380
Views
2
CrossRef citations to date
0
Altmetric
Review Articles

The role of single and mixed biofilms in Clostridioides difficile infection and strategies for prevention and inhibition

, ORCID Icon &
Pages 285-299 | Received 27 Oct 2022, Accepted 06 Mar 2023, Published online: 20 Mar 2023

References

  • Alav I, Sutton JM, Rahman KM. 2018. Role of bacterial efflux pumps in biofilm formation. J Antimicrob Chemother. 73(8):2003–2020.
  • Aleksić A, Stojanović-Radić Z, Harmanus C, Kuijper EJ, Stojanović P. 2022. In vitro anti-clostridial action and potential of the spice herbs essential oils to prevent biofilm formation of hypervirulent Clostridioides difficile strains isolated from hospitalized patients with CDI. Anaerobe. 76:102604.
  • Antharam VC, Li EC, Ishmael A, Sharma A, Mai V, Rand KH, Wang GP. 2013. Intestinal dysbiosis and depletion of butyrogenic bacteria in Clostridium difficile infection and nosocomial diarrhea. J Clin Microbiol. 51(9):2884–2892. English.
  • Azimirad M, Krutova M, Balaii H, Kodori M, Shahrokh S, Azizi O, Yadegar A, Aghdaei HA, Zali MR. 2020. Coexistence of Clostridioides difficile and Staphylococcus aureus in gut of Iranian outpatients with underlying inflammatory bowel disease. Anaerobe. 61:102113.
  • Baishya J, Bisht K, Rimbey JN, Yihunie KD, Islam S, Al Mahmud H, Waller JE, Wakeman CA. 2021. The impact of intraspecies and interspecies bacterial interactions on disease outcome. Pathogens. 10(2):96.
  • Ben Arfa A, Combes S, Preziosi-Belloy L, Gontard N, Chalier P. 2006. Antimicrobial activity of carvacrol related to its chemical structure. Lett Appl Microbiol. 43(2):149–154.
  • Bhatwalkar SB, Mondal R, Krishna SBN, Adam JK, Govender P, Anupam R. 2021. Antibacterial properties of organosulfur compounds of garlic (Allium sativum). Front Microbiol. 12:613077.
  • Brauer M, Lassek C, Hinze C, Hoyer J, Becher D, Jahn D, Sievers S, Riedel K. 2021. What’s a biofilm?-How the choice of the biofilm model impacts the protein inventory of Clostridioides difficile. Front Microbiol. 12:682111.
  • Brennan CA, Garrett WS. 2019. Fusobacterium nucleatum - symbiont, opportunist and oncobacterium. Nat Rev Microbiol. 17(3):156–166.
  • Brown JRM, Flemer B, Joyce SA, Zulquernain A, Sheehan D, Shanahan F, O'Toole PW. 2018. Changes in microbiota composition, bile and fatty acid metabolism, in successful faecal microbiota transplantation for Clostridioides difficile infection. BMC Gastroenterol. 18(1):131.
  • Casey M. Theriot and William A. Petri J. 2020. Role of microbiota-derived bile acids in enteric infections. Cell. 181(7):1452–1454.
  • Ch’ng JH, Muthu M, Chong KKL, Wong JJ, Tan CAZ, Koh ZJS, Lopez D, Matysik A, Nair ZJ, Barkham T, et al. 2022. Heme cross-feeding can augment Staphylococcus aureus and Enterococcus faecalis dual species biofilms. Isme J. 16(8):2015–2026.
  • Normington CIBM, Bryant JA, Ewin DJ, Clark EV, Kettle MJ, Harris HC, Spittal W, Davis G, Henn MR, Ford CB, et al. 2021. Biofilms harbour Clostridioides difficile, serving as a reservoir for recurrent infection. NPJ Biofilms Microbi. 16:1–10.
  • Chen J, Lu Y, Du Y, Wang H, Wu Q. 2022. Recent development of small-molecular inhibitors against Clostridioides difficile infection. Bioorg Chem. 125:105843.
