1,000
Views
6
CrossRef citations to date
0
Altmetric
Review Articles

Biosensors for the detection of Mycobacterium tuberculosis: a comprehensive overview

ORCID Icon, ORCID Icon, & ORCID Icon
Pages 784-812 | Received 13 Jul 2021, Accepted 11 Jan 2022, Published online: 23 Feb 2022

References

  • Abnous K, Danesh NM, Ramezani M, Alibolandi M, Hassanabad KY, Emrani AS, Bahreyni A, Taghdisi SM. 2017. A triple-helix molecular switch-based electrochemical aptasensor for interferon-gamma using a gold electrode and Methylene Blue as a redox probe. Microchim Acta. 184(10):4151–4157.
  • Andronescu C, Schuhmann W. 2017. Graphene-based field effect transistors as biosensors. Curr Opin Electrochem. 3(1):11–17.
  • Aoki H, Tao H. 2007. Label- and marker-free gene detection based on hybridization-induced conformational flexibility changes in a ferrocene-PNA conjugate probe. Analyst. 132(8):784–791.
  • Bahadır EB, Sezgintürk MK. 2016. A review on impedimetric biosensors. Artif Cells Nanomed Biotechnol. 44(1):248–262.
  • Bai L, Chen Y, Bai Y, Chen Y, Zhou J, Huang A. 2017. Fullerene-doped polyaniline as new redox nanoprobe and catalyst in electrochemical aptasensor for ultrasensitive detection of Mycobacterium tuberculosis MPT64 antigen in human serum. Biomaterials. 133:11–19.
  • Barreda-García S, González-Álvarez MJ, de-los-Santos-Álvarez N, Palacios-Gutiérrez JJ, Miranda-Ordieres AJ, Lobo-Castañón MJ. 2015. Attomolar quantitation of Mycobacterium tuberculosis by asymmetric helicase-dependent isothermal DNA-amplification and electrochemical detection. Biosens Bioelectron. 68:122–128.
  • Barroso TG, Martins RC, Fernandes E, Cardoso S, Rivas J, Freitas, PP. 2018. Detection of BCG bacteria using a magnetoresistive biosensor: A step towards a fully electronic platform for tuberculosis point-of-care detection. Biosens Bioelectron. 100:259–265.
  • Borole DD, Kapadi UR, Mahulikar PP, Hundiwale DG. 2006. Conducting polymers: an emerging field of biosensors. Des Monomers Polym. 9(1):1–1.
  • Bozokalfa G, Akbulut H, Demir B, Guler E, Gumus ZP, Odaci Demirkol D, Aldemir E, Yamada S, Endo T, Coskunol H, et al. 2016. Polypeptide functional surface for the aptamer immobilization: electrochemical cocaine biosensing. Anal Chem. 88(7):4161–4167.
  • Bronder TS, Jessing MP, Poghossian A, Keusgen M, Schöning MJ. 2018. Detection of PCR-Amplified Tuberculosis DNA Fragments with Polyelectrolyte-Modified Field-Effect Sensors. Anal Chem. 90(12):7747–7753.
  • Burgener M, Sänger M, Candrian U. 2000. Synthesis of a stable and specific surface plasmon resonance biosensor surface employing covalently immobilized peptide nucleic acids. Bioconjug Chem. 11(6):749–754.
  • Chen PC, Chen YW, Sarangadharan I, Hsu CP, Chen CC, Shiesh SC, Lee GB, Wang YL. 2017. Editors' Choice—field-effect transistor-based biosensors and a portable device for personal healthcare. ECS J Solid State Sci Technol. 6(7):Q71–Q76.
  • Chen Y, Guo S, Zhao M, Zhang P, Xin Z, Tao J, Bai L. 2018. Amperometric DNA biosensor for Mycobacterium tuberculosis detection using flower-like carbon nanotubes-polyaniline nanohybrid and enzyme-assisted signal amplification strategy. Biosens Bioelectron. 119:215–220.
  • Chen Y, Li Y, Yang Y, Wu F, Cao J, Bai L. 2017. A polyaniline-reduced graphene oxide nanocomposite as a redox nanoprobe in a voltammetric DNA biosensor for Mycobacterium tuberculosis. Microchim Acta. 184(6):1801–1808.
  • Chen Z, Zhang C, Li X, Ma H, Wan C, Li K, Lin Y. 2015. Aptasensor for electrochemical sensing of angiogenin based on electrode modified by cationic polyelectrolyte-functionalized graphene/gold nanoparticles composites. Biosens Bioelectron. 65:232–237.
