect of osmotic stress on glucose oxidase production and secretion by Aspergillus niger. J Basic Microbiol. 38(2):107–112.
  • Flores M, Durá MA, Marco A, Toldrá F. 2004. Effect of Debaryomyces spp. on aroma formation and sensory quality of dry-fermented sausages. Meat Sci. 68(3):439–446.
  • Fröhlich-Wyder MT, Arias-Roth E, Jakob E. 2019. Cheese yeasts. Yeast. 36(3):129–141.
  • Fuller KK, Ringelberg CS, Loros JJ, Dunlap JC. 2013. The fungal pathogen Aspergillus fumigatus regulates growth, metabolism, and stress resistance in response to light. mBio. 4(2):e00142-13.
  • Garcia R, Pulido V, Orellana-Munoz S, Nombela C, Vazquez de Aldana CR, Rodriguez-Pena JM, Arroyo J. 2019. Signalling through the yeast MAPK cell wall integrity pathway controls P-body assembly upon cell wall stress. Sci Rep. 9(1):3186.
  • Garcia R, Rodriguez-Pena JM, Bermejo C, Nombela C, Arroyo J. 2009. The high osmotic response and cell wall integrity pathways cooperate to regulate transcriptional responses to zymolyase-induced cell wall stress in Saccharomyces cerevisiae. J Biol Chem. 284(16):10901–10911.
  • García-Marqués S, Randez-Gil F, Prieto JA. 2015. Nuclear versus cytosolic activity of the yeast Hog1 MAP kinase in response to osmotic and tunicamycin-induced ER stress. FEBS Lett. 589(16):2163–2168.
  • Goldman GH, Delneste Y, Papon N. 2021. Fungal polysaccharides promote protective immunity. Trends Microbiol. 29(5):379–381.
  • González-Novo A, Jiménez J, Clotet J, Nadal-Ribelles M, Cavero S, de Nadal E, Posas F. 2015. Hog1 targets Whi5 and Msa1 transcription factors to downregulate cyclin expression upon stress. Mol Cell Biol. 35(9):1606–1618.
  • Granados AA, Crane MM, Montano-Gutierrez LF, Tanaka RJ, Voliotis M, Swain PS. 2017. Distributing tasks via multiple input pathways increases cellular survival in stress. Elife. 6:e21415.
  • Grice CM, Bertuzzi M, Bignell EM. 2013. Receptor-mediated signaling in Aspergillus fumigatus. Front Microbiol. 4:26.
  • Guaragnella N, Stirpe M, Marzulli D, Mazzoni C, Giannattasio S. 2019. Acid stress triggers resistance to acetic acid-Induced regulated cell death through Hog1 activation which requires RTG2 in yeast. Oxid Med Cell Longev. 2019:4651062.
  • Guerra-Moreno A, Prado MA, Ang J, Schnell HM, Micoogullari Y, Paulo JA, Finley D, Gygi SP, Hanna J. 2019. Thiol-based direct threat sensing by the stress-activated protein kinase Hog1. Sci Signal. 12:eaaw4956.
  • Guirao-Abad JP, Sanchez-Fresneda R, Roman E, Pla J, Arguelles JC, Alonso-Monge R. 2020. The MAPK Hog1 mediates the response to amphotericin B in Candida albicans. Fungal Genet Biol. 136:103302.
  • Gurgel I, Jorge K, Malacco N, Souza JAM, Rocha MC, Fernandes MF, Martins FRB, Malavazi I, Teixeira MM, Soriani FM. 2019. The Aspergillus fumigatus mucin MsbA regulates the cell wall integrity pathway and controls recognition of the fungus by the immune system. mSphere. 4(3):e00350-19.
  • Haghnazari E, Heyer WD. 2004. The Hog1 MAP kinase pathway and the Mec1 DNA damage checkpoint pathway independently control the cellular responses to hydrogen peroxide. DNA Repair. 3(7):769–776.
  • Hagiwara D, Suzuki S, Kamei K, Gonoi T, Kawamoto S. 2014. The role of AtfA and HOG MAPK pathway in stress tolerance in conidia of Aspergillus fumigatus. Fungal Genet Biol. 73:138–149.
  • Hagiwara D, Takahashi-Nakaguchi A, Toyotome T, Yoshimi A, Abe K, Kamei K, Gonoi T, Kawamoto S. 2013. NikA/TcsC histidine kinase is involved in conidiation, hyphal morphology, and responses to osmotic stress and antifungal chemicals in Aspergillus fumigatus. PLoS One. 8(12):e80881.
  • Hallsworth JE, Prior BA, Nomura Y, Iwahara M, Timmis KN. 2003. Compatible solutes protect against chaotrope (ethanol)-induced, nonosmotic water stress. Appl Environ Microbiol. 69(12):7032–7034.
  • Hao N, O'Shea EK. 2012. Signal-dependent dynamics of transcription factor translocation controls gene expression. Nat Struct Mol Biol. 19(1):31–39.
  • Hayashi M, Maeda T. 2006. Activation of the HOG pathway upon cold stress in Saccharomyces cerevisiae. J Biochem. 139(4):797–803.
  • Hayes BM, Bleackley MR, Wiltshire JL, Anderson MA, Traven A, van der Weerden NL. 2013. Identification and mechanism of action of the plant defensin NaD1 as a new member of the antifungal drug arsenal against Candida albicans. Antimicrob Agents Chemother. 57(8):3667–3675.
  • He XJ, Mulford KE, Fassler JS. 2009. Oxidative stress function of the Saccharomyces cerevisiae Skn7 receiver domain. Eukaryot Cell. 8(5):768–778.
  • Heilmann CJ, Sorgo AG, Mohammadi S, Sosinska GJ, de Koster CG, Brul S, de Koning LJ, Klis FM. 2013. Surface stress induces a conserved cell wall stress response in the pathogenic fungus Candida albicans. Eukaryot Cell. 12(2):254–264.
  • Heredia MY, Ikeh MAC, Gunasekaran D, Conrad KA, Filimonava S, Marotta DH, Nobile CJ, Rauceo JM. 2020. An expanded cell wall damage signaling network is comprised of the transcription factors Rlm1 and Sko1 in Candida albicans. PLoS Genet. 16(7):e1008908.
  • Hernández-Elvira M, Martínez-Gómez R, Domínguez-Martin E, Méndez A, Kawasaki L, Ongay-Larios L, Coria R. 2019. Tunicamycin sensitivity-suppression by high gene dosage reveals new functions of the yeast Hog1 MAP kinase. Cells. 8(7):710.
  • Herrero-de-Dios C, Day AM, Tillmann AT, Kastora SL, Stead D, Salgado PS, Quinn J, Brown AJ. 2018. Redox regulation, rather than stress-induced phosphorylation, of a Hog1 mitogen-activated protein kinase modulates its nitrosative-stress-specific outputs. mBio. 9(2):e02229-17.
  • Herrero-de-Dios C, Roman E, Pla J, Alonso-Monge R. 2020. Hog1 controls lipids homeostasis upon osmotic stress in Candida albicans. JoF. 6(4):355.
  • Hickman MJ, Spatt D, Winston F. 2011. The Hog1 mitogen-activated protein kinase mediates a hypoxic response in Saccharomyces cerevisiae. Genetics. 188(2):325–338.
  • Hohmann S. 2002. Osmotic stress signaling and osmoadaptation in yeasts. Microbiol Mol Biol Rev. 66(2):300–372.
  • Hohmann S. 2015. An integrated view on a eukaryotic osmoregulation system. Curr Genet. 61(3):373–382.
  • Hong S, Huh WK. 2021. Loss of Smi1, a protein involved in cell wall synthesis, extends replicative life span by enhancing rDNA stability in Saccharomyces cerevisiae. J Biol Chem. 296:100258.
  • Hopke A, Nicke N, Hidu EE, Degani G, Popolo L, Wheeler RT. 2016. Neutrophil attack triggers extracellular trap-dependent Candida cell wall remodeling and altered immune recognition. PLoS Pathog. 12(5):e1005644.
  • Huang G. 2012. Regulation of phenotypic transitions in the fungal pathogen Candida albicans. Virulence. 3(3):251–261.
  • Huang S, Zhang D, Weng F, Wang Y. 2020. Activation of a mitogen-activated protein kinase Hog1 by DNA damaging agent methyl methanesulfonate in yeast. Front Mol Biosci. 7:581095.
  • Hubmann G, Guillouet S, Nevoigt E. 2011. Gpd1 and Gpd2 fine-tuning for sustainable reduction of glycerol formation in Saccharomyces cerevisiae. Appl Environ Microbiol. 77(17):5857–5867.