  • Costa CL, Azevedo CPd, Quesada-Gómez C, Brito GAdC, Regueira-Neto MdS, Guedes GMdM, Rocha MFG, Sidrim JJC, Cordeiro RdA, Carvalho CBMd, et al. 2021. Inhibitory effect of Brazilian red propolis on planktonic and biofilm forms of Clostridioides difficile. Anaerobe. 69:102322.
  • Czepiel J, Dróżdż M, Pituch H, Kuijper EJ, Perucki W, Mielimonka A, Goldman S, Wultańska D, Garlicki A, Biesiada G. 2019. Clostridium difficile infection: review. Eur J Clin Microbiol Infect Dis. 38(7):1211–1221.
  • Ðapa T, Leuzzi R, Ng YK, Baban ST, Adamo R, Kuehne SA, Scarselli M, Minton NP, Serruto D, Unnikrishnan M. 2013. Multiple factors modulate biofilm formation by the anaerobic pathogen Clostridium difficile. J Bacteriol. 195(3):545–555.
  • Davani-Davari D, Negahdaripour M, Karimzadeh I, Seifan M, Mohkam M, Masoumi SJ, Berenjian A, Ghasemi Y. 2019. Prebiotics: definition, types, sources, mechanisms, and clinical applications. Foods. 8(3):92.
  • Dawson LF, Peltier J, Hall CL, Harrison MA, Derakhshan M, Shaw HA, Fairweather NF, Wren BW. 2021. Extracellular DNA, cell surface proteins and c-di-GMP promote biofilm formation in Clostridioides difficile. Sci Rep. 11(1):3244.
  • Dawson LF, Valiente E, Faulds-Pain A, Donahue EH, Wren BW. 2012. Characterisation of Clostridium difficile biofilm formation, a role for Spo0A. PLoS One. 7(12):e50527.
  • Deshmukh F, Agrawal U, Merrell N. 2020. Clostridioides difficile co-infection with enterohemorrhagic Escherichia coli (EHEC)-a potentially fatal combination. IDCases. 21:e00797.
  • Drescher K, Nadell CD, Stone HA, Wingreen NS, Bassler BL. 2014. Solutions to the public goods dilemma in bacterial biofilms. Curr Biol. 24(1):50–55.
  • Elahi M, Nakayama-Imaohji H, Hashimoto M, Tada A, Yamasaki H, Nagao T, Kuwahara T. 2021. The human gut microbe Bacteroides thetaiotaomicron suppresses toxin release from Clostridium difficile by inhibiting autolysis. Antibiotics. 10(2):187.
  • Engevik MA, Engevik AC, Engevik KA, Auchtung JM, Chang-Graham AL, Ruan W, Luna RA, Hyser JM, Spinler JK, Versalovic J. 2021. Mucin-degrading microbes release monosaccharides that chemoattract Clostridioides difficile and facilitate colonization of the human intestinal mucus layer. ACS Infect Dis. 7(5):1126–1142.
  • Engevik MA, Danhof HA, Auchtung J, Endres BT, Ruan W, Bassères E, Engevik AC, Wu Q, Nicholson M, Luna RA, et al. 2021. Fusobacterium nucleatum adheres to Clostridioides difficile via the RadD adhesin to enhance biofilm formation in intestinal mucus. Gastroenterology. 160(4):1301–1314.e8.
  • Eubank TA, Gonzales-Luna AJ, Hurdle JG, Garey KW. 2022. Genetic mechanisms of vancomycin resistance in Clostridioides difficile: a systematic review. Antibiotics (Basel). 11(2):258.
  • Faden H. 2021. Review and commentary on the importance of bile acids in the life cycle of Clostridioides difficile in children and adults. J Pediatr Infect Dis Soc. 10(5):659–664.
  • Feuerstadt P, Boules M, Stong L, Dahdal DN, Sacks NC, Lang K, Nelson WW. 2021. Clinical complications in patients with primary and recurrent Clostridioides difficile infection: a real-world data analysis. SAGE Open Med. 9:2050312120986733.
  • Flemming HC, Wingender J. 2010. The biofilm matrix. Nat Rev Microbiol. 8(9):623–633.
