713
Views
3
CrossRef citations to date
0
Altmetric
Review Articles

Paving the way forward: Escherichia coli bacteriophages in a One Health approach

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, , ORCID Icon & ORCID Icon show all
Pages 87-104 | Received 17 Jun 2022, Accepted 19 Dec 2022, Published online: 06 Jan 2023

References

  • Aarestrup FM. 2015. The livestock reservoir for antimicrobial resistance: a personal view on changing patterns of risks, effects of interventions and the way forward. Philos Trans R Soc Lond B Biol Sci. 370(1670):20140085.
  • Abdelsattar AS, Abdelrahman F, Dawoud A, Connerton IF, El-Shibiny A. 2019. Encapsulation of E. coli phage ZCEC5 in chitosan–alginate beads as a delivery system in phage therapy. AMB Express. 9(1):87.
  • Abdulamir AS, Jassim SAA, Abu Bakar F. 2014. Novel approach of using a cocktail of designed bacteriophages against gut pathogenic E. coli for bacterial load biocontrol. Ann Clin Microbiol Antimicrob. 13:39.
  • Abedon ST, García P, Mullany P, et al. 2017. Editorial: phage therapy: past, present and future. In: Abedon ST, Garcia P, Mullany PAR, editors. Front Microbiol, Vol 8; p. 981. Frontiers Media S.A: Lausanne, Switzerland.
  • Adamu Ahmad K, Sabo Mohammed A, Abas F. 2016. Chitosan nanoparticles as carriers for the delivery of ΦKAZ14 Bacteriophage for oral biological control of colibacillosis in chickens. Molecules. 21(3):256.
  • Akindolire MA, Ateba CN. 2019. Isolation and characterisation of bacteriophages with lytic activity against virulent Escherichia coli O 157 : H 7 : potential biocontrol agents.
  • Alves D, Cerqueira MA, Pastrana LM, et al. 2020. Entrapment of a phage cocktail and cinnamaldehyde on sodium alginate emulsion-based films to fight food contamination by Escherichia coli and Salmonella Enteritidis. Food Res Int. 128:1–11.
  • Amarillas L, Lightbourn‐Rojas L, Angulo‐Gaxiola AK, Basilio Heredia J, González‐Robles A, León‐Félix J. 2018. The antibacterial effect of chitosan‐based edible coating incorporated with a lytic bacteriophage against Escherichia coli O157: H 7 on the surface of tomatoes. J Food Saf. 38(6):12571. http://europepmc.org/abstract/AGR/IND606254860.
  • Aminov R, Caplin J, Chanishvili N, Coffey A, Cooper I, De Vos D, Doškař J, Friman V-P, Kurtboke İ, Pantůček R, et al. 2017. Application of bacteriophages. Microbiol. Aust. 38(2):63–66.  https://is.muni.cz/publication/1389544/cs/Application-of-bacteriophages/Aminov-Caplin-Chanishvili-Coffey?lang=en.
  • Ando H, Lemire S, Pires DP, Lu TK. 2015. Engineering modular viral scaffolds for targeted bacterial population editing. Cell Syst. 1(3):187–196.
  • Antimicrobial Resistance Collaborators. 2022. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet . 399:629–655.
  • Aslam B, Arshad MI, Aslam MA, Muzammil S, Siddique AB, Yasmeen N, Khurshid M, Rasool M, Ahmad M, Rasool MH, et al. 2021. Bacteriophage Proteome: insights and potentials of an alternate to antibiotics. Infect Dis Ther. 10(3):1171–1193.
  • Baba T, Ara T, Hasegawa M, Takai Y, Okumura Y, Baba M, Datsenko KA, Tomita M, Wanner BL, Mori H, et al. 2006. Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol Syst Biol. 2:2006.0008. 2006.0008.
  • Barrow P, Lovell M, Berchieri AJ. 1998. Use of lytic bacteriophage for control of experimental Escherichia coli septicemia and meningitis in chickens and calves. Clin Diagn Lab Immunol. 5(3):294–298.
  • Bélanger L, Garenaux A, Harel J, Boulianne M, Nadeau E, Dozois CM. 2011. Escherichia coli from animal reservoirs as a potential source of human extraintestinal pathogenic E. coli. FEMS Immunol Med Microbiol. 62(1):1–10.
  • Bicalho MLS, Machado VS, Nydam DV, Santos TMA, Bicalho RC. 2012. Evaluation of oral administration of bacteriophages to neonatal calves: phage survival and impact on fecal Escherichia coli. Livest Sci. 144(3):294–299.