  • Igbalajobi OA, Yu JH, Shin KS. 2017. Characterization of the rax1 gene encoding a putative regulator of G protein signaling in Aspergillus fumigatus. Biochem Biophys Res Commun. 487(2):426–432.
  • Irqeba AA, Li Y, Panahi M, Zhu M, Wang Y. 2014. Regulating global sumoylation by a MAP kinase Hog1 and its potential role in osmo-tolerance in yeast. PLoS One. 9(2):e87306.
  • Jacob S, Schuffler A, Thines E. 2016. Hog1p activation by marasmic acid through inhibition of the histidine kinase Sln1p. Pest Manag Sci. 72(6):1268–1274.
  • Jamalzadeh S, Pujari AN, Cullen PJ. 2020. A Rab escort protein regulates the MAPK pathway that controls filamentous growth in yeast. Sci Rep. 10(1):22184.
  • Jann C, Johansson A, Smith JD, Parts L, Steinmetz LM. 2020. Gene dosage screens in yeast reveal core signalling pathways controlling heat adaptation. bioRxiv.
  • Janschitz M, Romanov N, Varnavides G, Hollenstein DM, Gérecová G, Ammerer G, Hartl M, Reiter W. 2019. Novel interconnections of HOG signaling revealed by combined use of two proteomic software packages. Cell Commun Signal. 17(1):66.
  • Jashnsaz H, Fox ZR, Hughes JJ, Li G, Munsky B, Neuert G. 2020. Diverse cell stimulation kinetics identify predictive signal transduction models. iScience. 23(10):101565.
  • Ji H, Zhuge B, Zong H, Lu X, Fang H, Zhuge J. 2016. Role of CgHOG1 in stress responses and glycerol overproduction of Candida glycerinogenes. Curr Microbiol. 73(6):827–833.
  • Ji Y, Yang F, Ma D, Zhang J, Wan Z, Liu W, Li R. 2012. HOG-MAPK signaling regulates the adaptive responses of Aspergillus fumigatus to thermal stress and other related stress. Mycopathologia. 174(4):273–282.
  • Jiang L, Cao C, Zhang L, Lin W, Xia J, Xu H, Zhang Y. 2014. Cadmium-induced activation of high osmolarity glycerol pathway through its Sln1 branch is dependent on the MAP kinase kinase kinase Ssk2, but not its paralog Ssk22, in budding yeast. FEMS Yeast Res. 14(8):1263–1272.
  • Jiménez J, Queralt E, Posas F, de Nadal E. 2020. The regulation of Net1/Cdc14 by the Hog1 MAPK upon osmostress unravels a new mechanism regulating mitosis. Cell Cycle. 19(17):2105–2118.
  • Jiménez-Gutiérrez E, Alegría-Carrasco E, Alonso-Rodríguez E, Fernández-Acero T, Molina M, Martín H. 2020. Rewiring the yeast cell wall integrity (CWI) pathway through a synthetic positive feedback circuit unveils a novel role for the MAPKKK Ssk2 in CWI pathway activation. FEBS J. 287(22):4881–4901.
  • Jogawat A, Vadassery J, Verma N, Oelmüller R, Dua M, Nevo E, Johri AK. 2016. PiHOG1, a stress regulator MAP kinase from the root endophyte fungus Piriformospora indica, confers salinity stress tolerance in rice plants. Sci Rep. 6:36765.
  • Johnson AN, Li G, Jashnsaz H, Thiemicke A, Kesler BK, Rogers DC, Neuert G. 2021. A rate threshold mechanism regulates MAPK stress signaling and survival. Proc Natl Acad Sci USA. 118(2):e2004998118.
  • Jung KW, Chung MS, Bai HW, Chung BY, Lee S. 2021. Investigation of antifungal mechanisms of thymol in the human fungal pathogen Cryptococcus neoformans. Molecules. 26:3476.
  • Jung KW, Strain AK, Nielsen K, Jung KH, Bahn YS. 2012. Two cation transporters Ena1 and Nha1 cooperatively modulate ion homeostasis, antifungal drug resistance, and virulence of Cryptococcus neoformans via the HOG pathway. Fungal Genet Biol. 49(4):332–345.
  • Jung KW, Yang DH, Maeng S, Lee KT, So YS, Hong J, Choi J, Byun HJ, Kim H, Bang S, et al. 2015. Systematic functional profiling of transcription factor networks in Cryptococcus neoformans. Nat Commun. 6:6757.
  • Jung MG, Kim SS, Yu JH, Shin KS. 2016. Characterization of gprK encoding a putative hybrid G-protein-coupled receptor in Aspergillus fumigatus. PLoS One. 11(9):e0161312.
  • Jung WH, Hu G, Kuo W, Kronstad JW. 2009. Role of ferroxidases in iron uptake and virulence of Cryptococcus neoformans. Eukaryot Cell. 8(10):1511–1520.
  • Kaba HE, Nimtz M, Muller PP, Bilitewski U. 2013. Involvement of the mitogen activated protein kinase Hog1p in the response of Candida albicans to iron availability. BMC Microbiol. 13:16.
  • Kanshin E, Kubiniok P, Thattikota Y, D'Amours D, Thibault P. 2015. Phosphoproteome dynamics of Saccharomyces cerevisiae under heat shock and cold stress. Mol Syst Biol. 11(6):813.
  • Kapteyn JT, Riet B, Vink E, Blad S, De Nobel H, Van Den Ende H, Klis F. 2001. Low external pH induces HOG1-dependent changes in the organization of the Saccharomyces cerevisiae cell wall. Mol Microbiol. 39(2):469–480.
  • Kaur H, Sasan SP, Yadav A, Martoliya Y, Mondal AK. 2021. Distinct role of HAMP and HAMP-like linker domains in regulating the activity of Hik1p, a hybrid histidine kinase 3 from Magnaporthe oryzae. Mol Genet Genomics. 296(5):1135–1145.
  • Kelly J, Rowan R, McCann M, Kavanagh K. 2009. Exposure to caspofungin activates Cap and Hog pathways in Candida albicans. Med Mycol. 47(7):697–706.
  • Kennedy EN, Hebdon SD, Menon SK, Foster CA, Copeland DM, Xu Q, Janiak-Spens F, West AH. 2019. Role of the highly conserved G68 residue in the yeast phosphorelay protein Ypd1: implications for interactions between histidine phosphotransfer (HPt) and response regulator proteins. BMC Biochem. 20(1):1.
  • Kim J, Campbell B, Mahoney N, Chan K, Molyneux R, May GS. 2008. Chemosensitization prevents tolerance of Aspergillus fumigatus to antimycotic drugs. Biochem Biophys Res Commun. 372(1):266–271.
  • Kim JH, Campbell BC, Mahoney N, Chan KL, May GS. 2006. Targeting antioxidative signal transduction and stress response system: control of pathogenic Aspergillus with phenolics that inhibit mitochondrial function. J Appl Microbiol. 101(1):181–189.
  • Kim JH, Campbell BC, Mahoney N, Chan KL, Molyneux RJ, Balajee A. 2010. Augmenting the activity of antifungal agents against aspergilli using structural analogues of benzoic acid as chemosensitizing agents. Fungal Biol. 114(10):817–824.
  • Kim JH, Campbell BC, Mahoney N, Chan KL, Molyneux RJ, May GS. 2007. Enhanced activity of strobilurin and fludioxonil by using berberine and phenolic compounds to target fungal antioxidative stress response. Lett Appl Microbiol. 45(2):134–141.
  • Kim JH, Chan KL, Cheng LW. 2017. Cinnamic acid analogs as intervention catalysts for overcoming antifungal tolerance. Molecules. 22(10):1783.
  • Kim JH, Chan KL, Faria NC, Martins M. d L, Campbell BC. 2012. Targeting the oxidative stress response system of fungi with redox-potent chemosensitizing agents. Front Microbiol. 3:88.
  • Kim JH, Mahoney N, Chan KL, Molyneux RJ, May GS, Campbell BC. 2008. Chemosensitization of fungal pathogens to antimicrobial agents using benzo analogs. FEMS Microbiol Lett. 281(1):64–72.
  • Kim MS, Ko YJ, Maeng S, Floyd A, Heitman J, Bahn YS. 2010. Comparative transcriptome analysis of the CO2 sensing pathway via differential expression of carbonic anhydrase in Cryptococcus neoformans. Genetics. 185(4):1207–1219.
  • Kim SY, Ko YJ, Jung KW, Strain A, Nielsen K, Bahn YS. 2011. Hrk1 plays both Hog1-dependent and -independent roles in controlling stress response and antifungal drug resistance in Cryptococcus neoformans. PLoS One. 6(4):e18769.
