752
Views
3
CrossRef citations to date
0
Altmetric
Review Articles

Phage-inspired strategies to combat antibacterial resistance

, , , , , , & ORCID Icon show all
Pages 196-211 | Received 09 Dec 2022, Accepted 07 Feb 2023, Published online: 21 Feb 2023

References

  • Abdelrahman F, Easwaran M, Daramola OI, Ragab S, Lynch S, Oduselu TJ, Khan FM, Ayobami A, Adnan F, Torrents E, et al. 2021. Phage-encoded endolysins. Antibiotics. 10(2):124.
  • Al-Anany AM, Fatima R, Hynes AP. 2021. Temperate phage-antibiotic synergy eradicates bacteria through depletion of lysogens. Cell Rep. 35(8):109172.
  • Alseth EO, Pursey E, Luján AM, McLeod I, Rollie C, Westra ER. 2019. Bacterial biodiversity drives the evolution of CRISPR-based phage resistance. Nature. 574(7779):549–552.
  • Bae B, Davis E, Brown D, Campbell EA, Wigneshweraraj S, Darst SA. 2013. Phage T7 Gp2 inhibition of Escherichia coli RNA polymerase involves misappropriation of sigma70 domain 1.1. Proc Natl Acad Sci USA. 110(49):19772–19777.
  • Baym M, Stone LK, Kishony R. 2016. Multidrug evolutionary strategies to reverse antibiotic resistance. Science. 351(6268):aad3292.
  • Bernhardt TG, Struck DK, Young R. 2001. The lysis protein E of phi X174 is a specific inhibitor of the MraY-catalyzed step in peptidoglycan synthesis. J Biol Chem. 276(9):6093–6097.
  • Bernheim A, Sorek R. 2020. The pan-immune system of bacteria: antiviral defence as a community resource. Nat Rev Microbiol. 18(2):113–119.
  • Betts A, Gray C, Zelek M, MacLean RC, King KC. 2018. High parasite diversity accelerates host adaptation and diversification. Science. 360(6391):907–911.
  • Bikard D, Euler CW, Jiang W, Nussenzweig PM, Goldberg GW, Duportet X, Fischetti VA, Marraffini LA. 2014. Exploiting CRISPR-Cas nucleases to produce sequence-specific antimicrobials. Nat Biotechnol. 32(11):1146–1150.
  • Bobay LM, Touchon M, Rocha EP. 2014. Pervasive domestication of defective prophages by bacteria. Proc Natl Acad Sci USA. 111(33):12127–12132.
  • Bodner K, Melkonian AL, Covert MW. 2021. The enemy of my enemy: new insights regarding bacteriophage-mammalian cell interactions. Trends Microbiol. 29(6):528–541.
  • Borin JM, Avrani S, Barrick JE, Petrie KL, Meyer JR. 2021. Coevolutionary phage training leads to greater bacterial suppression and delays the evolution of phage resistance. Proc Natl Acad Sci USA. 118(23):e2104592118.
  • Born Y, Fieseler L, Thöny V, Leimer N, Duffy B, Loessner MJ. 2017. Engineering of bacteriophages Y2::dpoL1-C and Y2::luxAB for efficient control and rapid detection of the fire blight pathogen, Erwinia amylovora. Appl Environ Microbiol. 83(12):e00341–17
  • Briers Y, Walmagh M, Grymonprez B, Biebl M, Pirnay J-P, Defraine V, Michiels J, Cenens W, Aertsen A, Miller S, et al. 2014. Art-175 is a highly efficient antibacterial against multidrug-resistant strains and persisters of Pseudomonas aeruginosa. Antimicrob Agents Chemother. 58(7):3774–3784.
  • Briers Y, Walmagh M, Van Puyenbroeck V, Cornelissen A, Cenens W, Aertsen A, Oliveira H, Azeredo J, Verween G, Pirnay J-P, et al. 2014. Engineered endolysin-based “Artilysins” to combat multidrug-resistant gram-negative pathogens. mBio. 5(4):e01379–e01314.