  • Chin KL, Sarmiento ME, Norazmi MN, Acosta A. 2018. DNA markers for tuberculosis diagnosis. Tuberculosis. 113:139–152.
  • Chutichetpong P, Cheeveewattanagul N, Srilohasin P, Rijiravanich P, Chaiprasert A, Surareungchai W. 2018. Rapid screening drug susceptibility test in tuberculosis using sandwich electrochemical immunosensor. Anal Chim Acta. 1025:108–117.
  • Costa MP, Andrade CA, Montenegro RA, Melo FL, Oliveira MD. 2014. Self-assembled monolayers of mercaptobenzoic acid and magnetite nanoparticles as an efficient support for development of tuberculosis genosensor. J Colloid Interface Sci. 433:141–148.
  • Cui H, Li S, Yuan Q, Wadhwa A, Eda S, Chambers M, Ashford R, Jiang H, Wu J. 2013. An AC electrokinetic impedance immunosensor for rapid detection of tuberculosis. Analyst. 138(23):7188–7196.
  • D’Agata R, Giuffrida MC, Spoto G. 2017. Peptide nucleic acid-based biosensors for cancer diagnosis. Molecules. 22(11):1951.
  • Das M, Dhand C, Sumana G, Srivastava AK, Vijayan N, Nagarajan R, Malhotra BD. 2011. Zirconia grafted carbon nanotubes based biosensor for M. tuberculosis detection. Appl Phys Lett. 99(14):143702.
  • Demidov VV, Potaman VN, Frank-Kamenetskil MD, Egholm M, Buchard O, Sönnichsen SH, Nlelsen PE. 1994. Stability of peptide nucleic acids in human serum and cellular extracts. Biochem Pharmacol. 48(6):1310–1313.
  • Dettin M, Silvestri D, Danesin R, Cretaio E, Picariello G, Casarin E, Sonato A, Romanato F, Morpurgo M. 2012. Synthesis and chromatography-free purification of PNA-PEO conjugates for the functionalisation of gold sensors. Molecules. 17(9):11026–11045.
  • Díaz-González M, González-García MB, Costa-García A. 2005. Immunosensor for Mycobacterium tuberculosis on screen-printed carbon electrodes. Biosens Bioelectron. 20(10):2035–2043.
  • Dijksma M, Kamp B, Hoogvliet JC, Van Bennekom WP. 2001. Development of an electrochemical immunosensor for direct detection of interferon-gamma at the attomolar level. Anal Chem. 73(5):901–907.
  • Ding J, Qin W. 2020. Recent advances in potentiometric biosensors. Trac Trends Anal Chem. 124:115803.
  • Ding S, Mosher C, Lee XY, Das SR, Cargill AA, Tang X, Chen B, McLamore ES, Gomes C, Hostetter JM, et al. 2017. Rapid and label-free detection of interferon gamma via an electrochemical aptasensor comprising a ternary surface monolayer on a gold interdigitated electrode array. ACS Sens. 2(2):210–217.
  • Diouani MF, Ouerghi O, Refai A, Belgacem K, Tlili C, Laouini D, Essafi M. 2017. Detection of ESAT-6 by a label free miniature immuno-electrochemical biosensor as a diagnostic tool for tuberculosis. Mater Sci Eng C Mater Biol Appl. 74:465–470.
  • Duman M, Piskin E. 2010. Detection of Mycobacterium tuberculosis complex and Mycobacterium gordonae on the same portable surface plasmon resonance sensor. Biosens Bioelectron. 26(2):908–912.
  • Dzyadevych S, Jaffrezic-Renault N. 2014. Conductometric biosensors. In: Biological Identification. Woodhead Publishing. p. 153–193.
  • Eddabra R, Benhassou HA. 2018. Rapid molecular assays for detection of tuberculosis. Pneumonia. 10(1):1–12.
  • Egholm M, Buchardt O, Christensen L, Behrens C, Freier SM, Driver DA, Berg RH, Kim SK, Norden B, Nielsen PE. 1993. PNA hybridizes to complementary oligonucleotides obeying the Watson–Crick hydrogen-bonding rules. Nature. 365(6446):566–568.
  • Errachid A, Zine N, Samitier J, Bausells J. 2004. FET-based chemical sensor systems fabricated with standard technologies. Electroanalysis. 16(22):1843–1851.
  • Farid S, Meshik X, Choi M, Mukherjee S, Lan Y, Parikh D, Poduri S, Baterdene U, Huang C-E, Wang YY, et al. 2015. Detection of Interferon gamma using graphene and aptamer based FET-like electrochemical biosensor. Biosens Bioelectron. 71:294–299.