  • Ko YJ, Yu YM, Kim GB, Lee GW, Maeng PJ, Kim S, Floyd A, Heitman J, Bahn YS. 2009. Remodeling of global transcription patterns of Cryptococcus neoformans genes mediated by the stress-activated HOG signaling pathways. Eukaryot Cell. 8(8):1197–1217.
  • Kojima K, Bahn YS, Heitman J. 2006. Calcineurin, Mpk1 and Hog1 MAPK pathways independently control fludioxonil antifungal sensitivity in Cryptococcus neoformans. Microbiology. 152(Pt 3):591–604.
  • Komalapriya C, Kaloriti D, Tillmann AT, Yin Z, Herrero-de-Dios C, Jacobsen MD, Belmonte RC, Cameron G, Haynes K, Grebogi C, et al. 2015. Integrative model of oxidative stress adaptation in the fungal pathogen Candida albicans. PLoS One. 10(9):e0137750.
  • Kovtun Y, Chiu WL, Tena G, Sheen J. 2000. Functional analysis of oxidative stress-activated mitogen-activated protein kinase cascade in plants. Proc Natl Acad Sci USA. 97(6):2940–2945.
  • Kurita O, Yamazaki E. 2002. Growth under alkaline conditions of the salt-tolerant yeast Debaryomyces hansenii IFO10939. Curr Microbiol. 45(4):277–280.
  • Larsson C, Påhlman IL, Ansell R, Rigoulet M, Adler L, Gustafsson L. 1998. The importance of the glycerol 3-phosphate shuttle during aerobic growth of Saccharomyces cerevisiae. Yeast. 14(4):347–357.
  • Latgé JP, Beauvais A, Chamilos G. 2017. The cell wall of the human fungal pathogen Aspergillus fumigatus: Biosynthesis, organization, immune response, and virulence. Annu Rev Microbiol. 71:99–116.
  • Latgé JP, Chamilos G. 2019. Aspergillus fumigatus and aspergillosis in 2019. Clin Microbiol Rev. 33(1):e00140-18.
  • Lawrence CL, Botting CH, Antrobus R, Coote PJ. 2004. Evidence of a new role for the high-osmolarity glycerol mitogen-activated protein kinase pathway in yeast: regulating adaptation to citric acid stress. Mol Cell Biol. 24(8):3307–3323.
  • Lawry SM, Tebbets B, Kean I, Stewart D, Hetelle J, Klein BS. 2017. Fludioxonil induces Drk1, a fungal group III hybrid histidine kinase, to dephosphorylate its downstream target, Ypd1. Antimicrob Agents Chemother. 61(2):e01414-16.
  • Laz EV, Lee J, Levin DE. 2020. Crosstalk between Saccharomyces cerevisiae SAPKs Hog1 and Mpk1 is mediated by glycerol accumulation. Fungal Biol. 124(5):361–367.
  • Lee B, Jeong SG, Jin SH, Mishra R, Peter M, Lee CS, Lee SS. 2020. Quantitative analysis of yeast MAPK signaling networks and crosstalk using a microfluidic device. Lab Chip. 20(15):2646–2655.
  • Lee D, Jang EH, Lee M, Kim SW, Lee Y, Lee KT, Bahn YS. 2019. Unraveling melanin biosynthesis and signaling networks in Cryptococcus neoformans. mBio. 10(5):e02267-19.
  • Lee J, Levin DE. 2018. Intracellular mechanism by which arsenite activates the yeast stress MAPK Hog1. Mol Biol Cell. 29(15):1904–1915.
  • Lee J, Levin DE. 2019. Methylated metabolite of arsenite blocks glycerol production in yeast by inhibition of glycerol-3-phosphate dehydrogenase. Mol Biol Cell. 30(17):2134–2140.
  • Lee J, Reiter W, Dohnal I, Gregori C, Beese-Sims S, Kuchler K, Ammerer G, Levin DE. 2013. MAPK Hog1 closes the S. cerevisiae glycerol channel Fps1 by phosphorylating and displacing its positive regulators. Genes Dev. 27(23):2590–2601.
  • Lee JW, Ko YJ, Kim SY, Bahn YS. 2011. Multiple roles of Ypd1 phosphotransfer protein in viability, stress response, and virulence factor regulation in Cryptococcus neoformans. Eukaryot Cell. 10(7):998–1002.
  • Lee KT, Byun HJ, Jung KW, Hong J, Cheong E, Bahn YS. 2014a. Distinct and redundant roles of protein tyrosine phosphatases Ptp1 and Ptp2 in governing the differentiation and pathogenicity of Cryptococcus neoformans. Eukaryot Cell. 13(6):796–812.
  • Lee KT, Hong J, Lee DG, Lee M, Cha S, Lim YG, Jung KW, Hwangbo A, Lee Y, Yu SJ, et al. 2020. Fungal kinases and transcription factors regulating brain infection in Cryptococcus neoformans. Nat Commun. 11(1):1521.
  • Lee KT, Lee JW, Lee D, Jung WH, Bahn YS. 2014b. A ferroxidase, Cfo1, regulates diverse environmental stress responses of Cryptococcus neoformans through the HOG pathway. Mycobiology. 42(2):152–157.
  • Lee KT, So YS, Yang DH, Jung KW, Choi J, Lee DG, Kwon H, Jang J, Wang LL, Cha S, et al. 2016. Systematic functional analysis of kinases in the fungal pathogen Cryptococcus neoformans. Nat Commun. 7:12766.
  • Lee SY, Chen HF, Yeh YC, Xue YP, Lan CY. 2019. The transcription factor Sfp1 regulates the oxidative stress response in Candida albicans. Microorganisms. 7(5):131.
  • Lee YM, Kim E, An J, Lee Y, Choi E, Choi W, Moon E, Kim W. 2017. Dissection of the HOG pathway activated by hydrogen peroxide in Saccharomyces cerevisiae. Environ Microbiol. 19(2):584–597.
  • Leech CM, Flynn MJ, Arsenault HE, Ou J, Liu H, Zhu LJ, Benanti JA. 2020. The coordinate actions of calcineurin and Hog1 mediate the stress response through multiple nodes of the cell cycle network. PLoS Genet. 16(4):e1008600.
  • Li D, Gurkovska V, Sheridan M, Calderone R, Chauhan N. 2004. Studies on the regulation of the two-component histidine kinase gene CHK1 in Candida albicans using the heterologous lacZ reporter gene. Microbiology. 150(10):3305–3313.
  • Li L, Yang T, Guo W, Ju X, Hu C, Tang B, Fu J, Gu J, Zhang H. 2016. Construction of an efficient mutant strain of Trichosporonoides oedocephalis with HOG1 gene deletion for production of erythritol. J Microbiol Biotechnol. 26(4):700–709.
  • Liang SH, Cheng JH, Deng FS, Tsai PA, Lin CH. 2014. A novel function for Hog1 stress-activated protein kinase in controlling white-opaque switching and mating in Candida albicans. Eukaryot Cell. 13(12):1557–1566.
  • Liu OW, Chun CD, Chow ED, Chen C, Madhani HD, Noble SM. 2008. Systematic genetic analysis of virulence in the human fungal pathogen Cryptococcus neoformans. Cell. 135(1):174–188.
  • Lo HJ, Kohler JR, DiDomenico B, Loebenberg D, Cacciapuoti A, Fink GR. 1997. Nonfilamentous C. albicans mutants are avirulent. Cell. 90(5):939–949.
  • Luo C, Shen W, Gao Z, Chen K, Ouyang Q. 2021. Yeast cells under glucose-limitation environment need increased response cost for osmostress defense. bioRxiv.
  • Ma D, Li R. 2013. Current understanding of HOG-MAPK pathway in Aspergillus fumigatus. Mycopathologia. 175(1–2):13–23.
  • Ma Y, Qiao J, Liu W, Wan Z, Wang X, Calderone R, Li R. 2008. The sho1 sensor regulates growth, morphology, and oxidant adaptation in Aspergillus fumigatus but is not essential for development of invasive pulmonary aspergillosis. Infect Immun. 76(4):1695–1701.
  • Mace K, Krakowiak J, El-Samad H, Pincus D. 2020. Multi-kinase control of environmental stress responsive transcription. PLoS One. 15(3):e0230246.
  • Maeta K, Izawa S, Inoue Y. 2005. Methylglyoxal, a metabolite derived from glycolysis, functions as a signal initiator of the high osmolarity glycerol-mitogen-activated protein kinase cascade and calcineurin/Crz1-mediated pathway in Saccharomyces cerevisiae. J Biol Chem. 280(1):253–260.
  • Mallick EM, Bergeron AC, Jones SK, Jr, Newman ZR, Brothers KM, Creton R, Wheeler RT, Bennett RJ. 2016. Phenotypic plasticity regulates Candida albicans interactions and virulence in the vertebrate host. Front Microbiol. 7:780.