  • Broxmeyer L, Sosnowska D, Miltner E, Chacón O, Wagner D, McGarvey J, Barletta RG, Bermudez LE. 2002. Killing of Mycobacterium avium and Mycobacterium tuberculosis by a mycobacteriophage delivered by a nonvirulent mycobacterium: a model for phage therapy of intracellular bacterial pathogens. J Infect Dis. 186(8):1155–1160.
  • Burmeister AR, Fortier A, Roush C, Lessing AJ, Bender RG, Barahman R, Grant R, Chan BK, Turner PE. 2020. Pleiotropy complicates a trade-off between phage resistance and antibiotic resistance. Proc Natl Acad Sci USA. 117(21):11207–11216.
  • Butler MS, Paterson DL. 2020. Antibiotics in the clinical pipeline in October 2019. J Antibiot. 73(6):329–364.
  • Cai R, Wang G, Le S, Wu M, Cheng MJ, Guo ZM, Ji YL, Xi HY, Zhao CJ, Wang XW, et al. 2019. Three capsular polysaccharide synthesis-related glucosyltransferases, GT-1, GT-2 and WcaJ, are associated with virulence and phage sensitivity of Klebsiella pneumoniae. Front Microbiol. 10:1189.
  • Carol P. 2013. Phage renaissance: new hope against antibiotic resistance. Environ Health Perspect. 121: A49–A53.
  • Chan BK, Sistrom M, Wertz JE, Kortright KE, Narayan D, Turner PE. 2016. Phage selection restores antibiotic sensitivity in MDR Pseudomonas aeruginosa. Sci Rep. 6:26717.
  • Chatterjee A, Johnson CN, Luong P, Hullahalli K, McBride SW, Schubert AM, Palmer KL, Carlson PE, Duerkop BA. 2019. Bacteriophage resistance alters antibiotic-mediated intestinal expansion of enterococci. Infect Immun. 87(6):e00085–e00119.
  • Chen MM, Zhang L, Abdelgader SA, Yu L, Xu JT, Yao HC, Lu CP, Zhang W. 2017. Alterations in gp37 expand the host range of a T4-like phage. Appl Environ Microbiol. 83(23):e01576–17.
  • Chernov VM, Chernova OA, Mouzykantov AA, Lopukhov LL, Aminov RI. 2019. Omics of antimicrobials and antimicrobial resistance. Expert Opin Drug Discov. 14(5):455–468.
  • Chung I-Y, Kim B-O, Han J-H, Park J, Kang HK, Park Y, Cho Y-H. 2021. A phage protein-derived antipathogenic peptide that targets type IV pilus assembly. Virulence. 12(1):1377–1387.
  • Comeau AM, Tétart F, Trojet SN, Prère M-F, Krisch HM. 2007. Phage-antibiotic synergy (PAS): beta-lactam and quinolone antibiotics stimulate virulent phage growth. PLoS One. 2(8):e799.
  • Cook R, Brown N, Redgwell T, Rihtman B, Barnes M, Clokie M, Stekel DJ, Hobman J, Jones MA, Millard A, et al. 2021. INfrastructure for a PHAge REference Database: identification of Large-scale biases in the current collection of cultured phage genomes. Phage. 2(4):214–223.
  • Dams D, Brøndsted L, Drulis-Kawa Z, Briers Y. 2019. Engineering of receptor-binding proteins in bacteriophages and phage tail-like bacteriocins. Biochem Soc Trans. 47(1):449–460.
  • Davis CM, McCutcheon JG, Dennis JJ. 2021. Aztreonam lysine increases the activity of phages E79 and phiKZ against Pseudomonas aeruginosa PA01. Microorganisms. 9(1):152.