  • Boerlin P, McEwen SA, Boerlin-Petzold F, Wilson JB, Johnson RP, Gyles CL. 1999. Associations between virulence factors of Shiga toxin-producing Escherichia coli and disease in humans. J Clin Microbiol. 37(3):497–503.
  • Braz VS, Melchior K, Moreira CG. 2020. Escherichia coli as a multifaceted pathogenic and versatile bacterium. Front Cell Infect Microbiol. 10:548492.
  • Cha SB, Yoo AN, Lee WJ, Shin MK, Jung MH, Shin SW, Cho YW, Yoo HS. 2012. Effect of bacteriophage in enterotoxigenic Escherichia coli (ETEC) infected pigs. J Vet Med Sci. 74(8):1037–1039.
  • Chan BK, Abedon ST, Loc-Carrillo C. 2013. Phage cocktails and the future of phage therapy. Future Microbiol. 8(6):769–783.
  • Chen Y, Batra H, Dong J, et al. 2019. Genetic engineering of bacteriophages against infectious diseases. Front Microbiol. 10:954.
  • Chibani-Chennoufi S, Sidoti J, Bruttin A, Kutter E, Sarker S, Brüssow H. 2004. In vitro and in vivo bacteriolytic activities of Escherichia coli phages: implications for phage therapy. Antimicrob Agents Chemother. 48(7):2558–2569.
  • Chuppava B, Keller B, Abd El-Wahab A, Sürie C, Visscher C. 2019. Resistance reservoirs and multi-drug resistance of commensal Escherichia coli from excreta and manure isolated in broiler houses with different flooring designs. Front Microbiol. 10:2633.
  • Conway T, Cohen PS. 2015. Commensal and pathogenic Escherichia coli metabolism in the Gut. Microbiol Spectr. 3(3):10–1128.
  • Cui H, Yang X, Li C, Ye Y, Chen X, Lin L. 2022. Enhancing anti-E. coli O157: H 7 activity of composite phage nanofiber film by D-phenylalanine for food packaging. Int J Food Microbiol. 376:109762. https://www.sciencedirect.com/science/article/pii/S0168160522002343.
  • Cui H, Yuan L, Lin L. 2017. Novel chitosan film embedded with liposome-encapsulated phage for biocontrol of Escherichia coli O157: H 7 in beef. Carbohydr Polym. 177:156–164.
  • d’Herelle F. 1917. Sur un microbe invisible antagoniste des bacilles dysentériques. Comptes Rendus l’Académie des Sci Paris. 165:373–375.
  • da Silva Duarte V, Dias RS, Kropinski AM, Campanaro S, Treu L, Siqueira C, Vieira MS, da Silva Paes I, Santana GR, Martins F, et al. 2018. Genomic analysis and immune response in a murine mastitis model of vB_EcoM-UFV13, a potential biocontrol agent for use in dairy cows. Sci Rep. 8(1):6845.
  • Dąbrowska K, Kaźmierczak Z, Majewska J, Miernikiewicz P, Piotrowicz A, Wietrzyk J, Lecion D, Hodyra K, Nasulewicz-Goldeman A, Owczarek B, et al. 2014. Bacteriophages displaying anticancer peptides in combined antibacterial and anticancer treatment. Future Microbiol. 9(7):861–869.
  • Danis-Wlodarczyk KM, Wozniak DJ, Abedon ST. 2021. Treating bacterial infections with bacteriophage-based enzybiotics: in vitro, in vivo and clinical application. Antibiot. 10(12):1497.
  • Denou E, Bruttin A, Barretto C, Ngom-Bru C, Brüssow H, Zuber S. 2009. T4 phages against Escherichia coli diarrhea: potential and problems. Virology. 388(1):21–30.
  • Desvaux M, Dalmasso G, Beyrouthy R, et al. 2020. Pathogenicity factors of genomic Islands in intestinal and extraintestinal Escherichia coli. Front Microbiol. 11:2065.
  • Dini C, Islan GA, Castro GR. 2014. Characterization and stability analysis of biopolymeric matrices designed for phage-controlled release. Appl Biochem Biotechnol. 174(6):2031–2047.
  • Dion MB, Oechslin F, Moineau S. 2020. Phage diversity, genomics and phylogeny. Nat Rev Microbiol. 18(3):125–138.
  • Djordjevic SP, Morgan BS. 2019. A One Health genomic approach to antimicrobial resistance is essential for generating relevant data for a holistic assessment of the biggest threat to public health. Microbiol. Aust. 40(2):73–76.