  • Manfiolli AO, Dos Reis TF, de Assis LJ, de Castro PA, Silva LP, Hori JI, Walker LA, Munro CA, Rajendran R, Ramage G, et al. 2018. Mitogen activated protein kinases (MAPK) and protein phosphatases are involved in Aspergillus fumigatus adhesion and biofilm formation. Cell Surf. 1:43–56.
  • Manfiolli AO, Mattos EC, de Assis LJ, Silva LP, Ulaş M, Brown NA, Silva-Rocha R, Bayram Ö, Goldman GH. 2019. Aspergillus fumigatus high osmolarity glycerol mitogen activated protein kinases SakA and MpkC physically interact during osmotic and cell wall stresses. Front Microbiol. 10:918.
  • Manzanares-Estreder S, Espí-Bardisa J, Alarcón B, Pascual-Ahuir A, Proft M. 2017. Multilayered control of peroxisomal activity upon salt stress in Saccharomyces cerevisiae. Mol Microbiol. 104(5):851–868.
  • Marotta DH, Nantel A, Sukala L, Teubl JR, Rauceo JM. 2013. Genome-wide transcriptional profiling and enrichment mapping reveal divergent and conserved roles of Sko1 in the Candida albicans osmotic stress response. Genomics. 102(4):363–371.
  • Marques JM, Rodrigues RJ, de Magalhães-Sant'Ana AC, Gonçalves T. 2006. Saccharomyces cerevisiae Hog1 protein phosphorylation upon exposure to bacterial endotoxin. J Biol Chem. 281(34):24687–24694.
  • Marshall CJ. 1994. MAP kinase kinase kinase, MAP kinase kinase and MAP kinase. Curr Opin Genet Dev. 4(1):82–89.
  • Martin H, Shales M, Fernandez-Piñar P, Wei P, Molina M, Fiedler D, Shokat KM, Beltrao P, Lim W, Krogan NJ. 2015. Differential genetic interactions of yeast stress response MAPK pathways. Mol Syst Biol. 11(4):800.
  • Martins TS, Pereira C, Canadell D, Vilaça R, Teixeira V, Moradas-Ferreira P, de Nadal E, Posas F, Costa V. 2018. The Hog1p kinase regulates Aft1p transcription factor to control iron accumulation. Biochim Biophys Acta Mol Cell Biol Lipids. 1863(1):61–70.
  • Mattos EC, Palmisano G, Goldman GH. 2020a. Phosphoproteomics of Aspergillus fumigatus exposed to the antifungal drug caspofungin. mSphere. 5:e00365-20.
  • Mattos EC, Silva LP, Valero C, de Castro PA, D, Reis TF, Ribeiro LFC, Marten MR, Silva-Rocha R, Westmann C, da Silva C, et al. 2020b. The Aspergillus fumigatus phosphoproteome reveals roles of high-osmolarity glycerol mitogen-activated protein kinases in promoting cell wall damage and caspofungin tolerance. mBio. 11(1):e02962-19.
  • Mavrianos J, Berkow EL, Desai C, Pandey A, Batish M, Rabadi MJ, Barker KS, Pain D, Rogers PD, Eugenin EA, et al. 2013. Mitochondrial two-component signaling systems in Candida albicans. Eukaryot Cell. 12(6):913–922.
  • McCall A, Edgerton M. 2017. Real-time approach to flow cell imaging of Candida albicans biofilm development. JoF. 3(1):13.
  • McCormick A, Jacobsen ID, Broniszewska M, Beck J, Heesemann J, Ebel F. 2012. The two-component sensor kinase TcsC and its role in stress resistance of the human-pathogenic mold Aspergillus fumigatus. PLoS One. 7(6):e38262.
  • Menon V, Li D, Chauhan N, Rajnarayanan R, Dubrovska A, West AH, Calderone R. 2006. Functional studies of the Ssk1p response regulator protein of Candida albicans as determined by phenotypic analysis of receiver domain point mutants. Mol Microbiol. 62(4):997–1013.
  • Meyers GL, Jung KW, Bang S, Kim J, Kim S, Hong J, Cheong E, Kim KH, Bahn YS. 2017. The water channel protein aquaporin 1 regulates cellular metabolism and competitive fitness in a global fungal pathogen Cryptococcus neoformans. Environ Microbiol Rep. 9(3):268–278.
  • Migdal I, Ilina Y, Tamas MJ, Wysocki R. 2008. Mitogen-activated protein kinase Hog1 mediates adaptation to G1 checkpoint arrest during arsenite and hyperosmotic stress. Eukaryot Cell. 7(8):1309–1317.
  • Missall TA, Lodge JK. 2005. Function of the thioredoxin proteins in Cryptococcus neoformans during stress or virulence and regulation by putative transcriptional modulators. Mol Microbiol. 57(3):847–858.
  • Molin M, Logg K, Bodvard K, Peeters K, Forsmark A, Roger F, Jorhov A, Mishra N, Billod JM, Amir S, et al. 2020. Protein kinase A controls yeast growth in visible light. BMC Biol. 18(1):168.
  • Molin M, Norbeck J, Blomberg A. 2003. Dihydroxyacetone kinases in Saccharomyces cerevisiae are involved in detoxification of dihydroxyacetone. J Biol Chem. 278(3):1415–1423.
  • Mollapour M, Piper PW. 2006. Hog1p mitogen-activated protein kinase determines acetic acid resistance in Saccharomyces cerevisiae. FEMS Yeast Res. 6(8):1274–1280.
  • Mollapour M, Piper PW. 2007. Hog1 mitogen-activated protein kinase phosphorylation targets the yeast Fps1 aquaglyceroporin for endocytosis, thereby rendering cells resistant to acetic acid. Mol Cell Biol. 27(18):6446–6456.
  • Montanes FM, Pascual-Ahuir A, Proft M. 2011. Repression of ergosterol biosynthesis is essential for stress resistance and is mediated by the Hog1 MAP kinase and the Mot3 and Rox1 transcription factors. Mol Microbiol. 79(4):1008–1023.
  • Montoya MC, Magwene PM, Perfect JR. 2021. Associations between Cryptococcus genotypes, phenotypes, and clinical parameters of human disease: a review. JoF. 7(4):260.
  • Morales-Menchen A, Navarro-Garcia F, Guirao-Abad JP, Roman E, Prieto D, Coman IV, Pla J, Alonso-Monge R. 2018. Non-canonical activities of Hog1 control sensitivity of Candida albicans to killer toxins from Debaryomyces hansenii. Front Cell Infect Microbiol. 8:135.
  • Mosbacher M, Lee SS, Peter M, Claassen M. 2020. Positive feedback induces switch between distributive and processive phosphorylation of Hog1. bioRxiv.
  • Mukherjee D, Singh S, Kumar M, Kumar V, Datta S, Dhanjal DS. 2018. Fungal biotechnology: role and aspects. In: Gehlot P, Singh J, editors. Fungi and their role in sustainable development: current perspectives. Singapore: Springer Singapore; p. 91–103.
  • Munro CA, Selvaggini S, de Bruijn I, Walker L, Lenardon MD, Gerssen B, Milne S, Brown AJ, Gow NA. 2007. The PKC, HOG and Ca2+ signalling pathways co-ordinately regulate chitin synthesis in Candida albicans. Mol Microbiol. 63(5):1399–1413.
  • Muzzey D, Gomez-Uribe CA, Mettetal JT, van Oudenaarden A. 2009. A systems-level analysis of perfect adaptation in yeast osmoregulation. Cell. 138(1):160–171.
  • Nadel CM, Mackie TD, Gardner RG. 2019. Osmolyte accumulation regulates the SUMOylation and inclusion dynamics of the prionogenic Cyc8-Tup1 transcription corepressor. PLoS Genet. 15(4):e1008115.
  • Nagahashi S, Mio T, Ono N, Yamada-Okabe T, Arisawa M, Bussey H, Yamada-Okabe H. 1998. Isolation of CaSLN1 and CaNIK1, the genes for osmosensing histidine kinase homologues, from the pathogenic fungus Candida albicans. Microbiology. 144(2):425–432.
  • Navarro-Garcia F, Eisman B, Fiuza SM, Nombela C, Pla J. 2005. The MAP kinase Mkc1p is activated under different stress conditions in Candida albicans. Microbiology. 151(8):2737–2749.
  • Nevoigt E. 2008. Progress in metabolic engineering of Saccharomyces cerevisiae. Microbiol Mol Biol Rev. 72(3):379–412.
  • Nicholls S, Straffon M, Enjalbert B, Nantel A, Macaskill S, Whiteway M, Brown AJ. 2004. Msn2- and Msn4-like transcription factors play no obvious roles in the stress responses of the fungal pathogen Candida albicans. Eukaryot Cell. 3(5):1111–1123.