  • de Jonge PA, Nobrega FL, Brouns SJJ, Dutilh BE. 2019. Molecular and evolutionary determinants of bacteriophage host range. Trends Microbiol. 27(1):51-63.
  • De Smet J, Hendrix H, Blasdel BG, Danis-Wlodarczyk K, Lavigne R. 2017. Pseudomonas predators: understanding and exploiting phage-host interactions. Nat Rev Microbiol. 15(9):517–530.
  • De Smet J, Wagemans J, Boon M, Ceyssens P-J, Voet M, Noben J-P, Andreeva J, Ghilarov D, Severinov K, Lavigne R, et al. 2021. The bacteriophage LUZ24 “Igy” peptide inhibits the Pseudomonas DNA gyrase. Cell Rep. 36(8):109567.
  • Defraine V, Schuermans J, Grymonprez B, Govers SK, Aertsen A, Fauvart M, Michiels J, Lavigne R, Briers Y. 2016. Efficacy of Artilysin Art-175 against resistant and persistent Acinetobacter baumannii. Antimicrob Agents Chemother. 60(6):3480–3488.
  • D'Herelle F. 1917. Sur un microbe invisible antagoniste des bacilles dysentériques. Comp. Rend. Acad. Sci. Paris 165, 373-375: 375.
  • Dickey SW, Cheung GYC, Otto M. 2017. Different drugs for bad bugs: antivirulence strategies in the age of antibiotic resistance. Nat Rev Drug Discov. 16(7):457–471.
  • Dion MB, Oechslin F, Moineau S. 2020. Phage diversity, genomics and phylogeny. Nat Rev Microbiol. 18(3):125–138.
  • Doron S, Melamed S, Ofir G, Leavitt A, Lopatina A, Keren M, Amitai G, Sorek R. 2018. Systematic discovery of antiphage defense systems in the microbial pangenome. Science. 359(6379):eaar4120.
  • Duckworth DH. 1976. Who discovered bacteriophage? Bacteriol Rev. 40(4):793–802.
  • Dunne M, Prokhorov NS, Loessner MJ, Leiman PG. 2021. Reprogramming bacteriophage host range: design principles and strategies for engineering receptor binding proteins. Curr Opin Biotechnol. 68:272–281.
  • Egido JE, Costa AR, Aparicio-Maldonado C, Haas PJ, Brouns SJJ. 2022. Mechanisms and clinical importance of bacteriophage resistance. FEMS Microbiol Rev. 46(1):fuab048.
  • Eugster MR, Loessner MJ. 2012. Wall teichoic acids restrict access of bacteriophage endolysin Ply118, Ply511, and PlyP40 cell wall binding domains to the Listeria monocytogenes peptidoglycan. J Bacteriol. 194(23):6498–6506.
  • Filippov AA, Sergueev KV, He Y, Huang X-Z, Gnade BT, Mueller AJ, Fernandez-Prada CM, Nikolich MP. 2011. Bacteriophage-resistant mutants in Yersinia pestis: identification of phage receptors and attenuation for mice. PLoS One. 6(9):e25486.
  • Fulgione A, Ianniello F, Papaianni M, Contaldi F, Sgamma T, Giannini C, Pastore S, Velotta R, Della Ventura B, Roveri N, et al. 2019. Biomimetic hydroxyapatite nanocrystals are an active carrier for Salmonella bacteriophages. Int J Nanomed. 14:2219–2232.
  • Gerstmans H, Grimon D, Gutiérrez D, Lood C, Rodríguez A, van Noort V, Lammertyn J, Lavigne R, Briers Y. 2020. A VersaTile-driven platform for rapid hit-to-lead development of engineered lysins. Sci Adv. 6(23):eaaz1136.
  • Gerstmans H, Rodríguez-Rubio L, Lavigne R, Briers Y. 2016. From endolysins to Artilysin(R)s: novel enzyme-based approaches to kill drug-resistant bacteria. Biochem Soc Trans. 44(1):123–128.