  • Duan Q, Xia P, Nandre R, Zhang W, Zhu G. 2019. Review of newly identified functions associated with the heat-labile toxin of enterotoxigenic Escherichia coli. Front Cell Infect Microbiol. 9:292.
  • Duc HM, Son HM, Yi HPS, Sato J, Ngan PH, Masuda Y, Honjoh K-I, Miyamoto T. 2020. Isolation, characterization and application of a polyvalent phage capable of controlling Salmonella and Escherichia coli O157: H 7 in different food matrices. Food Res Int. 131:108977.
  • Dufour N, Delattre R, Chevallereau A, Ricard J-D, Debarbieux L. 2019. Phage therapy of Pneumonia is not associated with an overstimulation of the inflammatory response compared to antibiotic treatment in mice. Antimicrob Agents Chemother. 63(8):e00379-19.
  • Edgar R, Friedman N, Molshanski-Mor S, Qimron U. 2012. Reversing bacterial resistance to antibiotics by phage-mediated delivery of dominant sensitive genes. Appl Environ Microbiol. 78(3):744–751.
  • Eid S, Tolba HMN, Hamed RI, Al-Atfeehy NM. 2022. Bacteriophage therapy as an alternative biocontrol against emerging multidrug resistant E. coli in broilers. Saudi J Biol Sci. 29(5):3380–3389.
  • EMA. 2019. Categorisation of antibiotics in the European Union [Internet]. accessed from https://www.ema.europa.eu/en/documents/report/categorisation-antibiotics-european-union-answer-request-european-commission-updating-scientific_en.pdf.
  • Fazzino L, Anisman J, Chacón JM, Harcombe WR. 2020. Phage cocktail strategies for the suppression of a pathogen in a cross-feeding coculture. Microb Biotechnol. 13(6):1997–2007.
  • Galtier M, De Sordi L, Maura D, Arachchi H, Volant S, Dillies M-A, Debarbieux L. 2016. Bacteriophages to reduce gut carriage of antibiotic resistant uropathogens with low impact on microbiota composition. Environ Microbiol. 18(7):2237–2245.
  • García P, Martínez B, Obeso JM, Rodríguez A. 2008. Bacteriophages and their application in food safety. Lett Appl Microbiol. 47(6):479–485.
  • Gordillo Altamirano FL, Barr JJ. 2021. Unlocking the next generation of phage therapy: the key is in the receptors. Curr Opin Biotechnol. 68:115–123.
  • Goulart DB, Mellata M. 2022. Escherichia coli mastitis in dairy cattle: etiology, diagnosis, and treatment challenges. Front Microbiol. 13:928346.
  • Guo M, Gao Y, Xue Y, Liu Y, Zeng X, Cheng Y, Ma J, Wang H, Sun J, Wang Z, et al. 2021. Bacteriophage cocktails protect dairy cows against mastitis caused by drug resistant Escherichia coli infection. Front Cell Infect Microbiol. 11:690377.
  • Gyles CL. 2007. Shiga toxin-producing Escherichia coli: an overview. J Anim Sci. 85(13 Suppl):E45–62.
  • Hanlon GW. 2007. Bacteriophages: an appraisal of their role in the treatment of bacterial infections. Int J Antimicrob Agents. 30(2):118–128.
  • Hantke K. 2020. Compilation of Escherichia coli K-12 outer membrane phage receptors – their function and some historical remarks. FEMS Microbiol Lett. 367(2):fnaa013.
  • Hartland EL, Leong JM. 2013. Enteropathogenic and enterohemorrhagic E. coli: ecology, pathogenesis, and evolution. Front Cell Infect Microbiol. 3:15.
  • Hatfull GF, Dedrick RM, Schooley RT. 2022. Phage therapy for antibiotic-resistant bacterial infections. Annu Rev Med. 73:197–211.
  • Havelaar AH, Kirk MD, Torgerson PR, Gibb HJ, Hald T, Lake RJ, Praet N, Bellinger DC, de Silva NR, Gargouri N, et al. 2015. World Health Organization Global estimates and regional comparisons of the burden of foodborne disease in 2010. PLoS Med. 12(12):e1001923.
  • Haycock JW. 2011. 3D cell culture: a review of current approaches and techniques. Methods Mol Biol. 695:1–15.