  • Nikolaou E, Agrafioti I, Stumpf M, Quinn J, Stansfield I, Brown AJ. 2009. Phylogenetic diversity of stress signalling pathways in fungi. BMC Evol Biol. 9:44.
  • Ning J, Li X, Hicks LM, Xiong L. 2010. A Raf-like MAPKKK gene DSM1 mediates drought resistance through reactive oxygen species scavenging in rice. Plant Physiol. 152(2):876–890.
  • Nishimura A, Yamamoto K, Oyama M, Kozuka-Hata H, Saito H, Tatebayashi K. 2016. Scaffold protein Ahk1, which associates with Hkr1, Sho1, Ste11, and Pbs2, inhibits cross talk signaling from the Hkr1 osmosensor to the Kss1 mitogen-activated protein kinase. Mol Cell Biol. 36(7):1109–1123.
  • Nosanchuk JD, Casadevall A. 2006. Impact of melanin on microbial virulence and clinical resistance to antimicrobial compounds. Antimicrob Agents Chemother. 50(11):3519–3528.
  • Ochiai N, Fujimura M, Oshima M, Motoyama T, Ichiishi A, Yamada-Okabe H, Yamaguchi I. 2002. Effects of iprodione and fludioxonil on glycerol synthesis and hyphal development in Candida albicans. Biosci Biotechnol Biochem. 66(10):2209–2215.
  • O'Meara TR, Alspaugh JA. 2012. The Cryptococcus neoformans capsule: a sword and a shield. Clin Microbiol Rev. 25(3):387–408.
  • O'Meara TR, Duah K, Guo CX, Maxson ME, Gaudet RG, Koselny K, Wellington M, Powers ME, MacAlpine J, O'Meara MJ, et al. 2018. High-throughput screening identifies genes required for Candida albicans induction of macrophage pyroptosis. mBio. 9:e01581-18.
  • O'Rourke SM, Herskowitz I. 2004. Unique and redundant roles for HOG MAPK pathway components as revealed by whole-genome expression analysis. MBoC. 15(2):532–542.
  • Pahlman AK, Granath K, Ansell R, Hohmann S, Adler L. 2001. The yeast glycerol 3-phosphatases Gpp1p and Gpp2p are required for glycerol biosynthesis and differentially involved in the cellular responses to osmotic, anaerobic, and oxidative stress. J Biol Chem. 276(5):3555–3563.
  • Panadero J, Pallotti C, Rodríguez-Vargas S, Randez-Gil F, Prieto JA. 2006. A downshift in temperature activates the high osmolarity glycerol (HOG) pathway, which determines freeze tolerance in Saccharomyces cerevisiae. J Biol Chem. 281(8):4638–4645.
  • Pascual-Ahuir A, Proft M. 2007. The Sch9 kinase is a chromatin-associated transcriptional activator of osmostress-responsive genes. EMBO J. 26(13):3098–3108.
  • Pereira Silva L, Alves de Castro P, Dos Reis TF, Paziani MH, Von Zeska Kress MR, Riano-Pachon DM, Hagiwara D, Ries LN, Brown NA, Goldman GH. 2017. Genome-wide transcriptome analysis of Aspergillus fumigatus exposed to osmotic stress reveals regulators of osmotic and cell wall stresses that are SakA(HOG1) and MpkC dependent. Cell Microbiol. 19:e12681.
  • Perfect JR. 2006. Cryptococcus neoformans: the yeast that likes it hot. FEMS Yeast Res. 6(4):463–468.
  • Piao H, MacLean Freed J, Mayinger P. 2012. Metabolic activation of the HOG MAP kinase pathway by Snf1/AMPK regulates lipid signaling at the Golgi. Traffic. 13(11):1522–1531.
  • Pitoniak A, Birkaya B, Dionne HM, Vadaie N, Cullen PJ. 2009. The signaling mucins Msb2 and Hkr1 differentially regulate the filamentation mitogen-activated protein kinase pathway and contribute to a multimodal response. Mol Biol Cell. 20(13):3101–3114.
  • Pizarro F, Vargas FA, Agosin E. 2007. A systems biology perspective of wine fermentations. Yeast. 24(11):977–991.
  • Polvi EJ, Averette AF, Lee SC, Kim T, Bahn YS, Veri AO, Robbins N, Heitman J, Cowen LE. 2016. Metal chelation as a powerful strategy to probe cellular circuitry governing fungal drug resistance and morphogenesis. PLoS Genet. 12(10):e1006350.
  • Posas F, Saito H. 1998. Activation of the yeast SSK2 MAP kinase kinase kinase by the SSK1 two-component response regulator. EMBO J. 17(5):1385–1394.
  • Posas F, Wurgler-Murphy SM, Maeda T, Witten EA, Thai TC, Saito H. 1996. Yeast HOG1 MAP kinase cascade is regulated by a multistep phosphorelay mechanism in the SLN1-YPD1-SSK1 “two-component” osmosensor. Cell. 86(6):865–875.
  • Pott GB, Miller TK, Bartlett JA, Palas JS, Selitrennikoff CP. 2000. The isolation of FOS-1, a gene encoding a putative two-component histidine kinase from Aspergillus fumigatus. Fungal Genet Biol. 31(1):55–67.
  • Prabhakar A, Vadaie N, Krzystek T, Cullen PJ. 2019. Proteins that interact with the mucin-type glycoprotein Msb2p include a regulator of the actin cytoskeleton. Biochemistry. 58(48):4842–4856.
  • Pradhan A, Ma Q, de Assis LJ, Leaves I, Larcombe DE, Rodriguez Rondon AV, Nev OA, Brown AJP. 2021. Anticipatory stress responses and immune evasion in fungal pathogens. Trends Microbiol. 29(5):416–427.
  • Pratt PL, Bryce JH, Stewart GG. 2003. The effects of osmotic pressure and ethanol on yeast viability and morphology. J Inst Brew. 109(3):218–228.
  • Prieto D, Roman E, Correia I, Pla J. 2014. The HOG pathway is critical for the colonization of the mouse gastrointestinal tract by Candida albicans. PLoS One. 9(1):e87128.
  • Proft M, Gibbons FD, Copeland M, Roth FP, Struhl K. 2005. Genomewide identification of Sko1 target promoters reveals a regulatory network that operates in response to osmotic stress in Saccharomyces cerevisiae. Eukaryot Cell. 4(8):1343–1352.
  • Pukkila-Worley R, Gerrald QD, Kraus PR, Boily MJ, Davis MJ, Giles SS, Cox GM, Heitman J, Alspaugh JA. 2005. Transcriptional network of multiple capsule and melanin genes governed by the Cryptococcus neoformans cyclic AMP cascade. Eukaryot Cell. 4(1):190–201.
  • Ramos J, Melero Y, Ramos-Moreno L, MichÁn C, Cabezas L. 2017. Debaryomyces hansenii strains from Valle de Los Pedroches iberian dry meat products: isolation, identification, characterization, and selection for starter cultures. J Microbiol Biotechnol. 27(9):1576–1585.
  • Randez-Gil F, Córcoles-Sáez I, Prieto JA. 2013. Genetic and phenotypic characteristics of baker's yeast: relevance to baking. Annu Rev Food Sci Technol. 4(1):191–214.
  • Randez-Gil F, Sanz P, Prieto JA. 1999. Engineering baker's yeast: room for improvement. Trends Biotechnol. 17(6):237–244.
  • Randhawa A, Kundu D, Sharma A, Prasad R, Mondal AK. 2019. Overexpression of the CORVET complex alleviates the fungicidal effects of fludioxonil on the yeast Saccharomyces cerevisiae expressing hybrid histidine kinase 3. J Biol Chem. 294(2):461–475.
  • Randhawa A, Mondal AK. 2013. The sixth HAMP domain negatively regulates the activity of the group III HHK containing seven HAMP domains. Biochem Biophys Res Commun. 438(1):140–144.
  • Rauceo JM, Blankenship JR, Fanning S, Hamaker JJ, Deneault JS, Smith FJ, Nantel A, Mitchell AP. 2008. Regulation of the Candida albicans cell wall damage response by transcription factor Sko1 and PAS kinase Psk1. MBoC. 19(7):2741–2751.
  • Reiser V, Raitt DC, Saito H. 2003. Yeast osmosensor Sln1 and plant cytokinin receptor Cre1 respond to changes in turgor pressure. J Cell Biol. 161(6):1035–1040.
  • Reiser V, Ruis H, Ammerer G. 1999. Kinase activity-dependent nuclear export opposes stress-induced nuclear accumulation and retention of Hog1 mitogen-activated protein kinase in the budding yeast Saccharomyces cerevisiae. Mol Biol Cell. 10(4):1147–1161.