  • Gao Z, Agarwal A, Trigg AD, Singh N, Fang C, Tung CH, Fan Y, Buddharaju KD, Kong J. 2007. Silicon nanowire arrays for label-free detection of DNA. Anal Chem. 79(9):3291–3297.
  • Ginsberg AM, Spigelman M. 2007. Challenges in tuberculosis drug research and development. Nat Med. 13(3):290–294.
  • Gopinath SC, Perumal V, Kumaresan R, Lakshmipriya T, Rajintraprasad H, Rao BS, Arshad MM, Chen Y, Kotani N, Hashim U. 2016. Nanogapped impedimetric immunosensor for the detection of 16 kDa heat shock protein against Mycobacterium tuberculosis. Microchim Acta. 183(10):2697–2703.
  • Gou D, Xie G, Li Y, Zhang X, Chen H. 2018. Voltammetric immunoassay for Mycobacterium tuberculosis secretory protein MPT64 based on a synergistic amplification strategy using rolling circle amplification and a gold electrode modified with graphene oxide, Fe3O4 and Pt nanoparticles. Mikrochim Acta. 185(9):436.
  • Grieshaber D, MacKenzie R, Vörös J, Reimhult E. 2008. Electrochemical biosensors - sensor principles and architectures. Sensors. 8(3):1400–1458.
  • Guan JG, Miao YQ, Zhang QJ. 2004. Impedimetric biosensors. J Biosci Bioeng. 97(4):219–226.
  • Gupta S, Kakkar V. 2018. Recent technological advancements in tuberculosis diagnostics–A review. Biosens Bioelectron. 115:14–29.
  • Hammond JL, Formisano N, Estrela P, Carrara S, Tkac J. 2016. Electrochemical biosensors and nanobiosensors. Essays Biochem. 60(1):69–80.
  • He F, Xiong Y, Liu J, Tong F, Yan D. 2016. Construction of Au-IDE/CFP10-ESAT6 aptamer/DNA-AuNPs MSPQC for rapid detection of Mycobacterium tuberculosis. Biosens Bioelectron. 77:799–804.
  • He F, Zhang L. 2002. Rapid diagnosis of M. tuberculosis using a piezoelectric immunosensor. Anal Sci. 18(4):397–401.
  • Helmerhorst E, Chandler DJ, Nussio M, Mamotte CD. 2012. Real-time and label-free bio-sensing of molecular interactions by surface plasmon resonance: a laboratory medicine perspective. Clin Biochem Rev. 33(4):161.
  • Hiatt LA, Cliffel DE. 2012. Real-time recognition of Mycobacterium tuberculosis and Lipoarabinomannan using the quartz crystal microbalance. Sens Actuators B Chem. 174:245–252.
  • Hiraiwa M, Kim JH, Lee HB, Inoue S, Becker AL, Weigel KM, Cangelosi GA, Lee KH, Chung JH. 2015. Amperometric immunosensor for rapid detection of Mycobacterium tuberculosis. J Micromech Microeng. 25(5):055013
  • Hong SC, Chen H, Lee J, Park H-K, Kim YS, Shin H-C, Kim C-M, Park TJ, Lee SJ, Koh K, et al. 2011. Ultrasensitive immunosensing of tuberculosis CFP-10 based on SPR spectroscopy. Sens Actuators, B. 156(1):271–275.
  • Hsu SH, Lin YY, Lu SH, Tsai I, Lu YT, Ho HT. 2013. Mycobacterium tuberculosis DNA detection using surface plasmon resonance modulated by telecommunication wavelength. Sensors. 14(1):458–467.
  • Huang H, Li J, Shi S, Yan Y, Zhang M, Wang P, Zeng G, Jiang Z. 2015. Detection of interferon-gamma for latent tuberculosis diagnosis using an immunosensor based on CdS quantum dots coupled to magnetic beads as labels. Int J Electrochem Sci. 10:2580–2593.
  • Hwang SH, Im SG, Sung H, Hah SS, Cong VT, Lee DH, Son SJ, Oh HB. 2014. Upconversion nanoparticle-based Förster resonance energy transfer for detecting the IS6110 sequence of Mycobacterium tuberculosis complex in sputum. Biosens Bioelectron. 53:112–116.
  • Jayasena SD. 1999. Aptamers: an emerging class of molecules that rival antibodies in diagnostics. Clin Chem. 45(9):1628–1650.
  • Jiang J, Chai Y, Cui H. 2011. The electrogenerated chemiluminescence detection of IS6110 of Mycobacterium tuberculosis based on a luminol functionalized gold nanoprobe. RSC Adv. 1(2):247–254.
  • Joshi H, Verma A, Soni DK. 2019. Microbial genomics in sustainable agroecosystems. Singapore: Springer; p. 75–88.