  • Fragkioudakis I, Riggio MP, Apatzidou DA. 2021. Understanding the microbial components of periodontal diseases and periodontal treatment-induced microbiological shifts. J Med Microbiol. 70(1):001247.
  • Frisan T. 2021. Co- and polymicrobial infections in the gut mucosa: the host-microbiota-pathogen perspective. Cell Microbiol. 23(2):e13279.
  • Garneau JR, Valiquette L, Fortier L-C. 2014. Prevention of Clostridium difficile spore formation by sub-inhibitory concentrations of tigecycline and piperacillin/tazobactam. BMC Infect Dis. 14(1):29.
  • Ghigo N-M. 2021. Gut biofilms: bacteroides as model symbionts to study biofilm formation by intestinal anaerobes. FEMS Microbiol Rev. 46(2):fuab054.
  • Giau VV, Lee H, An SSA, Hulme J. 2019. Recent advances in the treatment of C. difficile using biotherapeutic agents. IDR. 12:1597–1615.
  • Giri R, Hoedt EC, Khushi S, Salim AA, Bergot A-S, Schreiber V, Thomas R, McGuckin MA, Florin TH, Morrison M, et al. 2022. Secreted NF-κB suppressive microbial metabolites modulate gut inflammation. Cell Rep. 39(2):110646.
  • Hall-Stoodley L, Costerton JW, Stoodley P. 2004. Bacterial biofilms: from the natural environment to infectious diseases. Nat Rev Microbiol. 2(2):95–108.
  • Hamada M, Yamaguchi T, Ishii Y, Chono K, Tateda K. 2020. Inhibitory effect of fidaxomicin on biofilm formation in Clostridioides difficile. J Infect Chemother. 26(7):685–692.
  • Haran JP, Ward DV, Bhattarai SK, Loew E, Dutta P, Higgins A, McCormick BA, Bucci V. 2021. The high prevalence of Clostridioides difficile among nursing home elders associates with a dysbiotic microbiome. Gut Microbes. 13(1):1–15.
  • Harmsen M, Lappann M, Knøchel S, Molin S. 2010. Role of extracellular DNA during biofilm formation by Listeria monocytogenes. Appl Environ Microbiol. 76(7):2271–2279.
  • Hassall J, Cheng JK, Unnikrishnan M. 2021. Dissecting individual interactions between pathogenic and commensal bacteria within a multispecies gut microbial community. mSphere. 6(2):e00013–00021.
  • Heuler J, Fortier LC, Sun X. 2021. Clostridioides difficile phage biology and application. FEMS Microbiol Rev. 45(5):fuab012.
  • James GA, Chesnel L, Boegli L, deLancey Pulcini E, Fisher S, Stewart PS. 2018. Analysis of Clostridium difficile biofilms: imaging and antimicrobial treatment. J Antimicrob Chemother. 73(1):102–108.
  • Jones SE, Versalovic J. 2009. Probiotic Lactobacillus reuteri biofilms produce antimicrobial and anti-inflammatory factors. BMC Microbiol. 9(1):35.
  • Kaur A, Capalash N, Sharma P. 2018. Quorum sensing in thermophiles: prevalence of autoinducer-2 system. BMC Microbiol. 18(1):62.
  • Kelly CR, Fischer M, Allegretti JR, LaPlante K, Stewart DB, Limketkai BN, Stollman NH. 2021. ACG clinical guidelines: prevention, diagnosis, and treatment of Clostridioides difficile infections. Am J Gastroenterol. 116(6):1124–1147.
  • Kim HE, Liu Y, Dhall A, Bawazir M, Koo H, Hwang G. 2020. Synergism of Streptococcus mutans and Candida albicans reinforces biofilm maturation and acidogenicity in Saliva: an in vitro study. Front Cell Infect Microbiol. 10:623980.
  • Kint N, Morvan C, Martin-Verstraete I. 2022. Oxygen response and tolerance mechanisms in Clostridioides difficile. Curr Opin Microbiol. 65:175–182.