  • Hazen TH, Michalski J, Luo Q, Shetty AC, Daugherty SC, Fleckenstein JM, Rasko DA. 2017. Comparative genomics and transcriptomics of Escherichia coli isolates carrying virulence factors of both enteropathogenic and enterotoxigenic E. coli. Sci Rep. 7(1):3513.
  • Ho MKY, Zhang P, Chen X, Xia J, Leung SSY. 2022. Bacteriophage endolysins against gram-positive bacteria, an overview on the clinical development and recent advances on the delivery and formulation strategies. Crit Rev Microbiol. 48(3):303–326.
  • Hudson JA, Billington C, Wilson T, On SLW. 2015. Effect of phage and host concentration on the inactivation of Escherichia coli O157: H 7 on cooked and raw beef. Food Sci Technol Int. 21(2):104–109.
  • Inal JM. 2003. Phage therapy: a reappraisal of bacteriophages as antibiotics. Arch Immunol Ther Exp (Warsz). 51(4):237–244.
  • Jamalludeen N, Johnson RP, Shewen PE, Gyles CL. 2009. Evaluation of bacteriophages for prevention and treatment of diarrhea due to experimental enterotoxigenic Escherichia coli O149 infection of pigs. Vet Microbiol. 136(1–2):135–141.
  • Jang J, Hur H-G, Sadowsky MJ, Byappanahalli MN, Yan T, Ishii S. 2017. Environmental Escherichia coli: ecology and public health implications-a review. J Appl Microbiol. 123(3):570–581.
  • Joensen KG, Tetzschner AMM, Iguchi A, Aarestrup FM, Scheutz F. 2015. Rapid and easy in silico serotyping of Escherichia coli isolates by use of whole-genome sequencing data. J Clin Microbiol. 53(8):2410–2426.
  • Jończyk E, Kłak M, Międzybrodzki R, Górski A. 2011. The influence of external factors on bacteriophages–review. Folia Microbiol. 56(3):191–200.
  • Kaikabo AA, AbdulKarim SM, Abas F. 2017. Evaluation of the efficacy of chitosan nanoparticles loaded ΦKAZ14 bacteriophage in the biological control of colibacillosis in chickens. Poult Sci. 96(2):295–302.
  • Karch H, Tarr PI, Bielaszewska M. 2005. Enterohaemorrhagic Escherichia coli in human medicine. Int J Med Microbiol. 295(6–7):405–418.
  • Kiljunen S, Datta N, Dentovskaya SV, Anisimov AP, Knirel YA, Bengoechea JA, Holst O, Skurnik M. 2011. Identification of the lipopolysaccharide core of Yersinia pestis and Yersinia pseudotuberculosis as the receptor for bacteriophage φA1122. J Bacteriol. 193(18):4963–4972.
  • Kim B-o, Kim E, Yoo Y-J, Bae H-W, Chung I-Y, Cho Y-H. 2019. Phage-derived antibacterials: Harnessing the simplicity, plasticity, and diversity of phages. Viruses. 11(3):268.
  • Kiro R, Shitrit D, Qimron U. 2014. Efficient engineering of a bacteriophage genome using the type I-E CRISPR-Cas system. RNA Biol. 11(1):42–44.
  • Korehei R, Kadla JF. 2014. Encapsulation of T4 bacteriophage in electrospun poly(ethylene oxide)/cellulose diacetate fibers. Carbohydr Polym. 100:150–157.
  • Książczyk M, Dudek B, Kuczkowski M, O’Hara R, Korzekwa K, Wzorek A, Korzeniowska-Kowal A, Upton M, Junka A, Wieliczko A, et al. 2021. The phylogenetic structure of reptile, avian and uropathogenic Escherichia coli with particular reference to extraintestinal pathotypes. Int J Mol Sci. 22(3):1192.
  • Lawrence D, Baldridge MT, Handley SA. 2019. Phages and human health: more than Idle Hitchhikers. Viruses. 11(7):587.
  • Levy SB. 2001. Antibiotic resistance: consequences of inaction. Clin Infect Dis. 33(Suppl 3): S124–S9.
  • Levy SB. 2002. The 2000 Garrod lecture: factors impacting on the problem of antibiotics resistance. J Antimicrob Chemother. 49(1):25–30.
  • Li X, He Y, Wang Z, Wei J, Hu T, Si J, Tao G, Zhang L, Xie L, Abdalla AE, et al. 2021. A combination therapy of phages and antibiotics: two is better than one. Int J Biol Sci. 17(13):3573–3582.
