159
Views
0
CrossRef citations to date
0
Altmetric
Review Articles

Activation of host nucleic acid sensors by Mycobacterium: good for us or good for them?

, , , &
Pages 224-240 | Received 18 Sep 2023, Accepted 10 Dec 2023, Published online: 28 Dec 2023

References

  • Agbota G, Bonnet M, Lienhardt C. 2023. Management of tuberculosis infection: current situation, recent developments and operational challenges. Pathogens. 12(3):362. Epub 20230221. PubMed PMID: 36986284; PubMed Central PMCID: PMCPMC10051832. doi: 10.3390/pathogens12030362.
  • Bafica A, Scanga CA, Feng CG, Leifer C, Cheever A, Sher A. 2005. TLR9 regulates Th1 responses and cooperates with TLR2 in mediating optimal resistance to Mycobacterium tuberculosis. J Exp Med. 202(12):1715–1724. PubMed PMID: 16365150; PubMed Central PMCID: PMCPMC2212963. doi: 10.1084/jem.20051782.
  • Bai W, Liu H, Ji Q, Zhou Y, Liang L, Zheng R, Chen J, Liu Z, Yang H, Zhang P, et al. 2014. TLR3 regulates mycobacterial RNA-induced IL-10 production through the PI3K/AKT signaling pathway. Cell Signal. 26(5):942–950. Epub 20140122 doi: 10.1016/j.cellsig.2014.01.015.
  • Bakhru P, Sirisaengtaksin N, Soudani E, Mukherjee S, Khan A, Jagannath C. 2014. BCG vaccine mediated reduction in the MHC-II expression of macrophages and dendritic cells is reversed by activation of Toll-like receptors 7 and 9. Cell Immunol. 287(1):53–61. Epub 20131211 PubMed PMID: 24384074; PubMed Central PMCID: PMCPMC4096037. doi: 10.1016/j.cellimm.2013.11.007.
  • Bao M, Yi Z, Fu Y. 2017. Activation of TLR7 Inhibition of Mycobacterium Tuberculosis Survival by Autophagy in RAW 264.7 Macrophages. J Cell Biochem. 118(12):4222–4229. Epub 20170523 doi: 10.1002/jcb.26072.
  • Bermudez LE, Goodman J. 1996. Mycobacterium tuberculosis invades and replicates within type II alveolar cells. Infect Immun. 64(4):1400–1406. PubMed PMID: 8606107; PubMed Central PMCID: PMCPMC173932. doi: 10.1128/iai.64.4.1400-1406.1996.
  • Bharti D, Kumar A, Mahla RS, Kumar S, Ingle H, Shankar H, Joshi B, Raut AA, Kumar H. 2014. The role of TLR9 polymorphism in susceptibility to pulmonary tuberculosis. Immunogenetics. 66(12):675–681. Epub 20140925 doi: 10.1007/s00251-014-0806-1.
  • Bhatnagar S, Schorey JS. 2007. Exosomes released from infected macrophages contain Mycobacterium avium glycopeptidolipids and are proinflammatory. J Biol Chem. 282(35):25779–25789. Epub 2007/06/27. PubMed PMID: 17591775; PubMed Central PMCID: PMCPMC3636815. doi: 10.1074/jbc.M702277200.
  • Bhatnagar S, Shinagawa K, Castellino FJ, Schorey JS. 2007. Exosomes released from macrophages infected with intracellular pathogens stimulate a proinflammatory response in vitro and in vivo. Blood. 110(9):3234–3244. Epub 2007/08/02. PubMed PMID: 17666571; PubMed Central PMCID: PMCPMC2200902. doi: 10.1182/blood-2007-03-079152.
  • Brunette RL, Young JM, Whitley DG, Brodsky IE, Malik HS, Stetson DB. 2012. Extensive evolutionary and functional diversity among mammalian AIM2-like receptors. J Exp Med. 209(11):1969–1983. Epub 20121008 PubMed PMID: 23045604; PubMed Central PMCID: PMCPMC3478938. doi: 10.1084/jem.20121960.