  • Rep M, Krantz M, Thevelein JM, Hohmann S. 2000. The transcriptional response of Saccharomyces cerevisiae to osmotic shock Hot1p and Msn2p/Msn4p are required for the induction of subsets of high osmolarity glycerol pathway-dependent genes. J Biol Chem. 275(12):8290–8300.
  • Rep M, Proft M, Remize F, Tamás M, Serrano R, Thevelein JM, Hohmann S. 2001. The Saccharomyces cerevisiae Sko1p transcription factor mediates HOG pathway-dependent osmotic regulation of a set of genes encoding enzymes implicated in protection from oxidative damage. Mol Microbiol. 40(5):1067–1083.
  • Reyes G, Romans A, Nguyen CK, May GS. 2006. Novel mitogen-activated protein kinase MpkC of Aspergillus fumigatus is required for utilization of polyalcohol sugars. Eukaryot Cell. 5(11):1934–1940.
  • Rispail N, Soanes DM, Ant C, Czajkowski R, Grunler A, Huguet R, Perez-Nadales E, Poli A, Sartorel E, Valiante V, et al. 2009. Comparative genomics of MAP kinase and calcium-calcineurin signalling components in plant and human pathogenic fungi. Fungal Genet Biol. 46(4):287–298.
  • Robbins N, Wright GD, Cowen LE. 2016. Antifungal drugs: the current armamentarium and development of new agents. Microbiol Spectr. 4(5). DOI:10.1128/microbiolspec.FUNK-0002-2016.
  • Rocha MC, de Godoy KF, Bannitz-Fernandes R, Fabri J, Barbosa MMF, de Castro PA, Almeida F, Goldman GH, da Cunha AF, Netto LES, et al. 2018. Analyses of the three 1-Cys peroxiredoxins from Aspergillus fumigatus reveal that cytosolic Prx1 is central to H2O2 metabolism and virulence. Sci Rep. 8(1):12314.
  • Rodaki A, Bohovych IM, Enjalbert B, Young T, Odds FC, Gow NA, Brown AJ. 2009. Glucose promotes stress resistance in the fungal pathogen Candida albicans. Mol Biol Cell. 20(22):4845–4855.
  • Rodriguez-Pena JM, Diez-Muniz S, Bermejo C, Nombela C, Arroyo J. 2013. Activation of the yeast cell wall integrity MAPK pathway by zymolyase depends on protease and glucanase activities and requires the mucin-like protein Hkr1 but not Msb2. FEBS Lett. 587(22):3675–3680.
  • Román E, Nombela C, Pla J. 2005. The Sho1 adaptor protein links oxidative stress to morphogenesis and cell wall biosynthesis in the fungal pathogen Candida albicans. Mol Cell Biol. 25(23):10611–10627.
  • Romanov N, Hollenstein DM, Janschitz M, Ammerer G, Anrather D, Reiter W. 2017. Identifying protein kinase–specific effectors of the osmostress response in yeast. Sci Signal. 10:eaag2435.
  • Romero-Santacreu L, Moreno J, Perez-Ortin JE, Alepuz P. 2009. Specific and global regulation of mRNA stability during osmotic stress in Saccharomyces cerevisiae. RNA. 15(6):1110–1120.
  • Saito H, Posas F. 2012. Response to hyperosmotic stress. Genetics. 192(2):289–318.
  • Salas-Delgado G, Ongay-Larios L, Kawasaki-Watanabe L, López-Villaseñor I, Coria R. 2017. The yeasts phosphorelay systems: a comparative view. World J Microbiol Biotechnol. 33(6):111.
  • Šamajová O, Plíhal O, Al-Yousif M, Hirt H, Šamaj J. 2013. Improvement of stress tolerance in plants by genetic manipulation of mitogen-activated protein kinases. Biotechnol Adv. 31(1):118–128.
  • Sánchez NS, Calahorra M, González J, Defosse T, Papon N, Peña A, Coria R. 2020. Contribution of the mitogen-activated protein kinase Hog1 to the halotolerance of the marine yeast Debaryomyces hansenii. Curr Genet. 66(6):1135–1153.
  • Sanchez-Fresneda R, Guirao-Abad JP, Arguelles A, Gonzalez-Parraga P, Valentin E, Arguelles JC. 2013. Specific stress-induced storage of trehalose, glycerol and D-arabitol in response to oxidative and osmotic stress in Candida albicans. Biochem Biophys Res Commun. 430(4):1334–1339.
  • Santos A, DM, Alvarez M, Mauro MS, Abrusci C, Marquina D. 2005. The transcriptional response of Saccharomyces cerevisiae to Pichia membranifaciens killer toxin. J Biol Chem. 280(51):41881–41892.
  • Schruefer S, Bohmer I, Dichtl K, Spadinger A, Kleinemeier C, Ebel F. 2021. The response regulator Skn7 of Aspergillus fumigatus is essential for the antifungal effect of fludioxonil. Sci Rep. 11(1):5317.
  • Sellam A, Chaillot J, Mallick J, Tebbji FR, Albert J, Cook MA, Tyers M. 2019. The p38/HOG stress-activated protein kinase network couples growth to division in Candida albicans. PLoS Genet. 15(3):e1008052.
  • Shitamukai A, Hirata D, Sonobe S, Miyakawa T. 2004. Evidence for antagonistic regulation of cell growth by the calcineurin and high osmolarity glycerol pathways in Saccharomyces cerevisiae. J Biol Chem. 279(5):3651–3661.
  • Siderius M, Van Wuytswinkel O, Reijenga KA, Kelders M, Mager WH. 2000. The control of intracellular glycerol in Saccharomyces cerevisiae influences osmotic stress response and resistance to increased temperature. Mol Microbiol. 36(6):1381–1390.
  • Silva LP, Frawley D, Assis LJ, Tierney C, Fleming AB, Bayram O, Goldman GH. 2020. Putative membrane receptors contribute to activation and efficient signaling of mitogen-activated protein kinase cascades during adaptation of Aspergillus fumigatus to different stressors and carbon sources. mSphere. 5(5):e00818-20.
  • Silva LP, Horta MAC, Goldman GH. 2021. Genetic interactions between Aspergillus fumigatus basic leucine zipper (bZIP) transcription factors AtfA, AtfB, AtfC, and AtfD. Front Fungal Biol. 2:1.
  • Singh KK. 2000. The Saccharomyces cerevisiae Sln1p-Ssk1p two-component system mediates response to oxidative stress and in an oxidant-specific fashion. Free Radic Biol Med. 29(10):1043–1050.
  • Singh P, Ara H, Tayyeba S, Pandey C, Sinha AK. 2019. Development of efficient protocol for rice transformation overexpressing MAP kinase and their effect on root phenotypic traits. Protoplasma. 256(4):997–1011.
  • Singh P, Chauhan N, Ghosh A, Dixon F, Calderone R. 2004. SKN7 of Candida albicans: mutant construction and phenotype analysis. Infect Immun. 72(4):2390–2394.
  • Singh S, Rehman S, Fatima Z, Hameed S. 2020. Protein kinases as potential anticandidal drug targets. Front Biosci. 25:1412–1432.
  • Smirnoff N, Cumbes QJ. 1989. Hydroxyl radical scavenging activity of compatible solutes. Phytochemistry. 28(4):1057–1060.
  • Smith DA, Nicholls S, Morgan BA, Brown AJ, Quinn J. 2004. A conserved stress-activated protein kinase regulates a core stress response in the human pathogen Candida albicans. Mol Biol Cell. 15(9):4179–4190.
  • So YS, Jang J, Park G, Xu J, Olszewski MA, Bahn YS. 2018. Sho1 and Msb2 play complementary but distinct roles in stress responses, sexual differentiation, and pathogenicity of Cryptococcus neoformans. Front Microbiol. 9:2958.
  • So YS, Lee DG, Idnurm A, Ianiri G, Bahn YS. 2019a. The TOR pathway plays pleiotropic roles in growth and stress responses of the fungal pathogen Cryptococcus neoformans. Genetics. 212(4):1241–1258.
  • So YS, Maeng S, Yang DH, Kim H, Lee KT, Yu SR, Tenor JL, Giri VK, Toffaletti DL, Arras S, Fraser JA, et al. 2019b. Regulatory mechanism of the atypical AP-1-like transcription factor Yap1 in Cryptococcus neoformans. mSphere. 4(6):e00785-19.