  • Liao Y-T, Zhang Y, Salvador A, Harden LA, Wu VCH. 2022. Characterization of a T4-like bacteriophage vB_EcoM-Sa45lw as a potential biocontrol agent for shiga toxin-producing Escherichia coli O45 contaminated on mung bean seeds. Microbiol Spectr. 10(1):e0222021.
  • Lin H, Paff M, Molineux I, Bull J. 2018. Antibiotic therapy using phage depolymerases: robustness across a range of conditions. Viruses. 10(11):622.
  • Lin T-Y, Lo Y-H, Tseng P-W, Chang S-F, Lin Y-T, Chen T-S. 2012. A T3 and T7 recombinant phage acquires efficient adsorption and a broader host range. PLoS One. 7(2):e30954–10.
  • Liu B, Furevi A, Perepelov AV, Guo X, Cao H, Wang Q, Reeves PR, Knirel YA, Wang L, Widmalm G, et al. 2020. Structure and genetics of Escherichia coli O antigens. FEMS Microbiol Rev. 44(6):655–683.
  • Lu TK, Collins JJ. 2009. Engineered bacteriophage targeting gene networks as adjuvants for antibiotic therapy. Proc Natl Acad Sci USA. 106(12):4629–4634.
  • Lukman C, Yonathan C, Magdalena S, Waturangi DE. 2020. Isolation and characterization of pathogenic Escherichia coli bacteriophages from chicken and beef offal. BMC Res Notes. 13(1):8.
  • Luppi A. 2017. Swine enteric colibacillosis: diagnosis, therapy and antimicrobial resistance. Porc Heal Manag. 3:16.
  • Maffei E, Shaidullina A, Burkolter M, Heyer Y, Estermann F, Druelle V, Sauer P, Willi L, Michaelis S, Hilbi H, et al. 2021. Systematic exploration of Escherichia coli phage–host interactions with the BASEL phage collection. Barr J, editor. PLoS Biol. 19(11):e3001424.
  • Mahichi F, Synnott AJ, Yamamichi K, Osada T, Tanji Y. 2009. Site-specific recombination of T2 phage using IP008 long tail fiber genes provides a targeted method for expanding host range while retaining lytic activity. FEMS Microbiol Lett. 295(2):211–217.
  • Majewska J, Beta W, Lecion D, Hodyra-Stefaniak K, Kłopot A, Kaźmierczak Z, Miernikiewicz P, Piotrowicz A, Ciekot J, Owczarek B, et al. 2015. Oral application of T4 phage induces weak antibody production in the gut and in the blood. Viruses. 7(8):4783–4799.
  • Malik DJ, Sokolov IJ, Vinner GK, Mancuso F, Cinquerrui S, Vladisavljevic GT, Clokie MRJ, Garton NJ, Stapley AGF, Kirpichnikova A, et al. 2017. Formulation, stabilisation and encapsulation of bacteriophage for phage therapy. Adv Colloid Interface Sci. 249:100–133.
  • Mangalea MR, Duerkop BA. 2020. Fitness trade-offs resulting from Bacteriophage resistance potentiate synergistic antibacterial strategies. Infect Immun. 88(7):e00926-19.
  • Manyi-Loh C, Mamphweli S, Meyer E, Okoh A. 2018. Antibiotic use in agriculture and its consequential resistance in environmental sources: potential public health implications. Molecules. 23(4):795.
  • Márcia B, Pereira C, Almeida AF. 2022. Effectiveness of phage phT4A incorporated in Pullulan films against Escherichia coli. Med Sci Forum. 2.
  • Mark DF, Richardson CC. 1976. Escherichia coli thioredoxin: a subunit of bacteriophage T7 DNA polymerase. Proc Natl Acad Sci USA. 73(3):780–784.
  • Martinez-Medina M. 2021. Special issue: pathogenic Escherichia coli: infections and Therapies. Antibiot. 10(2):112.
  • Maura D, Galtier M, Le Bouguénec C, Debarbieux L. 2012. Virulent bacteriophages can target O104:H4 enteroaggregative Escherichia coli in the mouse intestine. Antimicrob Agents Chemother. 56(12):6235–6242.
  • McArthur DB. 2019. Emerging infectious diseases. Nurs Clin North Am. 54(2):297–311.
  • Merril CR, Scholl D, Adhya SL. 2003. The prospect for bacteriophage therapy in Western medicine. Nat Rev Drug Discov. 2(6):489–497.
  • Moghtader F, Eğri S, Piskin E. 2017. Phages in modified alginate beads. Artif. Artif Cells Nanomed Biotechnol. 45(2):357–363.