  • Bukhari M, Aslam MA, Khan A, Iram Q, Akbar A, Naz AG, Ahmad S, Ahmad MM, Ashfaq UA, Aziz H, et al. 2015. TLR8 gene polymorphism and association in bacterial load in southern Punjab of Pakistan: an association study with pulmonary tuberculosis. Int J Immunogenet. 42(1):46–51. Epub 20150109 doi: 10.1111/iji.12170.
  • Burkert S, Schumann RR. 2020. RNA Sensing of Mycobacterium tuberculosis and Its Impact on TB Vaccination Strategies. Vaccines (Basel). 8(1):46–51. Epub 20200204. PubMed PMID: 32033104; PubMed Central PMCID: PMCPMC7158685. doi: 10.3390/vaccines8010067.
  • Canetti D, Riccardi N, Antonello RM, Nozza S, Sotgiu G. 2022. Mycobacterium marinum: a brief update for clinical purposes. Eur J Intern Med. 105:15–19. 15-9. Epub 20220719. doi: 10.1016/j.ejim.2022.07.013.
  • Chen KH, Lin CY, Su SB, Chen KT. 2022. Leprosy: a Review of Epidemiology, Clinical Diagnosis, and Management. J Trop Med. 2022:8652062–8652013. Epub 20220704. PubMed PMID: 35832335; PubMed Central PMCID: PMCPMC9273393. doi: 10.1155/2022/8652062.
  • Chen Y, Lin J, Zhao Y, Ma X, Yi H. 2021. Toll-like receptor 3 (TLR3) regulation mechanisms and roles in antiviral innate immune responses. J Zhejiang Univ Sci B. 22(8):609–632. PubMed PMID: 34414698; PubMed Central PMCID: PMCPMC8377577. doi: 10.1631/jzus.B2000808.
  • Chen Z, Wang W, Liang J, Wang J, Feng S, Zhang G. 2015. Association between toll-like receptors 9 (TLR9) gene polymorphism and risk of pulmonary tuberculosis: meta-analysis. BMC Pulm Med. 15(1):57. Epub 20150508. PubMed PMID: 25948535; PubMed Central PMCID: PMCPMC4460768. doi: 10.1186/s12890-015-0049-4.
  • Cheng Y, Kiene NJ, Tatarian A, Eix EF, Schorey JS. 2020. Host cytosolic RNA sensing pathway promotes T Lymphocyte-mediated mycobacterial killing in macrophages. PloS Pathog. 16(5):e1008569. Epub 2020/05/29. PubMed PMID: 32463840; PubMed Central PMCID: PMCPMC7282665. doi: 10.1371/journal.ppat.1008569.
  • Cheng Y, Schorey JS. 2018. Mycobacterium tuberculosis-induced IFN-beta production requires cytosolic DNA and RNA sensing pathways. J Exp Med. 215(11):2919–2935. Epub 2018/10/20. PubMed PMID: 30337468; PubMed Central PMCID: PMCPMC6219742. doi: 10.1084/jem.20180508.
  • Cheng Y, Schorey JS. 2019. Extracellular vesicles deliver Mycobacterium RNA to promote host immunity and bacterial killing. EMBO Rep. 20(3):1–16. Epub 2019/01/27. PubMed PMID: 30683680; PubMed Central PMCID: PMCPMC6399609. doi: 10.15252/embr.201846613.
  • Chin KL, Anibarro L, Sarmiento ME, Acosta A. 2023. Challenges and the Way forward in Diagnosis and Treatment of Tuberculosis Infection. Trop Med Infect Dis. 8(2):1–38. Epub 20230128. PubMed PMID: 36828505; PubMed Central PMCID: PMCPMC9960903. doi: 10.3390/tropicalmed8020089.
  • Choudhary E, Bullen CK, Goel R, Singh AK, Praharaj M, Thakur P, Dhiman R, Bishai WR, Agarwal N. 2020. Relative and quantitative phosphoproteome analysis of macrophages in response to infection by virulent and avirulent mycobacteria reveals a distinct role of the cytosolic Rna sensor RIG-I in Mycobacterium tuberculosis pathogenesis. J Proteome Res. 19(6):2316–2336. Epub 2020/05/15. PubMed PMID: 32407090; PubMed Central PMCID: PMCPMC8112159. doi: 10.1021/acs.jproteome.9b00895.