  • Kaewphinit T, Santiwatanakul S, Promptmas C, Chansiri K. 2010. Detection of non-amplified Mycobacterium tuberculosis genomic DNA using piezoelectric DNA-based biosensors. Sensors. 10(3):1846–1858.
  • Kamphee H, Chaiprasert A, Prammananan T, Wiriyachaiporn N, Kanchanatavee A, Dharakul T. 2015. Rapid molecular detection of multidrug-resistant tuberculosis by PCR-nucleic acid lateral flow immunoassay. PloS One. 10(9):e0137791.
  • Karunakaran C, Rajkumar R, Bhargava K. 2015. Introduction to biosensors. Biosensors and Bioelectronics. Amsterdam: Elsevier; p. 1–68.
  • Kerman K, Morita Y, Takamura Y, Ozsoz M, Tamiya E. 2004. Modification of Escherichia coli single-stranded DNA binding protein with gold nanoparticles for electrochemical detection of DNA hybridization. Anal Chim Acta. 510(2):169–174.
  • Khoder R, Korri-Youssoufi H. 2020. E-DNA biosensors of M. tuberculosis based on nanostructured polypyrrole. Mater Sci Eng C Mater Biol Appl. 108:110371.
  • Kim J, Lee KS, Kim EB, Paik S, Chang CL, Park TJ, Kim HJ, Lee J. 2017. Early detection of the growth of Mycobacterium tuberculosis using magnetophoretic immunoassay in liquid culture. Biosens Bioelectron. 96:68–76.
  • Kim JH, Chang YW, Bok E, Kim HJ, Lee H, Cho SN, Shin JS, Yoo KH. 2014. Detection of IFN-γ for latent tuberculosis diagnosis using an anodized aluminum oxide-based capacitive sensor. Biosens Bioelectron. 51:366–370.
  • Kimuda SG, Biraro IA, Bagaya BS, Raynes JG, Cose S. 2018. Characterising antibody avidity in individuals of varied Mycobacterium tuberculosis infection status using surface plasmon resonance. PloS One. 13(10):e0205102.
  • Koncki R. 2007. Recent developments in potentiometric biosensors for biomedical analysis. Anal Chim Acta. 599(1):7–15.
  • Labib M, Sargent EH, Kelley SO. 2016. Electrochemical methods for the analysis of clinically relevant biomolecules. Chem Rev. 116(16):9001–9090.
  • Lai CY, Foot PJ, Brown JW, Spearman P. 2017. A urea potentiometric biosensor based on a thiophene copolymer. Biosensors. 7(4):13.
  • Lawn SD, Mwaba P, Bates M, Piatek A, Alexander H, Marais BJ, Cuevas LE, McHugh TD, Zijenah L, Kapata N, et al. 2013. Advances in tuberculosis diagnostics: the Xpert MTB/RIF assay and future prospects for a point-of-care test. Lancet Infect Dis. 13(4):349–361.
  • Li F, Yu Y, Li Q, Zhou M, Cui H. 2014. A homogeneous signal-on strategy for the detection of rpoB genes of Mycobacterium tuberculosis based on electrochemiluminescent graphene oxide and ferrocene quenching. Anal Chem. 86(3):1608–1613.
  • Li L, Yuan Y, Chen Y, Zhang P, Bai Y, Bai L. 2018. Aptamer based voltammetric biosensor for Mycobacterium tuberculosis antigen ESAT-6 using a nanohybrid material composed of reduced graphene oxide and a metal-organic framework. Mikrochim Acta. 185(8):379
  • Li N, Huang X, Sun D, Yu W, Tan W, Luo Z, Chen Z. 2018. Dual-aptamer-based voltammetric biosensor for the Mycobacterium tuberculosis antigen MPT64 by using a gold electrode modified with a peroxidase loaded composite consisting of gold nanoparticles and a Zr(IV)/terephthalate metal-organic framework. Mikrochim Acta. 185(12):543
  • Liang G, Chen H, Zhang S, Wu W, Kong J. 2012. Magnetic nanosensors for highly sensitive and selective detection of bacillus Calmette-Guérin. Analyst. 137(3):675–679.
  • Liong M, Hoang AN, Chung J, Gural N, Ford CB, Min C, Shah RR, Ahmad R, Fernandez-Suarez M, Fortune SM, et al. 2013. Magnetic barcode assay for genetic detection of pathogens. Nat Commun. 4(1):1–9.
  • Liu C, Jiang D, Xiang G, Liu L, Liu F, Pu X. 2014. An electrochemical DNA biosensor for the detection of Mycobacterium tuberculosis, based on signal amplification of graphene and a gold nanoparticle-polyaniline nanocomposite. Analyst. 139(21):5460–5465.