  • Molina F, Simancas A, Ramírez M, Tabla R, Roa I, Rebollo JE. 2021. A new pipeline for designing phage cocktails based on phage-bacteria infection networks. Front Microbiol. 12:564532.
  • Mushtaq N, Redpath MB, Luzio JP, Taylor PW. 2005. Treatment of experimental Escherichia colii nfection with recombinant bacteriophage-derived capsule depolymerase. J Antimicrob Chemother. 56(1):160–165.
  • Nataro JP, Kaper JB. 1998. Diarrheagenic Escherichia coli. Clin Microbiol Rev. 11(1):142–201.
  • Necel A, Bloch S, Nejman-Faleńczyk B, Dydecka A, Topka-Bielecka G, Węgrzyn A, Węgrzyn G. 2021. A validation system for selection of bacteriophages against shiga toxin-producing Escherichia coli contamination. Toxins. 13(9):644–614.
  • Newell DG, La Ragione RM. 2018. Enterohaemorrhagic and other Shiga toxin-producing Escherichia coli (STEC): Where are we now regarding diagnostics and control strategies? Transbound Emerg Dis. 65(Suppl 1):49–71.
  • Nilsson AS. 2019. Pharmacological limitations of phage therapy. Ups J Med Sci. 124(4):218–227.
  • Nishikawa H, Yasuda M, Uchiyama J, Rashel M, Maeda Y, Takemura I, Sugihara S, Ujihara T, Shimizu Y, Shuin T, et al. 2008. T-even-related bacteriophages as candidates for treatment of Escherichia coli urinary tract infections. Arch Virol. 153(3):507–515.
  • North OI, Brown ED. 2021. Phage-antibiotic combinations: a promising approach to constrain resistance evolution in bacteria. Ann NY Acad Sci. 1496(1):23–34.
  • Nunes KO, Santos ACP, Bando SY, et al. 2017. Enteroaggregative Escherichia coli with uropathogenic characteristics are present in feces of diarrheic and healthy children. Pathog Dis. 75:ftx106.
  • Oliveira A, Sousa JC, Silva AC, et al. 2018. Chestnut honey and Bacteriophage application to control Pseudomonas aeruginosa and Escherichia coli Biofilms: evaluation in an ex vivo Wound Model. Front Microbiol. 9:1725.
  • Oliveira H, Drulis-Kawa Z, Azeredo J. 2022. Exploiting phage-derived carbohydrate depolymerases for combating infectious diseases. Trends Microbiol. 30(8):707–709.
  • Pakbin B, Brück WM, Rossen JWA. 2021. Virulence factors of enteric pathogenic Escherichia coli: a review. Int J Mol Sci. 22(18):9922.
  • Parisien A, Allain B, Zhang J, Mandeville R, Lan CQ. 2008. Novel alternatives to antibiotics: bacteriophages, bacterial cell wall hydrolases, and antimicrobial peptides. J Appl Microbiol. 104(1):1–13.
  • Pearson JS, Giogha C, Wong Fok Lung T, Hartland EL. 2016. The genetics of enteropathogenic Escherichia coli virulence. Annu Rev Genet. 50:493–513.
  • Pirnay J-P, Ferry T, Resch G. 2022. Recent progress toward the implementation of phage therapy in Western medicine. FEMS Microbiol Rev. 46:fuab040.
  • Porter J, Anderson J, Carter L, Donjacour E, Paros M. 2016. In vitro evaluation of a novel bacteriophage cocktail as a preventative for bovine coliform mastitis. J Dairy Sci. 99(3):2053–2062.
  • Pouillot F, Chomton M, Blois H, Courroux C, Noelig J, Bidet P, Bingen E, Bonacorsi S. 2012. Efficacy of bacteriophage therapy in experimental sepsis and meningitis caused by a clone O25b: h 4-ST131 Escherichia coli strain producing CTX-M-15. Antimicrob Agents Chemother. 56(7):3568–3575.
  • Qimron U, Marintcheva B, Tabor S, Richardson CC. 2006. Genomewide screens for Escherichia coli genes affecting growth of T7 bacteriophage. Proc Natl Acad Sci USA. 103(50):19039–19044.
  • Rastogi V, Yadav P, Verma A, Pandit JK. 2017. Ex vivo and in vivo evaluation of microemulsion based transdermal delivery of E. coli specific T4 bacteriophage: a rationale approach to treat bacterial infection. Eur J Pharm Sci. 107:168–182.