  • Gondil VS, Harjai K, Chhibber S. 2020. Endolysins as emerging alternative therapeutic agents to counter drug-resistant infections. Int J Antimicrob Agents. 55(2)):105844.
  • Gordillo Altamirano F, Forsyth JH, Patwa R, Kostoulias X, Trim M, Subedi D, Archer SK, Morris FC, Oliveira C, Kielty L, et al. 2021. Bacteriophage-resistant Acinetobacter baumannii are resensitized to antimicrobials. Nat Microbiol. 6(2):157–161.
  • Gutierrez D, Briers Y. 2021. Lysins breaking down the walls of Gram-negative bacteria, no longer a no-go. Curr Opin Biotechnol. 68:15–22.
  • Hadas H, Einav M, Fishov I, Zaritsky A. 1997. Bacteriophage T4 development depends on the physiology of its host Escherichia coli. Microbiology. 143(Pt 1):179–185.
  • Hagens S, Habel A, von Ahsen U, von Gabain A, Bläsi U. 2004. Therapy of experimental Pseudomonas infections with a nonreplicating genetically modified phage. Antimicrob Agents Chemother. 48(10):3817–3822.
  • Hampton HG, Watson BNJ, Fineran PC. 2020. The arms race between bacteria and their phage foes. Nature. 577(7790):327–336.
  • Hao G, Chen AI, Liu M, Zhou HJ, Egan M, Yang XM, Kan B, Wang H, Goulian M, Zhu J. 2019. Colistin-resistance-mediated bacterial surface modification sensitizes phage infection. Antimicrob Agents Chemother. 63(12):e01609–19.
  • Hesse S, Adhya S. 2019. Phage therapy in the twenty-first century: facing the decline of the antibiotic era; is it finally time for the age of the phage? Annu Rev Microbiol. 73:155–174.
  • Ho K, Huo WW, Pas S, Dao R, Palmer KL. 2018. Loss-of-function mutations in epaR confer resistance to varphiNPV1 infection in Enterococcus faecalis OG1RF. Antimicrob Agents Chemother. 62(10):e00758–18.
  • Hsu Bryan B, Way Jeffrey C, Silver Pamela A. 2020. Stable neutralization of a virulence factor in bacteria using temperate phage in the mammalian gut. mSystems. 5(1): p):e00013–e00020.
  • Jado I, López R, García E, Fenoll A, Casal J, García P, Spanish Pneumococcal Infection Study Network. 2003. Phage lytic enzymes as therapy for antibiotic-resistant Streptococcus pneumoniae infection in a murine sepsis model. J Antimicrob Chemother. 52(6):967–973.
  • Jancheva M, Bottcher T. 2021. A metabolite of Pseudomonas triggers prophage-selective lysogenic to lytic conversion in Staphylococcus aureus. J Am Chem Soc. 143(22):8344-8351.
  • Kamal F, Dennis JJ. 2015. Burkholderia cepacia complex phage-antibiotic synergy (PAS): antibiotics stimulate lytic phage activity. Appl Environ Microbiol. 81(3):1132–1138.
  • Kaur S, Harjai K, Chhibber S. 2012. Methicillin-resistant Staphylococcus aureus phage plaque size enhancement using sublethal concentrations of antibiotics. Appl Environ Microbiol. 78(23):8227–8233.
  • Kever L, Hünnefeld M, Brehm J, Heermann R, Frunzke J. 2021. Identification of gip as a novel phage-encoded gyrase inhibitor protein of Corynebacterium glutamicum. Mol Microbiol. 116(5):1268–1280.
  • Kilcher S, Studer P, Muessner C, Klumpp J, Loessner MJ. 2018. Cross-genus rebooting of custom-made, synthetic bacteriophage genomes in L-form bacteria. Proc Natl Acad Sci USA. 115(3):567–572.