  • Lacotte PA, Simons A, Bouttier S, Malet-Villemagne J, Nicolas V, Janoir C. 2022. Inhibition of in vitro Clostridioides difficile biofilm formation by the probiotic yeast Saccharomyces boulardii CNCM I-745 through modification of the extracellular matrix composition. Microorganisms. 10(6):1082.
  • Landaburu MF, Daneri GAL, Relloso S, Zarlenga LJ, Vinante MA, Mujica MT. 2020. Fungemia following Saccharomyces cerevisiae var. boulardii probiotic treatment in an elderly patient. Rev Argent Microbiol. 52(1):27–30.
  • Larcombe S, Hutton ML, Riley TV, Abud HE, Lyras D. 2018. Diverse bacterial species contribute to antibiotic-associated diarrhoea and gastrointestinal damage. J Infection. 77(5):417–426.
  • Lee ASY, Song KP. 2005. LuxS/autoinducer-2 quorum sensing molecule regulates transcriptional virulence gene expression in Clostridium difficile. Biochem Bioph Res Co. 335(3):659–666.
  • Lee JH, Kim YG, Lee J. 2017. Carvacrol-rich oregano oil and thymol-rich thyme red oil inhibit biofilm formation and the virulence of uropathogenic Escherichia coli. J Appl Microbiol. 123(6):1420–1428.
  • Li YH, Tian XL. 2012. Quorum sensing and bacterial social interactions in biofilms. Sensors-Basel. 12(3):2519–2538.
  • Loganathan A, Manohar P, Eniyan K, VinodKumar CS, Leptihn S, Nachimuthu R. 2021. Phage therapy as a revolutionary medicine against Gram-positive bacterial infections. Beni Suef Univ J Basic Appl Sci. 10(1):49.
  • Lucy R. Frost JKJC. 2021. Meera Unnikrishnan. Clostridioides difficile biofilms: A mechanism of persistence in the gut? PLoS Pathog. 17(3):e1009348.
  • Ma LY, Wang J, Wang SW, Anderson EM, Lam JS, Parsek MR, Wozniak DJ. 2012. Synthesis of multiple Pseudomonas aeruginosa biofilm matrix exopolysaccharides is post-transcriptionally regulated. Environ Microbiol. 14(8):1995–2005.
  • Maldarelli GA, Piepenbrink KH, Scott AJ, Freiberg JA, Song Y, Achermann Y, Ernst RK, Shirtliff ME, Sundberg EJ, Donnenberg MS, et al. 2016. Type IV pili promote early biofilm formation by Clostridium difficile. Pathog Dis. 74(6):ftw061.
  • Mann EE, Rice KC, Boles BR, Endres JL, Ranjit D, Chandramohan L, Tsang LH, Smeltzer MS, Horswill AR, Bayles KW. 2009. Modulation of eDNA release and degradation affects Staphylococcus aureus biofilm maturation. PLoS One. 4(6):e5822.
  • Markey L, Shaban L, Green ER, Lemon KP, Mecsas J, Kumamoto CA. 2018. Pre-colonization with the commensal fungus Candida albicans reduces murine susceptibility to Clostridium difficile infection. Gut Microbes. 9(6):497–509.
  • Mathur H, Rea MC, Cotter PD, Hill C, Ross RP. 2016. The efficacy of thuricin CD, tigecycline, vancomycin, teicoplanin, rifampicin and nitazoxanide, independently and in paired combinations against Clostridium difficile biofilms and planktonic cells. Gut Pathog. 8(1):20.
  • McKee RW, Aleksanyan N, Garrett EM, Tamayo R. 2018. Type IV pili promote Clostridium difficile adherence and persistence in a mouse model of infection. Infect Immun. 86(5):e00943-17.
  • Melinda A. Engevik HAD, Jennifer Auchtung, et al. 2021. Fusobacterium nucleatum adheres to Clostridioides difficile via the RadD adhesin to enhance biofilm formation in intestinal mucus. Gastroenterol, 160(4):1301–1314. e8.
  • Meroni G, Panelli S, Zuccotti G, Bandi C, Drago L, Pistone D. 2021. Probiotics as therapeutic tools against pathogenic biofilms: have we found the perfect weapon? Microbiol Res-Italy. 12(4):916–937.