  • Richards Leppanen, Sagona Malik. 2019. Microencapsulation of enteric Bacteriophages in a pH-responsive solid oral dosage formulation using a scalable membrane emulsification process. Pharmaceutics. 11(9):475.
  • Robins-Browne RM, Holt KE, Ingle DJ, et al. 2016. Are Escherichia coli pathotypes still relevant in the era of whole-genome sequencing? Front Cell Infect Microbiol. 6:141.
  • Russo TA, Johnson JR. 2000. Proposal for a new inclusive designation for extraintestinal pathogenic isolates of Escherichia coli: exPEC. J Infect Dis. 181(5):1753–1754.
  • Rustad M, Eastlund A, Marshall R, et al. 2017. Synthesis of infectious Bacteriophages in an E. coli-based cell-free expression system. J Vis Exp. 126:56144.
  • Sadekuzzaman M, Yang S, Mizan MFR, Ha S-D. 2017. Reduction of Escherichia coli O157: H 7 in Biofilms using Bacteriophage BPECO 19. J Food Sci. 82(6):1433–1442.
  • Sarowska J, Futoma-Koloch B, Jama-Kmiecik A, Frej-Madrzak M, Ksiazczyk M, Bugla-Ploskonska G, Choroszy-Krol I. 2019. Virulence factors, prevalence and potential transmission of extraintestinal pathogenic Escherichia coli isolated from different sources: recent reports. Gut Pathog. 11:10.
  • Savageau MA. 1983. Escherichia coli habitats, cell types, and molecular mechanisms of gene control. Am Nat. 122(6):732–744.
  • Sbs S, Ldr M HO. 2020. Phage structural antimicrobial proteinstle. In Coffey A, Colin B, editors. Bacterial viruses: exploitation for biocontrol and therapeutics. Norfolk: Caister Academic Press; p. 419–476.
  • Schirmeier E, Zimmermann P, Hofmann V, Biebl M, Gerstmans H, Maervoet VE, Briers Y. 2018. Inhibitory and bactericidal effect of Artilysin(®) Art-175 against colistin-resistant mcr-1-positive Escherichia coli isolates. Int. J. Antimicrob. Agents. 51(3):528–529. Netherlands
  • Seo J, Seo DJ, Oh H, Jeon SB, Oh M-H, Choi C. 2016. Inhibiting the growth of Escherichia coli O157: H 7 in Beef, Pork, and Chicken Meat using a Bacteriophage. Korean J Food Sci Anim Resour. 36(2):186–193.
  • Shan J, Korbsrisate S, Withatanung P, Adler NL, Clokie MRJ, Galyov EE. 2014. Temperature dependent bacteriophages of a tropical bacterial pathogen. Front Microbiol. 5:599.
  • Skurnik M, Strauch E. 2006. Phage therapy: facts and fiction. Int J Med Microbiol. 296(1):5–14.
  • Smith HW, Huggins MB, Shaw KM. 1987. The control of experimental Escherichia coli diarrhoea in calves by means of bacteriophages. J Gen Microbiol. 133(5):1111–1126.
  • Son HM, Duc HM, Masuda Y, Honjoh K-I, Miyamoto T. 2018. Application of bacteriophages in simultaneously controlling Escherichia coli O157: H 7 and extended-spectrum beta-lactamase producing Escherichia coli. Appl Microbiol Biotechnol. 102(23):10259–10271.
  • Sorour HK, Gaber AF, Hosny RA. 2020. Evaluation of the efficiency of using Salmonella Kentucky and Escherichia coli O119 bacteriophages in the treatment and prevention of salmonellosis and colibacillosis in broiler chickens. Lett Appl Microbiol. 71(4):345–350.
  • Streichert LC, Sepe LP, Jokelainen P, et al. 2022. Participation in one health networks and involvement in the COVID-19 pandemic response: a global study. Front Public Heal. 10:830893.
  • Tawakol MM, Nabil NM, Samy A. 2019. Evaluation of bacteriophage efficacy in reducing the impact of single and mixed infections with Escherichia coli and infectious bronchitis in chickens. Infect Ecol Epidemiol. 9(1):1686822.
  • Tetz G, Tetz V. 2016. Bacteriophage infections of microbiota can lead to leaky gut in an experimental rodent model. Gut Pathog. 8:33.
  • Tetz GV, Ruggles KV, Zhou H, Heguy A, Tsirigos A, Tetz V. 2017. Bacteriophages as potential new mammalian pathogens. Sci Rep. 7(1):7043.