  • Kim BO, Kim ES, Yoo YJ, Bae HW, Chung IY, Cho YH. 2019. Phage-derived antibacterials: harnessing the simplicity, plasticity, and diversity of phages. Viruses. 11(3):268.
  • Kim M, Jo Y, Hwang YJ, Hong HW, Hong SS, Park K, Myung H. 2018. Phage-antibiotic synergy via delayed lysis. Appl Environ Microbiol. 84(22):e02085–18.
  • Kirby AE. 2012. Synergistic action of gentamicin and bacteriophage in a continuous culture population of Staphylococcus aureus. PLoS One. 7(11):e51017.
  • Kiro R, Molshanski-Mor S, Yosef I, Milam SL, Erickson HP, Qimron U. 2013. Gene product 0.4 increases bacteriophage T7 competitiveness by inhibiting host cell division. Proc Natl Acad Sci USA. 110(48):19549–19554.
  • Klimuk E, Akulenko N, Makarova KS, Ceyssens P-J, Volchenkov I, Lavigne R, Severinov K. 2013. Host RNA polymerase inhibitors encoded by varphiKMV-like phages of Pseudomonas. Virology. 436(1):67–74.
  • Kutateladze M, Adamia R. 2008. Phage therapy experience at the Eliava Institute. Med Mal Infect. 38(8):426–430.
  • Labrie SJ, Samson JE, Moineau S. 2010. Bacteriophage resistance mechanisms. Nat Rev Microbiol. 8(5):317–327.
  • Lemire S, Yehl KM, Lu TK. 2018. Phage-based applications in synthetic biology. Annu Rev Virol. 5(1):453–476.
  • Lenneman BR, Fernbach J, Loessner MJ, Lu TK, Kilcher S. 2021. Enhancing phage therapy through synthetic biology and genome engineering. Curr Opin Biotechnol. 68:151–159.
  • Lenski RE. 1988. Experimental studies of pleiotropy and epistasis in Escherichia coli. I. Variation in competitive fitness among mutants resistant to virus T4. Evolution. 42(3):425–432.
  • Leung CYJ, Weitz JS. 2017. Modeling the synergistic elimination of bacteria by phage and the innate immune system. J Theor Biol. 429:241–252.
  • Liang G, Bushman FD. 2021. The human virome: assembly, composition and host interactions. Nat Rev Microbiol. 19(8):514–527.
  • Liu B, Li S, Liu Y, Chen H, Hu Z, Wang Z, Zhao Y, Zhang L, Ma B, Wang H, et al. 2021. Bacteriophage Twort protein Gp168 is a beta-clamp inhibitor by occupying the DNA sliding channel. Nucleic Acids Res. 49(19):11367–11378.
  • Liu J, Dehbi M, Moeck G, Arhin F, Bauda P, Bergeron D, Callejo M, Ferretti V, Ha N, Kwan T, et al. 2004. Antimicrobial drug discovery through bacteriophage genomics. Nat Biotechnol. 22(2):185–191.
  • Lobocka M, Dabrowska K, Gorski A. 2021. Engineered bacteriophage therapeutics: rationale, challenges and future. BioDrugs. 35(3):255–280.
  • Lock RL, Harry EJ. 2008. Cell-division inhibitors: new insights for future antibiotics. Nat Rev Drug Discov. 7(4):324–338.
  • Lowe J, Amos LA. 1998. Crystal structure of the bacterial cell division protein FtsZ. nature. 391(6663):203–206.
  • Lu TK, Collins JJ. 2007. Dispersing biofilms with engineered enzymatic bacteriophage. Proc Natl Acad Sci USA. 104(27):11197–11202.
  • Luong T, Salabarria AC, Roach DR. 2020. Phage therapy in the resistance era: where do we stand and where are we going? Clin Ther. 42(9):1659–1680.