  • Meza-Torres J, Auria E, Dupuy B, Tremblay YDN. 2021. Wolf in Sheep’s clothing: clostridioides difficile biofilm as a reservoir for recurrent infections. Microorganisms. 9(9):1922. 1922.
  • Montanaro L, Poggi A, Visai L, Ravaioli S, Campoccia D, Speziale P, Arciola CR. 2011. Extracellular DNA in biofilms. Int J Artif Organs. 34(9):824–831.
  • Morsy NFS, Abd El-Salam EA. 2017. Antimicrobial and antiproliferative activities of black pepper (Piper nigrum L.) essential oil and Oleoresin. J Essent Oil Bear Pl. 20(3):779–790.
  • Motta JP, Wallace JL, Buret AG, Deraison C, Vergnolle N. 2021. Gastrointestinal biofilms in health and disease. Nat Rev Gastroenterol Hepatol. 18(5):314–334.
  • Ofek I, Hasty DL, Sharon N. 2003. Anti-adhesion therapy of bacterial diseases: prospects and problems. FEMS Immunol Med Microbiol. 38(3):181–191.
  • Okshevsky M, Meyer RL. 2015. The role of extracellular DNA in the establishment, maintenance and perpetuation of bacterial biofilms. Crit Rev Microbiol. 41(3):341–352.
  • Panpetch W, Somboonna N, Palasuk M, Hiengrach P, Finkelman M, Tumwasorn S, Leelahavanichkul A. 2019. Oral Candida administration in a Clostridium difficile mouse model worsens disease severity but is attenuated by Bifidobacterium. PLoS One. 14(1):e0210798.
  • Phalak P, Henson M. 2019. Metabolic modeling of Clostridium difficile associated dysbiosis of the gut microbiota. Processes. 7(2):97.
  • Piotrowski M, Karpinski P, Pituch H, van Belkum A, Obuch-Woszczatynski P. 2017. Antimicrobial effects of Manuka honey on in vitro biofilm formation by Clostridium difficile. Eur J Clin Microbiol. 36(9):1661–1664.
  • Piotrowski M, Wultańska D, Obuch-Woszczatyński P, Pituch H. 2019. Fructooligosaccharides and mannose affect Clostridium difficile adhesion and biofilm formation in a concentration-dependent manner. Eur J Clin Microbiol. 38(10):1975–1984.
  • Piotrowski M, Wultańska D, Pituch H. 2022. Effect of prebiotics on Bacteroides sp. adhesion and biofilm formation and synbiotic effect on Clostridioides difficile. Future Microbiol. 17(5):363–375.
  • Piotrowski M, Wultanska D, Pituch H. 2022. The prebiotic effect of human milk oligosaccharides 3'- and 6'-sialyllactose on adhesion and biofilm formation by Clostridioides difficile - pilot study. Microbes Infect. 24(3):104929.
  • Polivkova S, Krutova M, Capek V, Sykorova B, Benes J. 2021. Fidaxomicin versus metronidazole, vancomycin and their combination for initial episode, first recurrence and severe Clostridioides difficile infection - an observational cohort study. Int J Infect Dis. 103:226–233.
  • Purcell EB, McKee RW, Courson DS, Garrett EM, McBride SM, Cheney RE, Tamayo R. 2017. A nutrient-regulated cyclic diguanylate phosphodiesterase controls Clostridium difficile biofilm and toxin production during stationary phase. Infect Immun. 85(9):e00347-17.
  • Purcell EB, Mckee RW, McBride SM, Waters CM, Tamayo R. 2012. Cyclic diguanylate inversely regulates motility and aggregation in Clostridium difficile. J Bacteriol. 194(13):3307–3316.
  • Rahmoun LA, Azrad M, Peretz A. 2021. Antibiotic resistance and biofilm production capacity in Clostridioides difficile. Front Cell Infect Microbiol. 11:683464.