  • Tom EF, Molineux IJ, Paff ML, Bull JJ. 2018. Experimental evolution of UV resistance in a phage. PeerJ. 6:e5190.
  • Tomat D, Casabonne C, Aquili V, Balagué C, Quiberoni A. 2018. Evaluation of a novel cocktail of six lytic bacteriophages against Shiga toxin-producing Escherichia coli in broth, milk and meat. Food Microbiol. 76:434–442.
  • Tomat D, Soazo M, Verdini R, Casabonne C, Aquili V, Balagué C, Quiberoni A. 2019. Evaluation of an WPC edible film added with a cocktail of six lytic phages against foodborne pathogens such as enteropathogenic and Shigatoxigenic Escherichia coli. LWT. 113:108316. https://www.sciencedirect.com/science/article/pii/S0023643819306565.
  • Tomlinson S, Taylor PW. 1985. Neuraminidase associated with coliphage E that specifically depolymerizes the Escherichia coli K1 capsular polysaccharide. J Virol. 55(2):374–378.
  • Twort FW. 1915. An investigation on the nature of ultra-microscopic viruses. Lancet. 186(4814):1241–1243. https://www.sciencedirect.com/science/article/pii/S0140673601203833.
  • Vahedi A, Soltan Dallal MM, Douraghi M, et al. 2018. Isolation and identification of specific bacteriophage against enteropathogenic Escherichia coli (EPEC) and in vitro and in vivo characterization of bacteriophage. FEMS Microbiol Lett. 365:fny136.
  • Viazis S, Labuza TP, Diez-Gonzalez F. 2015. Bacteriophage mixture inactivation kinetics against Escherichia coli O157: H 7 on hard surfaces. J Food Saf. 35(1):66–74.
  • Vikram A, Tokman JI, Woolston J, Sulakvelidze A. 2020. Phage biocontrol improves food safety by significantly reducing the level and prevalence of Escherichia coli O157: H 7 in various foods. J Food Prot. 83(4):668–676.
  • Wandro S, Ghatbale P, Attai H, Hendrickson C, Samillano C, Suh J, Dunham SJB, Pride DT, Whiteson K. 2022. Phage Cocktails can prevent the evolution of phage-resistant enterococcus. mSystems. 7(4):e0001922.
  • Wasiński B. 2019. Extra-intestinal pathogenic Escherichia coli – threat connected with food-borne infections. Ann Agric Environ Med. 26(4):532–537.
  • Waturangi DE, Kasriady CP, Guntama G, Sahulata AM, Lestari D, Magdalena S. 2021. Application of bacteriophage as food preservative to control enteropathogenic Escherichia coli (EPEC). BMC Res Notes. 14(1):336.
  • WHO. 2015. WHO estimates of the global burden of foodborne diseases: foodborne diseases burden epidemiology reference group 2007–2015 [Internet]. WHO, editor. Available from: https://www.who.int/publications/i/item/9789241565165.
  • Williams Smith H, Huggins MB. 1983. Effectiveness of phages in treating experimental Escherichia coli diarhoea in calves, piglets and lambs. J Gen Microbiol. 129:2659–2675.
  • Ye Z-W, Yuan S, Yuen K-S, Fung S-Y, Chan C-P, Jin D-Y. 2020. Zoonotic origins of human coronaviruses. Int J Biol Sci. 16(10):1686–1697.
  • Yoichi M, Abe M, Miyanaga K, Unno H, Tanji Y. 2005. Alteration of tail fiber protein gp38 enables T2 phage to infect Escherichia coli O157: H 7. J Biotechnol. 115(1):101–107.
  • Zelmer A, Martin MJ, Gundogdu O, Birchenough G, Lever R, Wren BW, Luzio JP, Taylor PW. 2010. Administration of capsule-selective endosialidase E minimizes upregulation of organ gene expression induced by experimental systemic infection with Escherichia coli K1. Microbiology. 156(Pt 7):2205–2215.
  • Zhao J, Liu Y, Xiao C, He S, Yao H, Bao G. 2017. Efficacy of phage therapy in controlling rabbit colibacillosis and changes in Cecal Microbiota. Front Microbiol. 8:957.
  • Zhou Y, Wan Q, Bao H, et al. 2022. Application of a novel lytic phage vB_EcoM_SQ17 for the biocontrol of Enterohemorrhagic Escherichia coli O157: H 7 and Enterotoxigenic E. coli in food matrices. Front Microbiol. 13:1–15.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.