  • Collins AC, Cai H, Li T, Franco LH, Li X-D, Nair VR, Scharn CR, Stamm CE, Levine B, Chen ZJ, et al. 2015. Cyclic GMP-AMP Synthase Is an Innate Immune DNA Sensor for Mycobacterium tuberculosis. Cell Host Microbe. 17(6):820–828. Epub 2015/06/07. PubMed PMID: 26048137; PubMed Central PMCID: PMCPMC4499468. doi: 10.1016/j.chom.2015.05.005.
  • Cowman S, van Ingen J, Griffith DE, Loebinger MR. 2019. Non-tuberculous mycobacterial pulmonary disease. Eur Respir J. 54(1):1900250. Epub 2019/06/22. doi: 10.1183/13993003.00250-2019.
  • Cridland JA, Curley EZ, Wykes MN, Schroder K, Sweet MJ, Roberts TL, Ragan MA, Kassahn KS, Stacey KJ. 2012. The mammalian PYHIN gene family: phylogeny, evolution and expression. BMC Evol Biol. 12(1):140. Epub 20120807. PubMed PMID: 22871040; PubMed Central PMCID: PMCPMC3458909. doi: 10.1186/1471-2148-12-140.
  • Dalgic N, Tekin D, Kayaalti Z, Cakir E, Soylemezoglu T, Sancar M. 2011. Relationship between toll-like receptor 8 gene polymorphisms and pediatric pulmonary tuberculosis. Dis Markers. 31(1):33–38. PubMed PMID: 21846947; PubMed Central PMCID: PMCPMC3826908. doi: 10.3233/DMA-2011-0800.
  • de Waal AM, Hiemstra PS, Ottenhoff TH, Joosten SA, van der Does AM. 2022. Lung epithelial cells interact with immune cells and bacteria to shape the microenvironment in tuberculosis. Thorax. 77(4):408–416. Epub 20220111 PubMed PMID: 35017314; PubMed Central PMCID: PMCPMC8938665. doi: 10.1136/thoraxjnl-2021-217997.
  • de Witte CJ, van de Sande AJ, van Beekhuizen HJ, Koeneman MM, Kruse AJ, Gerestein CG. 2015. Imiquimod in cervical, vaginal and vulvar intraepithelial neoplasia: a review. Gynecol Oncol. 139(2):377–384. Epub 20150831 doi: 10.1016/j.ygyno.2015.08.018.
  • Denis M. 1991. Recombinant murine beta interferon enhances resistance of mice to systemic Mycobacterium avium infection. Infect Immun. 59(5):1857–1859. PubMed PMID: 2019446; PubMed Central PMCID: PMCPMC257927. doi: 10.1128/iai.59.5.1857-1859.1991.
  • Dey B, Dey RJ, Cheung LS, Pokkali S, Guo H, Lee J-H, Bishai WR. 2015. A bacterial cyclic dinucleotide activates the cytosolic surveillance pathway and mediates innate resistance to tuberculosis. Nat Med. 21(4):401–406. Epub 2015/03/03. PubMed PMID: 25730264; PubMed Central PMCID: PMCPMC4390473. doi: 10.1038/nm.3813.
  • Finlayson H, Lishman J, Palmer M. 2023. What’s new in childhood tuberculosis. Curr Opin Pediatr. 35(2):166–175. Epub 20230207 doi: 10.1097/MOP.0000000000001226.
  • Gallucci S, Maffei ME. 2017. DNA Sensing across the Tree of Life. Trends Immunol. 38(10):719–732. Epub 20170905 doi: 10.1016/j.it.2017.07.012.
  • Gidon A, Åsberg SE, Louet C, Ryan L, Haug M, Flo TH. 2017. Persistent mycobacteria evade an antibacterial program mediated by phagolysosomal TLR7/8/MyD88 in human primary macrophages. PloS Pathog. 13(8):e1006551. Epub 20170814. PubMed PMID: 28806745; PubMed Central PMCID: PMCPMC5570494. doi: 10.1371/journal.ppat.1006551.
  • Gray EE, Winship D, Snyder JM, Child SJ, Geballe AP, Stetson DB. 2016. The AIM2-like Receptors Are Dispensable for the Interferon Response to Intracellular DNA. Immunity. 45(2):255–266. Epub 20160802 PubMed PMID: 27496731; PubMed Central PMCID: PMCPMC4988931. doi: 10.1016/j.immuni.2016.06.015.