  • Liu C, Xiang G, Jiang D, Liu L, Liu F, Luo F, Pu X. 2015. An electrochemical aptasensor for detection of IFN-γ using graphene and a dual signal amplification strategy based on the exonuclease-mediated surface-initiated enzymatic polymerization. Analyst. 140(22):7784–7791.
  • Liu L, He F, Yu Y, Wang Y. 2020. Application of FRET biosensors in mechanobiology and mechanopharmacological screening. Front Bioeng Biotechnol. 8:1299.
  • Liu Y, Tuleouva N, Ramanculov E, Revzin A. 2010. Aptamer-based electrochemical biosensor for interferon gamma detection. Anal Chem. 82(19):8131–8136.
  • Martins TD, Ribeiro AC, de Camargo HS, da Costa Filho PA, Cavalcante HP, Dias DL. 2013. State of the art in biosensors-general aspects. Rijek (Crotia): InTech.
  • Matsumoto A, Miyahara Y. 2013. Current and emerging challenges of field effect transistor based bio-sensing. Nanoscale. 5(22):10702–10718.
  • Metcalfe JZ, Cattamanchi A, McCulloch CE, Lew JD, Ha NP, Graviss EA. 2013. Test variability of the QuantiFERON-TB gold in-tube assay in clinical practice. Am J Respir Crit Care Med. 187(2):206–211.
  • Mi X, He F, Xiang M, Lian Y, Yi S. 2012. Novel phage amplified multichannel series piezoelectric quartz crystal sensor for rapid and sensitive detection of Mycobacterium tuberculosis. Anal Chem. 84(2):939–946.
  • Migliori GB, Lange C, Centis R, Sotgiu G, Mütterlein R, Hoffmann H, Kliiman K, De Iaco G, Lauria FN, Richardson MD, et al. 2008. Resistance to second-line injectables and treatment outcomes in multidrug-resistant and extensively drug-resistant tuberculosis cases. Eur Respir J. 31(6):1155–1159.
  • Mohd Azmi UZ, Yusof NA, Kusnin N, Abdullah J, Suraiya S, Ong PS, Ahmad Raston NH, Abd Rahman SF, Mohamad Fathil MF. 2018. Sandwich electrochemical immunosensor for early detection of tuberculosis based on graphene/polyaniline-modified screen-printed gold electrode. Sensors. 18(11):3926.
  • Mohd Bakhori N, Yusof NA, Abdullah J, Wasoh H, Ab Rahman SK, Abd Rahman SF. 2019. Surface enhanced CdSe/ZnS QD/SiNP electrochemical immunosensor for the detection of Mycobacterium tuberculosis by combination of CFP10-ESAT6 for better diagnostic specificity. Materials. 13(1):149.
  • Muratova IS, Kartsova LA, Mikhelson KN. 2015. Voltammetric vs. potentiometric sensing of dopamine: advantages and disadvantages, novel cell designs, fundamental limitations and promising options. Sens Actuators B. 207:900–906.
  • Nabaei V, Chandrawati R, Heidari H. 2018. Magnetic biosensors: modelling and simulation. Biosens Bioelectron. 103:69–86.
  • Narita F, Wang Z, Kurita H, Li Z, Shi Y, Jia Y, Soutis C. 2021. A review of piezoelectric and magnetostrictive biosensor materials for detection of COVID‐19 and other viruses. Adv Mater. 33(1):2005448.
  • Nikhil B, Pawan J, Nello F, Pedro E. 2016. Introduction to biosensors. Essays Biochem. 60(1):1–8.
  • Nimmo C, Lipman M, Phillips PP, McHugh T, Nunn A, Abubakar I. 2015. Shortening treatment of tuberculosis: lessons from fluoroquinolone trials. Lancet Infect Dis. 15(2):141–143.
  • Nour-Neamatollahi A, Siadat SD, Yari S, Tasbiti AH, Ebrahimzadeh N, Vaziri F, Fateh A, Ghazanfari M, Abdolrahimi F, Pourazar S, et al. 2018. Saudi J Biol Sci. 25(3):418–425.
  • Okafor C, Grooms D, Alocilja E, Bolin S. 2008. Fabrication of a novel conductometric biosensor for detecting Mycobacterium avium subsp. paratuberculosis antibodies. Sensors. 8(9):6015–6025.
  • Ozkan D, Kara P, Kerman K, Meric B, Erdem A, Jelen F, Nielsen PE, Ozsoz M. 2002. DNA and PNA sensing on mercury and carbon electrodes by using methylene blue as an electrochemical label. Bioelectrochemistry. 58(1):119–126.