  • Lynch KH, Seed KD, Stothard P, Dennis JJ. 2010. Inactivation of Burkholderia cepacia complex phage KS9 gp41 identifies the phage repressor and generates lytic virions. J Virol. 84(3):1276–1288.
  • Maltas J, Wood KB. 2019. Pervasive and diverse collateral sensitivity profiles inform optimal strategies to limit antibiotic resistance. PLoS Biol. 17(10):e3000515.
  • Matsuda T, Freeman TA, Hilbert DW, Duff M, Fuortes M, Stapleton PP, Daly JM. 2005. Lysis-deficient bacteriophage therapy decreases endotoxin and inflammatory mediator release and improves survival in a murine peritonitis model. Surgery. 137(6):639–646.
  • Molshanski-Mor S, Yosef I, Kiro R, Edgar R, Manor M, Gershovits M, Laserson M, Pupko T, Qimron U. 2014. Revealing bacterial targets of growth inhibitors encoded by bacteriophage T7. Proc Natl Acad Sci USA. 111(52):18715–18720.
  • Monteiro R, Pires DP, Costa AR, Azeredo J. 2019. Phage therapy: going temperate? Trends Microbiol. 27(4):368–378.
  • Nelson D, Schuch R, Chahales P, Zhu S, Fischetti VA. 2006. PlyC: a multimeric bacteriophage lysin. Proc Natl Acad Sci USA. 103(28):10765–10770.
  • Nobrega FL, Vlot M, de Jonge PA, Dreesens LL, Beaumont HJE, Lavigne R, Dutilh BE, Brouns SJJ. 2018. Targeting mechanisms of tailed bacteriophages. Nat Rev Microbiol. 16(12):760–773.
  • Ofir G, Sorek R. 2018. Contemporary phage biology: from classic models to new insights. Cell. 172(6):1260–1270.
  • Oliveira H, Sao-Jose C, Azeredo J. 2018. Phage-derived peptidoglycan degrading enzymes: challenges and future prospects for in vivo therapy. Viruses. 10(6):292.
  • Paez-Espino D, Eloe-Fadrosh EA, Pavlopoulos GA, Thomas AD, Huntemann M, Mikhailova N, Rubin E, Ivanova NN, Kyrpides NC. 2016. Uncovering Earth’s virome. Nature. 536(7617):425–430.
  • Pal C, Papp B, Lazar V. 2015. Collateral sensitivity of antibiotic-resistant microbes. Trends Microbiol. 23(7):401–407.
  • Paul VD, Sundarrajan S, Rajagopalan SS, Hariharan S, Kempashanaiah N, Padmanabhan S, Sriram B, Ramachandran J. 2011. Lysis-deficient phages as novel therapeutic agents for controlling bacterial infection. BMC Microbiol. 11:195.
  • Payaslian F, Gradaschi V, Piuri M. 2021. Genetic manipulation of phages for therapy using BRED. Curr Opin Biotechnol. 68:8–14.
  • Pei R, Lamas-Samanamud GR. 2014. Inhibition of biofilm formation by T7 bacteriophages producing quorum-quenching enzymes. Appl Environ Microbiol. 80(17):5340–5348.
  • Peng H, Chen IA. 2021. Phage engineering and the evolutionary arms race. Curr Opin Biotechnol. 68:23–29.
  • Podnecky NL, Fredheim EGA, Kloos J, Sørum V, Primicerio R, Roberts AP, Rozen DE, Samuelsen Ø, Johnsen PJ. 2018. Conserved collateral antibiotic susceptibility networks in diverse clinical strains of Escherichia coli. Nat Commun. 9(1):3673.
  • Roach DR, Leung CY, Henry M, Morello E, Singh D, Di Santo JP, Weitz JS, Debarbieux L. 2017. Synergy between the host immune system and bacteriophage is essential for successful phage therapy against an acute respiratory pathogen. Cell Host Microbe. 22(1):38e4–47 e4.