  • Guillerey C, Mouriès J, Polo G, Doyen N, Law HKW, Chan S, Kastner P, Leclerc C, Dadaglio G. 2012. Pivotal role of plasmacytoid dendritic cells in inflammation and NK-cell responses after TLR9 triggering in mice. Blood. 120(1):90–99. Epub 20120518 doi: 10.1182/blood-2012-02-410936.
  • Hernández-Pando R, Jeyanathan M, Mengistu G, Aguilar D, Orozco H, Harboe M, Rook GA, Bjune G. 2000. Persistence of DNA from Mycobacterium tuberculosis in superficially normal lung tissue during latent infection. Lancet. 356(9248):2133–2138. doi: 10.1016/s0140-6736(00)03493-0.
  • Hölscher C, Reiling N, Schaible UE, Hölscher A, Bathmann C, Korbel D, Lenz I, Sonntag T, Kröger S, Akira S, et al. 2008. Containment of aerogenic Mycobacterium tuberculosis infection in mice does not require MyD88 adaptor function for TLR2, -4 and -9. Eur J Immunol. 38(3):680–694. doi: 10.1002/eji.200736458.
  • Hornung V, Ablasser A, Charrel-Dennis M, Bauernfeind F, Horvath G, Caffrey DR, Latz E, Fitzgerald KA. 2009. AIM2 recognizes cytosolic dsDNA and forms a caspase-1-activating inflammasome with ASC. Nature. 458(7237):514–518. Epub 20090121 PubMed PMID: 19158675; PubMed Central PMCID: PMCPMC2726264. doi: 10.1038/nature07725.
  • Ito T, Schaller M, Hogaboam CM, Standiford TJ, Sandor M, Lukacs NW, Chensue SW, Kunkel SL. 2009. TLR9 regulates the mycobacteria-elicited pulmonary granulomatous immune response in mice through DC-derived Notch ligand delta-like 4. J Clin Invest. 119(1):33–46. Epub 20081215 PubMed PMID: 19075396; PubMed Central PMCID: PMCPMC2613456. doi: 10.1172/JCI35647.
  • Jahantigh D, Salimi S, Alavi-Naini R, Emamdadi A, Owaysee Osquee H, Farajian Mashhadi F. 2013. Association between TLR4 and TLR9 gene polymorphisms with development of pulmonary tuberculosis in Zahedan, southeastern Iran. ScientificWorldJournal. 2013:534053–534057. Epub 20130526. PubMed PMID: 23766695; PubMed Central PMCID: PMCPMC3677666. doi: 10.1155/2013/534053.
  • Keegan C, Krutzik S, Schenk M, Scumpia PO, Lu J, Pang YLJ, Russell BS, Lim KS, Shell S, Prestwich E, et al. 2018. Mycobacterium tuberculosis Transfer RNA Induces IL-12p70 via Synergistic Activation of Pattern Recognition Receptors within a Cell Network. J Immunol. 200(9):3244–3258. Epub 20180402 PubMed PMID: 29610140; PubMed Central PMCID: PMCPMC5916334. doi: 10.4049/jimmunol.1701733.
  • Keestra-Gounder AM, Nagao PE. 2023. Inflammasome activation by Gram-positive bacteria: mechanisms of activation and regulation. Front Immunol. 14:1075834. Epub 20230124. PubMed PMID: 36761775; PubMed Central PMCID: PMCPMC9902775. doi: 10.3389/fimmu.2023.1075834.
  • Khan A, Singh VK, Mishra A, Soudani E, Bakhru P, Singh CR, Zhang D, Canaday DH, Sheri A, Padmanabhan S, et al. 2020. NOD2/RIG-I Activating Inarigivir Adjuvant Enhances the Efficacy of BCG Vaccine Against Tuberculosis in Mice. Front Immunol. 11:592333. Epub 2020/12/29. PubMed PMID: 33365029; PubMed Central PMCID: PMCPMC7751440. doi: 10.3389/fimmu.2020.592333.