  • Pai M, Denkinger CM, Kik SV, Rangaka MX, Zwerling A, Oxlade O, Metcalfe JZ, Cattamanchi A, Dowdy DW, Dheda K, et al. 2014. Gamma interferon release assays for detection of Mycobacterium tuberculosis infection. Clin Microbiol Rev. 27(1):3–20.
  • Pang P, Cai Q, Yao S, Grimes CA. 2008. The detection of Mycobacterium tuberculosis in sputum sample based on a wireless magnetoelastic-sensing device. Talanta. 76(2):360–364.
  • Perumal V, Saheed MS, Mohamed NM, Saheed MS, Murthe SS, Gopinath SC, Chiu JM. 2018. Gold nanorod embedded novel 3D graphene nanocomposite for selective bio-capture in rapid detection of Mycobacterium tuberculosis. Biosens Bioelectron. 116:116–122.
  • Pohanka M. 2018. Overview of piezoelectric biosensors, immunosensors and DNA sensors and their applications. Materials. 11(3):448.
  • Prabhakar N, Arora K, Arya SK, Solanki PR, Iwamoto M, Singh H, Malhotra BD. 2008. Nucleic acid sensor for M. tuberculosis detection based on surface plasmon resonance. Analyst. 133(11):1587–1592.
  • Prabhakar N, Singh H, Malhotra BD. 2008. Nucleic acid immobilized polypyrrole–polyvinylsulphonate film for Mycobacterium tuberculosis detection. Electrochem Commun. 10(6):821–826.
  • Prabhakar N, Solanki PR, Kaushik A, Pandey MK, Malhotra BD. 2010. Peptide nucleic acid immobilized biocompatible silane nanocomposite platform for Mycobacterium tuberculosis detection. Electroanalysis. 22(22):2672–2682.
  • Reisberg S, Dang LA, Nguyen QA, Piro B, Noel V, Nielsen PE, Le LA, Pham MC. 2008. Label-free DNA electrochemical sensor based on a PNA-functionalized conductive polymer. Talanta. 76(1):206–210.
  • Ren J, He F, Yi S, Cui X. 2008. A new MSPQC for rapid growth and detection of Mycobacterium tuberculosis. Biosens Bioelectron. 24(3):403–409.
  • Ren J, Ma L, Li Z, Huang H, Yi S. 2013. Simultaneous and early detection of Mycobacterium tuberculosis resistance to antituberculosis drugs using an indirect series piezoelectric system. Biosens Bioelectron. 43:115–119.
  • Richter MM. 2004. Electrochemiluminescence (ecl). Chem Rev. 104(6):3003–3036.
  • Saengdee P, Chaisriratanakul W, Bunjongpru W, Sripumkhai W, Srisuwan A, Hruanun C, Poyai A, Phunpae P, Pata S, Jeamsaksiri W, et al. 2016. A silicon nitride ISFET based immunosensor for Ag85B detection of tuberculosis. Analyst. 141(20):5767–5775.
  • Scholz G, Scholz F. 2015. First-order differential equations in chemistry. ChemTexts. 1(1):1–24.
  • Sepulveda D, Aroca MA, Varela A, Del Portillo P, Osma JF. 2017. Bioelectrochemical detection of Mycobacterium tuberculosis ESAT-6 in an antibody-based biomicrosystem. Sensors. 17(10):2178.
  • Shen J, Zhou T, Huang R. 2019. Recent advances in electrochemiluminescence sensors for pathogenic bacteria detection. Micromachines. 10(8):532.
  • Shojaei TR, Salleh MA, Tabatabaei M, Ekrami A, Motallebi R, Rahmani-Cherati T, Hajalilou A, Jorfi R. 2014. Development of sandwich-form biosensor to detect Mycobacterium tuberculosis complex in clinical sputum specimens. Braz J Infect Dis. 18(6):600–608.
  • Simsek H, Alpar S, Ucar N, Aksu F, Ceyhan I, Gozalan A, Cesur S, Ertek M. 2010. Comparison of tuberculin skin testing and T-SPOT. TB for diagnosis of latent and active tuberculosis. Jpn J Infect Dis. 63(2):99–102.
  • Song S, Wang L, Li J, Fan C, Zhao J. 2008. Aptamer-based biosensors. Trac, Trends Anal Chem. 27(2):108–117.
  • Sweeney MM, Bertolino C, Berney H, Sheehan MM. 2004. The 26th annual international conference of the IEEE engineering in medicine and biology society, September 1. Vol. 1, p. 1960–1963.