  • Rodriguez-Rubio L, et al. 2016. Artilysation’ of endolysin lambdaSa2lys strongly improves its enzymatic and antibacterial activity against streptococci. Sci Rep. 6:35382.
  • Rodriguez-Rubio L, et al. 2016. Phage lytic proteins: biotechnological applications beyond clinical antimicrobials. Crit Rev Biotechnol. 36(3):542–552.
  • Rohde C, Resch G, Pirnay J, Blasdel BG, Debarbieux L, Gelman D, Górski A, Hazan R, Huys I, Kakabadze E, et al. 2018. Expert opinion on three phage therapy related topics: bacterial phage resistance, phage training and prophages in bacterial production strains. Viruses. 10(4):178.
  • Salmond GP, Fineran PC. 2015. A century of the phage: past, present and future. Nat Rev Microbiol. 13(12):777–786.
  • Samson JE, Magadán AH, Sabri M, Moineau S. 2013. Revenge of the phages: defeating bacterial defences. Nat Rev Microbiol. 11(10):675–687.
  • Schirmeier E, Zimmermann P, Hofmann V, Biebl M, Gerstmans H, Maervoet VET, Briers Y. 2018. Inhibitory and bactericidal effect of Artilysin((R)) Art-175 against colistin-resistant mcr-1-positive Escherichia coli isolates. Int J Antimicrob Agents. 51(3):528–529.
  • Schroven K, Aertsen A, Lavigne R. 2021. Bacteriophages as drivers of bacterial virulence and their potential for biotechnological exploitation. FEMS Microbiol Rev. 45(1):fuaa041.
  • Severinova E, Severinov K. 2006. Localization of the Escherichia coli RNA polymerase beta’ subunit residue phosphorylated by bacteriophage T7 kinase Gp0.7. J Bacteriol. 188(10):3470–3476.
  • Śliwka P, Ochocka M, Skaradzińska A. 2022. Applications of bacteriophages against intracellular bacteria. Crit Rev Microbiol. 48(2):222–239.
  • Spoerel N, Herrlich P, Bickle TA. 1979. A novel bacteriophage defence mechanism: the anti-restriction protein. Nature. 278(5699):30–34.
  • Stanley SY, Maxwell KL. 2018. Phage-encoded anti-CRISPR defenses. Annu Rev Genet. 52:445–464.
  • Tabib-Salazar A, et al. 2018. T7 phage factor required for managing RpoS in Escherichia coli. Proc Natl Acad Sci USA. 115(23):E5353–E5362.
  • Tiwari BR, Kim S, Rahman M, Kim J. 2011. Antibacterial efficacy of lytic Pseudomonas bacteriophage in normal and neutropenic mice models. J Microbiol. 49(6):994–999.
  • Turner D, Kropinski AM, Adriaenssens EM. 2021. A roadmap for genome-based phage taxonomy. Viruses. 13(3):506.
  • Twort FW. 1915. An investigation on the nature of ultra-microscopic viruses. Lancet. 186(4814):1241–1243.
  • Tyers M, Wright GD. 2019. Drug combinations: a strategy to extend the life of antibiotics in the 21st century. Nat Rev Microbiol. 17(3):141–155.
  • Van den Bossche A, Ceyssens P-J, De Smet J, Hendrix H, Bellon H, Leimer N, Wagemans J, Delattre A-S, Cenens W, Aertsen A, et al. 2014. Systematic identification of hypothetical bacteriophage proteins targeting key protein complexes of Pseudomonas aeruginosa. J Proteome Res. 13(10):4446–4456.
  • Vassallo CN, Doering CR, Littlehale ML, Teodoro GIC, Laub MT. 2022. A functional selection reveals previously undetected anti-phage defence systems in the E. coli pangenome. Nat Microbiol. 7(10):1568-1579.