  • Rashid T, Haghighi F, Hasan I, Bassères E, Alam MJ, Sharma SV, Lai D, DuPont HL, Garey KW. 2019. Activity of hospital disinfectants against vegetative cells and spores of Clostridioides difficile embedded in biofilms. Antimicrob Agents Chemother. 64(1):e01031–01019.
  • Rea MC, Sit CS, Clayton E, O'Connor PM, Whittal RM, Zheng J, Vederas JC, Ross RP, Hill C. 2010. Thuricin CD, a posttranslationally modified bacteriocin with a narrow spectrum of activity against Clostridium difficile. Proc Natl Acad Sci U S A. 107(20):9352–9357.
  • Ross T, Slater LRF, Sian E, Jossi AD, Millard, M, Unnikrishnan. 2019. Clostridioides difficile LuxS mediates inter-bacterial interactions within biofilms. Sci Rep. 9:1–15.
  • Rui W, Gu C, Zhang H, Liao X, Zhao X, Xu Y, Yang J. 2022. Antagonistic activity of selenium-enriched Bifidobacterium breve against Clostridioides difficile. Appl Microbiol Biotechnol. 106(18):6181–6194.
  • Sandhu A, Chopra T. 2021. Fecal microbiota transplantation for recurrent Clostridioides difficile, safety, and pitfalls. Therap Adv Gastroenterol. 14:17562848211053105.
  • Semenyuk EG, Poroyko VA, Johnston PF, Jones SE, Knight KL, Gerding DN, Driks A. 2015. Analysis of bacterial communities during Clostridium difficile infection in the mouse. Infect Immun. 83(11):4383–4391.
  • Slavin J. 2013. Fiber and prebiotics: mechanisms and health benefits. Nutrients. 5(4):1417–1435.
  • Soavelomandroso AP, Gaudin F, Hoys S, Nicolas V, Vedantam G, Janoir C, Bouttier S. 2017. Biofilm structures in a mono-associated mouse model of Clostridium difficile infection. Front Microbiol. 8:2086.
  • Solano C, Echeverz M, Lasa I. 2014. Biofilm dispersion and quorum sensing. Curr Opin Microbiol. 18:96–104.
  • Song JH, Kim YS. 2019. Recurrent Clostridium difficile infection: risk factors, treatment, and prevention. Gut Liver. 13(1):16–24.
  • Stewart D, Romo JA, Lamendella R, Kumamoto CA. 2019. The role of fungi in C. difficile infection: an underappreciated transkingdom interaction. Fungal Genet Biol. 129:1–6.
  • Stewart DB, Wright JR, Fowler M, McLimans CJ, Tokarev V, Amaniera I, Baker O, Wong HT, Brabec J, Drucker R. 2019. Integrated meta-omics reveals a fungus-associated bacteriome and distinct functional pathways in Clostridioides difficile infection. mSphere. 4(4):e00454-19.
  • Taggart MG, Snelling WJ, Naughton PJ, La Ragione RM, Dooley JS, Ternan NG. 2021. Biofilm regulation in Clostridioides difficile: novel systems linked to hypervirulence. PLoS Pathog. 17(9):e1009817.
  • Tang L, Schramm A, Neu TR, Revsbech NP, Meyer RL. 2013. Extracellular DNA in adhesion and biofilm formation of four environmental isolates: a quantitative study. FEMS Microbiol Ecol. 86(3):394–403.
  • Tay WH, Chong KK, Kline KA. 2016. Polymicrobial-host interactions during infection. J Mol Biol. 428(17):3355–3371.
  • Thomas DYDNT, Hamiot A, Martin-Verstraete I, Deschamps J, Monot M, Briandet R, Dupuy B. 2019. A microbiota-generated bile salt induces biofilm formation in Clostridium difficile. NPJ Biofilms Microbi. 5(1):14.
  • Tijerina-Rodriguez L, Villarreal-Trevino L, Morfin-Otero R, Camacho-Ortiz A, Garza-Gonzalez E. 2019. Virulence factors of Clostridioides (Clostridium) difficile linked to recurrent infections. Can J Infect Dis Med Microbiol. 2019:7127850.