  • Sypabekova M, Dukenbayev K, Tsepke A, Akisheva A, Oralbayev N, Kanayeva D. 2019. An aptasensor for the detection of Mycobacterium tuberculosis secreted immunogenic protein MPT64 in clinical samples towards tuberculosis detection. Sci Rep. 9(1):1–1.
  • Syu YC, Hsu WE, Lin CT. 2018. Review—field-effect transistor biosensing: devices and clinical applications. ECS J Solid State Sci Technol. 7(7):Q3196–Q3207.
  • Thakur H, Kaur N, Sareen D, Prabhakar N. 2017. Electrochemical determination of M. tuberculosis antigen based on Poly(3,4-ethylenedioxythiophene) and functionalized carbon nanotubes hybrid platform. Talanta. 171:115–123.
  • Thapliyal N, Chiwunze TE, Karpoormath R, Goyal RN, Patel H, Cherukupalli S. 2016. Research progress in electroanalytical techniques for determination of antimalarial drugs in pharmaceutical and biological samples. RSC Adv. 6(62):57580–57602.
  • Thévenot DR, Toth K, Durst RA, Wilson GS. 2001. Electrochemical biosensors: recommended definitions and classification. Biosens Bioelectron. 16(1-2):121–131.
  • Thiruppathiraja C, Kamatchiammal S, Adaikkappan P, Santhosh DJ, Alagar M. 2011. Specific detection of Mycobacterium sp. genomic DNA using dual labeled gold nanoparticle based electrochemical biosensor. Anal Biochem. 417(1):73–79.
  • Tombelli S, Minunni M, Mascini M. 2007. Aptamers-based assays for diagnostics, environmental and food analysis. Biomol Eng. 24(2):191–200. Jun 1200.
  • Torres-Chavolla E, Alocilja EC. 2011. Nanoparticle based DNA biosensor for tuberculosis detection using thermophilic helicase-dependent isothermal amplification. Biosens Bioelectron. 26(11):4614–4618.
  • Trzaskowski M, Napiórkowska A, Augustynowicz-Kopeć E, Ciach T. 2018. Detection of tuberculosis in patients with the use of portable SPR device. Sens Actuators, B. 260:786–792.
  • Tufa LT, Oh S, Tran VT, Kim J, Jeong K-J, Park TJ, Kim H-J, Lee J. 2018. Electrochemical immunosensor using nanotriplex of graphene quantum dots, Fe3O4, and Ag nanoparticles for tuberculosis. Electrochim Acta. 290:369–377.
  • Turner AP, Magan N. 2004. Electronic noses and disease diagnostics. Nat Rev Microbiol. 2(2):161–166.
  • Usachev EV, Usacheva OV, Agranovski IE. 2014. Surface plasmon resonance‐based bacterial aerosol detection. J Appl Microbiol. 117(6):1655–1662.
  • Vu CA, Chen WY. 2019. Field-effect transistor biosensors for biomedical applications: recent advances and future prospects. Sensors. 19(19):4214.
  • Wadhera T, Kakkar D, Wadhwa G, Raj B. 2019. Recent advances and progress in development of the field effect transistor biosensor: a review. J Elec Materi. 48(12):7635–7646.
  • Wang J, Cai X, Rivas G, Shiraishi H, Dontha N. 1997. Nucleic-acid immobilization, recognition and detection at chronopotentiometric DNA chips. Biosens Bioelectron. 12(7):587–599.
  • Wang J, Rivas G, Cai X, Dontha N, Shiraishi H, Luo D, Valera FS. 1997. Sequence-specific electrochemical biosensing of M. tuberculosis DNA. Anal Chim Acta. 337(1):41–48.
  • Wang L, Leng C, Tang S, Lei J, Ju H. 2012 Oct 1. Enzyme-free signal amplification for electrochemical detection of Mycobacterium lipoarabinomannan antibody on a disposable chip. Biosens Bioelectron. 38(1):421–424.
  • Wang X, Han X, Ma A, Chen L, Liang H, Litifu A, Xue F. 2017. Fabrication of electrochemical immunosensor for interferon-γ determination and its application of tuberculosis diagnosis. Int J Electrochem Sci. 12:7262–7271.
  • Wang X, Uchiyama S. 2013. Polymers for biosensors construction. State of the art in biosensors—general aspects. 3:67–84.
  • Wang Y, Ye Z, Ying Y. 2012. New trends in impedimetric biosensors for the detection of foodborne pathogenic bacteria. Sensors. 12(3):3449–3471.
  • World Health Organization. 2019. Global tuberculosis report 2019. Geneva (Switzerland): World Health Organization.