  • Wan X, Hendrix H, Skurnik M, Lavigne R. 2021. Phage-based target discovery and its exploitation towards novel antibacterial molecules. Curr Opin Biotechnol. 68:1–7.
  • Wang M, Zeng Z, Jiang F, Zheng Y, Shen H, Macedo N, Sun Y, Sahin O, Li G. 2020. Role of enterotoxigenic Escherichia coli prophage in spreading antibiotic resistance in a porcine-derived environment. Environ Microbiol. 22(12):4974–4984.
  • Wang T, Wang TT, Zheng YX, Dai JM, Zhou JX, Yu R, Zhang C. 2021. Design SMAP29-LysPA26 as a highly efficient Artilysin against Pseudomonas aeruginosa with bactericidal and antibiofilm activity. Microbiol Spectr. 9(3):e0054621.
  • Wang X, Wei Z, Li M, Wang X, Shan A, Mei X, Jousset A, Shen Q, Xu Y, Friman V-P, et al. 2017. Parasites and competitors suppress bacterial pathogen synergistically due to evolutionary trade-offs. Evolution. 71(3):733–746.
  • Weinbauer MG. 2004. Ecology of prokaryotic viruses. FEMS Microbiol Rev. 28(2):127–181.
  • WHO. 2020. Antibacterial agents in clinical and preclinical development.
  • WHO. 2021. Global antimicrobial resistance and use surveillance system (GLASS) report.
  • Yan B, Núñez C, Ueki T, Esteve-Núñez A, Puljic M, Adkins RM, Methé BA, Lovley DR, Krushkal J. 2006. Computational prediction of RpoS and RpoD regulatory sites in Geobacter sulfurreducens using sequence and gene expression information. Gene. 384:73–95.
  • Yang H, Wang MY, Yu JP, Wei HP. 2015. Antibacterial activity of a novel peptide-modified lysin against Acinetobacter baumannii and Pseudomonas aeruginosa. Front Microbiol. 6:1471.
  • Yano ST, Rothman-Denes LB. 2011. A phage-encoded inhibitor of Escherichia coli DNA replication targets the DNA polymerase clamp loader. Mol Microbiol. 79(5):1325–1338.
  • Yehl K, Lemire S, Yang AC, Ando H, Mimee M, Torres MDT, de la Fuente-Nunez C, Lu TK. 2019. Engineering phage host-range and suppressing bacterial resistance through phage tail fiber mutagenesis. Cell. 179(2):459 e9–469 e9.
  • Yoong P, Schuch R, Nelson D, Fischetti VA. 2004. Identification of a broadly active phage lytic enzyme with lethal activity against antibiotic-resistant Enterococcus faecalis and Enterococcus faecium. J Bacteriol. 186(14):4808–4812.
  • Young R, Gill JJ. 2015. MICROBIOLOGY. Phage therapy redux–what is to be done? Science. 350(6265):1163–1164.
  • Yura T, Ishihama A. 1979. Genetics of bacterial RNA polymerases. Annu Rev Genet. 13:59–97.
  • Zhang H, Fouts DE, DePew J, Stevens RH. 2013. Genetic modifications to temperate Enterococcus faecalis phage Ef11 that abolish the establishment of lysogeny and sensitivity to repressor, and increase host range and productivity of lytic infection. Microbiology. 159(Pt 6):1023–1035.
  • Zhang JX, He XL, Shen SQ, Shi MY, Zhou Q , Liu JL, Wang MZ, Sun YX. 2021. Effects of the newly isolated T4-like phage on transmission of plasmid-borne antibiotic resistance genes via generalized transduction. Viruses. 13(10):2070.
  • Zhao X, Chen CH, Jiang XY, Shen W, Huang GT, Le S, Lu SG, Zou LY, Ni QS, Li M, et al. 2016. Transcriptomic and metabolomic analysis revealed multifaceted effects of phage protein Gp70.1 on Pseudomonas aeruginosa. Front Microbiol. 7:1519.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.