  • Song MH, Lee JW, Kim MS, Yoon JK, White TC, Floyd A, Heitman J, Strain AK, Nielsen JN, Nielsen K, et al. 2012. A flucytosine-responsive Mbp1/Swi4-like protein, Mbs1, plays pleiotropic roles in antifungal drug resistance, stress response, and virulence of Cryptococcus neoformans. Eukaryot Cell. 11(1):53–67.
  • Spadinger A, Ebel F. 2017. Molecular characterization of Aspergillus fumigatus TcsC, a characteristic type III hybrid histidine kinase of filamentous fungi harboring six HAMP domains. Int J Med Microbiol. 307(4–5):200–208.
  • Staleva L, Hall A, Orlow SJ. 2004. Oxidative stress activates FUS1 and RLM1 transcription in the yeast Saccharomyces cerevisiae in an oxidant-dependent manner. MBoC. 15(12):5574–5582.
  • Su C, Lu Y, Liu H. 2013. Reduced TOR signaling sustains hyphal development in Candida albicans by lowering Hog1 basal activity. Mol Biol Cell. 24(3):385–397.
  • Sun LM, Liao K. 2018. Saccharomyces cerevisiae Hog1 MAP kinase pathway is activated in response to honokiol exposure. J Appl Microbiol. 124(3):754–763.
  • Takahashi H, Kusuya Y, Hagiwara D, Takahashi-Nakaguchi A, Sakai K, Gonoi T. 2017. Global gene expression reveals stress-responsive genes in Aspergillus fumigatus mycelia. BMC Genomics. 18(1):942.
  • Takatsume Y, Ohdate T, Maeta K, Nomura W, Izawa S, Inoue Y. 2010. Calcineurin/Crz1 destabilizes Msn2 and Msn4 in the nucleus in response to Ca(2+) in Saccharomyces cerevisiae. Biochem J. 427(2):275–287.
  • Takayama T, Yamamoto K, Saito H, Tatebayashi K. 2019. Interaction between the transmembrane domains of Sho1 and Opy2 enhances the signaling efficiency of the Hog1 MAP kinase cascade in Saccharomyces cerevisiae. PLoS One. 14(1):e0211380.
  • Talapko J, Juzbasic M, Matijevic T, Pustijanac E, Bekic S, Kotris I, Skrlec I. 2021. Candida albicans-the virulence factors and clinical manifestations of infection. JoF. 7(2):79.
  • Talemi SR, Tiger CF, Andersson M, Babazadeh R, Welkenhuysen N, Klipp E, Hohmann S, Schaber J. 2016. Systems level analysis of the yeast Osmo-Stat. Sci Rep. 6:30950.
  • Tanaka K, Tatebayashi K, Nishimura A, Yamamoto K, Yang HY, Saito H. 2014. Yeast osmosensors Hkr1 and Msb2 activate the Hog1 MAPK cascade by different mechanisms. Sci Signal. 7(314):ra21.
  • Tanigawa M, Kihara A, Terashima M, Takahara T, Maeda T. 2012. Sphingolipids regulate the yeast high-osmolarity glycerol response pathway. Mol Cell Biol. 32(14):2861–2870.
  • Tatebayashi K, Tanaka K, Yang HY, Yamamoto K, Matsushita Y, Tomida T, Imai M, Saito H. 2007. Transmembrane mucins Hkr1 and Msb2 are putative osmosensors in the SHO1 branch of yeast HOG pathway. EMBO J. 26(15):3521–3533.
  • Tatebayashi K, Yamamoto K, Nagoya M, Takayama T, Nishimura A, Sakurai M, Momma T, Saito H. 2015. Osmosensing and scaffolding functions of the oligomeric four-transmembrane domain osmosensor Sho1. Nat Commun. 6(1):1–15.
  • Tatebayashi K, Yamamoto K, Tanaka K, Tomida T, Maruoka T, Kasukawa E, Saito H. 2006. Adaptor functions of Cdc42, Ste50, and Sho1 in the yeast osmoregulatory HOG MAPK pathway. EMBO J. 25(13):3033–3044.
  • Tatebayashi K, Yamamoto K, Tomida T, Nishimura A, Takayama T, Oyama M, Kozuka-Hata H, Adachi-Akahane S, Tokunaga Y, Saito H. 2020. Osmostress enhances activating phosphorylation of Hog1 MAP kinase by mono‐phosphorylated Pbs2 MAP 2K. EMBO J. 39(5):e103444.
  • Teige M, Scheikl E, Reiser V, Ruis H, Ammerer G. 2001. Rck2, a member of the calmodulin-protein kinase family, links protein synthesis to high osmolarity MAP kinase signaling in budding yeast. Proc Natl Acad Sci USA. 98(10):5625–5630.
  • Teixeira D, Sheth U, Valencia-Sanchez MA, Brengues M, Parker R. 2005. Processing bodies require RNA for assembly and contain nontranslating mRNAs. RNA. 11(4):371–382.
  • Thiemicke A, Jashnsaz H, Li G, Neuert G. 2019. Generating kinetic environments to study dynamic cellular processes in single cells. Sci Rep. 9(1):10129.
  • Thomas E, Roman E, Claypool S, Manzoor N, Pla J, Panwar SL. 2013. Mitochondria influence CDR1 efflux pump activity, Hog1-mediated oxidative stress pathway, iron homeostasis, and ergosterol levels in Candida albicans. Antimicrob Agents Chemother. 57(11):5580–5599.
  • Thorsen M, Di Y, Tängemo C, Morillas M, Ahmadpour D, Van der Does C, Wagner A, Johansson E, Boman J, Posas F, et al. 2006. The MAPK Hog1p modulates Fps1p-dependent arsenite uptake and tolerance in yeast. Mol Biol Cell. 17(10):4400–4410.
  • Tognetti S, Jiménez J, Viganò M, Duch A, Queralt E, de Nadal E, Posas F. 2020. Hog1 activation delays mitotic exit via phosphorylation of Net1. Proc Natl Acad Sci USA. 117(16):8924–8933.
  • Toh-e A, Oguchi T. 2001. Defects in glycosylphosphatidylinositol (GPI) anchor synthesis activate Hog1 kinase and confer copper-resistance in Saccharomyces cerevisisae. Genes Genet Syst. 76(6):393–410.
  • Torres-Quiroz F, García-Marqués S, Coria R, Randez-Gil F, Prieto JA. 2010. The activity of yeast Hog1 MAPK is required during endoplasmic reticulum stress induced by tunicamycin exposure. J Biol Chem. 285(26):20088–20096.
  • Udom N, Chansongkrow P, Charoensawan V, Auesukaree C. 2019. Coordination of the cell wall integrity and high-osmolarity glycerol pathways in response to ethanol stress in Saccharomyces cerevisiae. Appl Environ Microbiol. 85(15):e00551–00519.
  • Unoje O, Yang M, Lu Y, Su C, Liu H. 2020. Linking Sfl1 regulation of hyphal development to stress response kinases in Candida albicans. mSphere. 5(1):e00672-19.
  • Upadhya R, Campbell LT, Donlin MJ, Aurora R, Lodge JK. 2013a. Global transcriptome profile of Cryptococcus neoformans during exposure to hydrogen peroxide induced oxidative stress. PLoS One. 8(1):e55110.
  • Upadhya R, Kim H, Jung KW, Park G, Lam W, Lodge JK, Bahn YS. 2013b. Sulphiredoxin plays peroxiredoxin-dependent and -independent roles via the HOG signalling pathway in Cryptococcus neoformans and contributes to fungal virulence. Mol Microbiol. 90(3):630–648.
  • Urrialde V, Prieto D, Pla J, Alonso-Monge R. 2015. The Pho4 transcription factor mediates the response to arsenate and arsenite in Candida albicans. Front Microbiol. 6:118.
  • Valero C, Colabardini AC, Chiaratto J, Pardeshi L, de Castro PA, F, Filho JA, Silva LP, Rocha MC, Malavazi I, Costa JH, et al. 2020. Aspergillus fumigatus transcription factors involved in the caspofungin paradoxical effect. mBio. 11(3):e00816-20.
  • Valiante V, Monteiro MC, Martin J, Altwasser R, El Aouad N, Gonzalez I, Kniemeyer O, Mellado E, Palomo S, de Pedro N, et al. 2015. Hitting the caspofungin salvage pathway of human-pathogenic fungi with the novel lasso peptide humidimycin (MDN-0010). Antimicrob Agents Chemother. 59(9):5145–5153.
  • Vamvakas SS, Kapolos J, Farmakis L, Genneos F, Damianaki ME, Chouli X, Vardakou A, Liosi S, Stavropoulou E, Leivaditi E, Fragki M, et al. 2019. Specific serine residues of Msn2/4 are responsible for regulation of alcohol fermentation rates and ethanol resistance. Biotechnol Prog. 35(2):e2759.