  • Wu L, Huang C, Emery BP, Sedgwick AC, Bull SD, He XP, Tian H, Yoon J, Sessler JL, James TD. 2020. Förster resonance energy transfer (FRET)-based small-molecule sensors and imaging agents. Chem Soc Rev. 49(15):5110–5139.
  • Xiang Y, Zhu X, Huang Q, Zheng J, Fu W. 2015. Real-time monitoring of mycobacterium genomic DNA with target-primed rolling circle amplification by a Au nanoparticle-embedded SPR biosensor. Biosens Bioelectron. 66:512–519.
  • Yan G, Wang Y, He X, Wang K, Liu J, Du Y. 2013. A highly sensitive label-free electrochemical aptasensor for interferon-gamma detection based on graphene controlled assembly and nuclease cleavage-assisted target recycling amplification. Biosens Bioelectron. 44:57–63.
  • Yan Z, Gan N, Zhang H, Wang D, Qiao L, Cao Y, Li T, Hu F. 2015. A sandwich-hybridization assay for simultaneous determination of HIV and tuberculosis DNA targets based on signal amplification by quantum dots-PowerVision™ polymer coding nanotracers. Biosens Bioelectron. 71:207–213.
  • Yang Z, Jian Z, Chen X, Li J, Qin P, Zhao J, Jiao X, Hu X. 2015. Electrochemical impedance immunosensor for sub-picogram level detection of bovine interferon gamma based on cylinder-shaped TiO2 nanorods. Biosens Bioelectron. 63:190–195.
  • Yesil M, Donmez S, Arslan F. 2016. Development of an electrochemical DNA biosensor for detection of specific Mycobacterium tuberculosis sequence based on poly(L-glutamic acid) modified electrode. J Chem Sci. 128(11):1823–1829.
  • Yesudasu V, Pradhan HS, Pandya RJ. 2021. Recent progress in surface plasmon resonance based sensors: a comprehensive review. Heliyon. 7(3):e06321.
  • Yu X, Chai Y, Jiang J, Cui H. 2012. Sensitive ECL sensor for sequence-specific DNA from Mycobacterium tuberculosis based on N-(aminobutyl)-N-ethylisoluminol functionalized gold nanoparticles labeling. J Photochem Photobiol, A. 241:45–51.
  • Zaid MH, Abdullah J, Yusof NA, Sulaiman Y, Wasoh H, Noh MF, Issa R. 2017. PNA biosensor based on reduced graphene oxide/water soluble quantum dots for the detection of Mycobacterium tuberculosis. Sens Actuators, B. 241:1024–1034.
  • Zeka AN, Tasbakan S, Cavusoglu C. 2011. Evaluation of the GeneXpert MTB/RIF assay for rapid diagnosis of tuberculosis and detection of rifampin resistance in pulmonary and extrapulmonary specimens. J Clin Microbiol. 49(12):4138–4141.
  • Zelada-Guillén GA, Tweed-Kent A, Niemann M, Göringer HU, Riu J, Rius FX. 2013. Ultrasensitive and real-time detection of proteins in blood using a potentiometric carbon-nanotube aptasensor. Biosens Bioelectron. 41:366–371.
  • Zhang C, Lou J, Tu W, Bao J, Dai Z. 2015. Ultrasensitive electrochemical biosensing for DNA using quantum dots combined with restriction endonuclease. Analyst. 140(2):506–511.
  • Zhang J, Huang J, He F. 2019. The construction of Mycobacterium tuberculosis 16S rDNA MSPQC sensor based on Exonuclease III-assisted cyclic signal amplification. Biosens Bioelectron. 138:111322
  • Zhang QD, March G, Noel V, Piro B, Reisberg S, Tran LD, Hai LV, Abadia E, Nielsen PE, Sola C, et al. 2012. Label-free and reagentless electrochemical detection of PCR fragments using self-assembled quinone derivative monolayer: application to Mycobacterium tuberculosis. Biosens Bioelectron. 32(1):163–168.
  • Zou F, Zhou H, Tan TV, Kim J, Koh K, Lee J. 2015. Dual-mode SERS-fluorescence immunoassay using graphene quantum dot labeling on one-dimensional aligned magnetoplasmonic nanoparticles. ACS Appl Mater Interfaces. 7(22):12168–12175.
  • Zribi B, Roy E, Pallandre A, Chebil S, Koubaa M, Mejri N, Magdinier Gomez H, Sola C, Korri-Youssoufi H, Haghiri-Gosnet AM. 2016. A microfluidic electrochemical biosensor based on multiwall carbon nanotube/ferrocene for genomic DNA detection of Mycobacterium tuberculosis in clinical isolates. Biomicrofluidics. 10(1):014115

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.