  • Tosun MN, Taylan G, Zorba NND. 2022. Antibacterial and antibiofilm activities of some plant essential oils and synergistic effects of cinnamon essential oil with vancomycin against Clostridioides difficile: in vitro study. Lett Appl Microbiol. 75(3):598–606.
  • Toyofuku M, Inaba T, Kiyokawa T, Obana N, Yawata Y, Nomura N. 2016. Environmental factors that shape biofilm formation. Biosci Biotech Bioch. 80(1):7–12.
  • Trejo FM, Perez PF, De Antoni GL. 2010. Co-culture with potentially probiotic microorganisms antagonises virulence factors of Clostridium difficile in vitro. Anton Leeuw Int J G. 98(1):19–29.
  • Tremblay YD, Dupuy B. 2022. The blueprint for building a biofilm the Clostridioides difficile way. Curr Opin Microbiol. 66:39–45.
  • Tsai CS, Hung YP, Lee JC, Syue LS, Hsueh PR, Ko WC. 2021. Clostridioides difficile infection: an emerging zoonosis? Expert Rev anti Infect Ther. 19(12):1543–1552.
  • Tytgat HLP, Nobrega FL, van der Oost J, de Vos WM. 2019. Bowel biofilms: tipping points between a healthy and compromised gut? Trends Microbiol. 27(1):17–25.
  • Valente C, Cruz AR, Henriques AO, Sá-Leão R. 2021. Intra-species interactions in Streptococcus pneumoniae biofilms. Front Cell Infect Microbiol. 11:803286.
  • Valentini M, Filloux A. 2016. Biofilms and cyclic di-GMP (c-di-GMP) signaling: lessons from Pseudomonas aeruginosa and other bacteria. J Biol Chem. 291(24):12547–12555.
  • Van Leeuwen PT, van der Peet JM, Bikker FJ, Hoogenkamp MA, Paiva AMO, Kostidis S, Mayboroda OA, Smits WK, Krom BP. 2016. Interspecies interactions between Clostridium difficile and Candida albicans. mSphere. 1(6):e00187-16.
  • Vuotto C, Donelli G, Buckley A, Chilton C. 2018. Clostridium difficile biofilm. Adv Exp Med Biol. 1050:97–115.
  • Vuotto C, Moura I, Barbanti F, Donelli G, Spigaglia P. 2016. Subinhibitory concentrations of metronidazole increase biofilm formation in Clostridium difficile strains. Pathog Dis. 74(2):ftv114.
  • Wang Y, Dai J, Wang X, Wang Y, Tang F. 2022. Mechanisms of interactions between bacteria and bacteriophage mediate by quorum sensing systems. Appl Microbiol Biotechnol. 106(7):2299–2310.
  • Wultańska D, Piotrowski M, Pituch H. 2020. The effect of berberine chloride and/or its combination with vancomycin on the growth, biofilm formation, and motility of Clostridioides difficile. Eur J Clin Microbiol Infect Dis. 39(7):1391–1399.
  • Yakabe K, Higashi S, Akiyama M, Mori H, Murakami T, Toyoda A, Sugiyama Y, Kishino S, Okano K, Hirayama A. 2022. Dietary-protein sources modulate host susceptibility to Clostridioides difficile infection through the gut microbiota. Cell Rep. 40(11):111332.
  • Yang HT, Chen JW, Rathod J, Jiang YZ, Tsai PJ, Hung YP, Ko WC, Paredes-Sabja D, Huang IH. 2018. Lauric acid is an inhibitor of Clostridium difficile growth in vitro and reduces inflammation in a mouse infection model. Front Microbiol. 8:2635.
  • Yang JP, Yang H. 2019. Non-antibiotic therapy for Clostridioides difficile infection: a review. Crit Rev Clin Lab Sci. 56(7):493–509.
  • Yannick DN, Tremblay BARD, Hamiot A, Martin-Verstraete I, Oberkampf M, Monot M, Dupuy B. 2021. Metabolic adaption to extracellular pyruvate triggers biofilm formation in Clostridioides difficile. Isme J. 15(12):3623–3635.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.