  • van de Veerdonk FL, Gresnigt MS, Romani L, Netea MG, Latgé JP. 2017. Aspergillus fumigatus morphology and dynamic host interactions. Nat Rev Microbiol. 15(11):661–674.
  • Van Drogen F, Dard N, Pelet S, Lee SS, Mishra R, Srejić N, Peter M. 2020. Crosstalk and spatiotemporal regulation between stress-induced MAP kinase pathways and pheromone signaling in budding yeast. Cell Cycle. 19(14):1707–1715.
  • Van Wuytswinkel O, Reiser V, Siderius M, Kelders M, Ammerer G, Ruis H, Mager W. 2000. Response of Saccharomyces cerevisiae to severe osmotic stress: evidence for a novel activation mechanism of the HOG MAP kinase pathway. Mol Microbiol. 37(2):382–397.
  • Vázquez-Ibarra A, Rodríguez-Martínez G, Guerrero-Serrano G, Kawasaki L, Ongay-Larios L, Coria R. 2020. Negative feedback-loop mechanisms regulating HOG- and pheromone-MAPK signaling in yeast. Curr Genet. 66(5):867–880.
  • Vázquez-Ibarra A, Subirana L, Ongay-Larios L, Kawasaki L, Rojas-Ortega E, Rodríguez-González M, de Nadal E, Posas F, Coria R. 2018. Activation of the Hog1 MAPK by the Ssk2/Ssk22 MAP 3Ks, in the absence of the osmosensors, is not sufficient to trigger osmostress adaptation in Saccharomyces cerevisiae. FEBS J. 285(6):1079–1096.
  • Vylkova S, Jang WS, Li W, Nayyar N, Edgerton M. 2007. Histatin 5 initiates osmotic stress response in Candida albicans via activation of the Hog1 mitogen-activated protein kinase pathway. Eukaryot Cell. 6(10):1876–1888.
  • Wang L, Chen R, Weng Q, Lin S, Wang H, Li L, Fuchs BB, Tan X, Mylonakis E. 2020. SPT20 regulates the Hog1-MAPK pathway and is involved in Candida albicans response to hyperosmotic stress. Front Microbiol. 11:213.
  • Wang P, Cox GM, Heitman J. 2004. A Sch9 protein kinase homologue controlling virulence independently of the cAMP pathway in Cryptococcus neoformans. Curr Genet. 46(5):247–255.
  • Weber M, Basu S, Gonzalez B, Greslehner GP, Singer S, Haskova D, Hasek J, Breitenbach M, Gourlay CW, Cullen PJ, et al. 2021. Actin cytoskeleton regulation by the yeast NADPH oxidase Yno1p impacts processes controlled by MAPK pathways. Antioxidants. 10(2):322.
  • Westfall PJ, Ballon DR, Thorner J. 2004. When the stress of your environment makes you go HOG wild. Science. 306(5701):1511–1512.
  • Westfall PJ, Patterson JC, Chen RE, Thorner J. 2008. Stress resistance and signal fidelity independent of nuclear MAPK function. Proc Natl Acad Sci USA. 105(34):12212–12217.
  • Wiedemann A, Spadinger A, Lowe A, Seeger A, Ebel F. 2016. Agents that activate the high osmolarity glycerol pathway as a means to combat pathogenic molds. Int J Med Microbiol. 306(8):642–651.
  • Winkelstroter LK, Bom VL, de Castro PA, Ramalho LN, Goldman MH, Brown NA, Rajendran R, Ramage G, Bovier E, D, Reis TF, et al. 2015. High osmolarity glycerol response PtcB phosphatase is important for Aspergillus fumigatus virulence. Mol Microbiol. 96(1):42–54.
  • Winkler A, Arkind C, Mattison CP, Burkholder A, Knoche K, Ota I. 2002. Heat stress activates the yeast high-osmolarity glycerol mitogen-activated protein kinase pathway, and protein tyrosine phosphatases are essential under heat stress. Eukaryot Cell. 1(2):163–173.
  • Wong Sak Hoi J, Beau R, Latgé JP. 2012. A novel dehydrin-like protein from Aspergillus fumigatus regulates freezing tolerance. Fungal Genet Biol. 49(3):210–216.
  • Wong Sak Hoi J, Lamarre C, Beau R, Meneau I, Berepiki A, Barre A, Mellado E, Read ND, Latgé JP. 2011. A novel family of dehydrin-like proteins is involved in stress response in the human fungal pathogen Aspergillus fumigatus. Mol Biol Cell. 22(11):1896–1906.
  • Wosika V, Pelet S. 2020. Single-particle imaging of stress-promoters induction reveals the interplay between MAPK signaling, chromatin and transcription factors. Nat Commun. 11(1):3171.
  • Xue T, Nguyen CK, Romans A, May GS. 2004. A mitogen-activated protein kinase that senses nitrogen regulates conidial germination and growth in Aspergillus fumigatus. Eukaryot Cell. 3(2):557–560.
  • Yamada-Okabe T, Mio T, Ono N, Kashima Y, Matsui M, Arisawa M, Yamada-Okabe H. 1999. Roles of three histidine kinase genes in hyphal development and virulence of the pathogenic fungus Candida albicans. J Bacteriol. 181(23):7243–7247.
  • Yamaguchi Y, Katsuki Y, Tanaka S, Kawaguchi R, Denda H, Ikeda T, Funato K, Tani M. 2018. Protective role of the HOG pathway against the growth defect caused by impaired biosynthesis of complex sphingolipids in yeast Saccharomyces cerevisiae. Mol Microbiol. 107(3):363–386.
  • Yamamoto K, Tatebayashi K, Saito H. 2016. Binding of the extracellular eight-cysteine motif of Opy2 to the putative osmosensor Msb2 is essential for activation of the yeast high-osmolarity glycerol pathway. Mol Cell Biol. 36(3):475–487.
  • Yang F, Ma D, Wan Z, Liu W, Ji Y, Li R. 2011. The role of sho1 in polarized growth of Aspergillus fumigatus. Mycopathologia. 172(5):347–355.
  • Yin Z, Stead D, Walker J, Selway L, Smith DA, Brown AJ, Quinn J. 2009. A proteomic analysis of the salt, cadmium and peroxide stress responses in Candida albicans and the role of the Hog1 stress-activated MAPK in regulating the stress-induced proteome. Proteomics. 9(20):4686–4703.
  • Yoshida J, Kobayashi Y, Tanaka Y, Koyama Y, Ogihara J, Kato J, Shima J, Kasumi T. 2013. Complementary function of mitogen-activated protein kinase Hog1 from Trichosporonoides megachiliensis in Saccharomyces cerevisiae under hyper-osmotic stress. J Biosci Bioeng. 115(2):127–132.
  • Yoshikawa K, Tanaka T, Furusawa C, Nagahisa K, Hirasawa T, Shimizu H. 2009. Comprehensive phenotypic analysis for identification of genes affecting growth under ethanol stress in Saccharomyces cerevisiae. FEMS Yeast Res. 9(1):32–44.
  • Zahrádka J, van Heusden GPH, Sychrová H. 2012. Yeast 14-3-3 proteins participate in the regulation of cell cation homeostasis via interaction with Nha1 alkali-metal-cation/proton antiporter. Biochim Biophys Acta Gen Subj. 1820(7):849–858.
  • Zhang C, Meng X, Gu H, Ma Z, Lu L. 2018. Predicted glycerol 3-phosphate Dehydrogenase Homologs and the Glycerol Kinase GlcA Coordinately Adapt to Various Carbon Sources and Osmotic Stress in Aspergillus fumigatus. G3. 8(7):2291–2299.
  • Zhang L, Wang M, Li R, Calderone R. 2005. Expression of Aspergillus fumigatus virulence-related genes detected in vitro and in vivo with competitive RT-PCR. Mycopathologia. 160(3):201–206.
  • Zhao Y, Li S, Wang J, Liu Y, Deng Y. 2021. Roles of high osmolarity glycerol and cell wall integrity pathways in cadmium toxicity in Saccharomyces cerevisiae. IJMS. 22(12):6169.
  • Zhao Y, Lin X. 2021. Cryptococcus neoformans: sex, morphogenesis, and virulence. Infect Genet Evol. 89:104731.
  • Zhi H, Tang L, Xia Y, Zhang J. 2013. Ssk1p-independent activation of Ssk2p plays an important role in the osmotic stress response in Saccharomyces cerevisiae: alternative activation of Ssk2p in osmotic stress. PLoS One. 8(2):e54867.
  • Zhuge J, Fang HY, Wang ZX, Chen DZ, Jin HR, Gu HL. 2001. Glycerol production by a novel osmotolerant yeast Candida glycerinogenes. Appl Microbiol Biotechnol. 55(6):686–692.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.