  • Kim BR, Kim BJ, Kook YH, Kim BJ. 2020. Mycobacterium abscessus infection leads to enhanced production of type 1 interferon and NLRP3 inflammasome activation in murine macrophages via mitochondrial oxidative stress. PloS Pathog. 16(3):e1008294. Epub 20200325. PubMed PMID: 32210476; PubMed Central PMCID: PMCPMC7094820. doi: 10.1371/journal.ppat.1008294.
  • Kruh-Garcia NA, Wolfe LM, Chaisson LH, Worodria WO, Nahid P, Schorey JS, Davis JL, Dobos KM. 2014. Detection of Mycobacterium tuberculosis peptides in the exosomes of patients with active and latent M. tuberculosis infection using MRM-MS. PloS One. 9(7):e103811. Epub 2014/08/01. PubMed PMID: 25080351; PubMed Central PMCID: PMCPMC4117584. doi: 10.1371/journal.pone.0103811.
  • Lee HJ, Kang SJ, Woo Y, Hahn TW, Ko HJ, Jung YJ. 2020. TLR7 stimulation with imiquimod induces selective autophagy and controls mycobacterium tuberculosis growth in mouse macrophages. Front Microbiol. 11:1684. Epub 20200717. PubMed PMID: 32765474; PubMed Central PMCID: PMCPMC7380068. doi: 10.3389/fmicb.2020.01684.
  • Lee MH, Kim BR, Seo H, Oh JH, Kim HL, Kim BJ. 2023. Live Mycobacterium paragordonae induces heterologous immunity of natural killer cells by eliciting type I interferons from dendritic cells via STING-dependent sensing of cyclic-di-GMP. Microbes Infect. 25(7):105144. Epub 20230427. doi: 10.1016/j.micinf.2023.105144.
  • Li Q, Liu C, Yue R, El-Ashram S, Wang J, He X, Zhao D, Zhou X, Xu L. 2019. cGAS/STING/TBK1/IRF3 Signaling Pathway Activates BMDCs Maturation Following Mycobacterium bovis Infection. Int J Mol Sci. 20(4):1–13. Epub 20190219. PubMed PMID: 30791397; PubMed Central PMCID: PMCPMC6412216. doi: 10.3390/ijms20040895.
  • Liu C, Yue R, Yang Y, Cui Y, Yang L, Zhao D, Zhou X. 2016. AIM2 inhibits autophagy and IFN-beta production during M. bovis infection. Oncotarget. 7(30):46972–46987. PubMed PMID: 27409673; PubMed Central PMCID: PMCPMC5216917. doi: 10.18632/oncotarget.10503.
  • Liu N, Pang X, Zhang H, Ji P. 2021. The cGAS-STING Pathway in Bacterial Infection and Bacterial Immunity. Front Immunol. 12:814709. Epub 20220113. PubMed PMID: 35095914; PubMed Central PMCID: PMCPMC8793285. doi: 10.3389/fimmu.2021.814709.
  • Liu S, Guan L, Peng C, Cheng Y, Cheng H, Wang F, Ma M, Zheng R, Ji Z, Cui P, et al. 2023. Mycobacterium tuberculosis suppresses host DNA repair to boost its intracellular survival. Cell Host Microbe. 31(11):1820–1836 e10. Epub 20231016 doi: 10.1016/j.chom.2023.09.010.
  • Liu YC, Simmons DP, Li X, Abbott DW, Boom WH, Harding CV. 2012. TLR2 signaling depletes IRAK1 and inhibits induction of type I IFN by TLR7/9. J Immunol. 188(3):1019–1026. Epub 20120106 PubMed PMID: 22227568; PubMed Central PMCID: PMCPMC3262948. doi: 10.4049/jimmunol.1102181.
  • Manzanillo PS, Shiloh MU, Portnoy DA, Cox JS. 2012. Mycobacterium tuberculosis activates the DNA-dependent cytosolic surveillance pathway within macrophages. Cell Host Microbe. 11(5):469–480. PubMed PMID: 22607800; PubMed Central PMCID: PMCPMC3662372. doi: 10.1016/j.chom.2012.03.007.
  • Marinho FV, Benmerzoug S, Rose S, Campos PC, Marques JT, Báfica A, Barber G, Ryffel B, Oliveira SC, Quesniaux VFJ, et al. 2018. The cGAS/STING Pathway Is Important for Dendritic Cell Activation but Is Not Essential to Induce Protective Immunity against Mycobacterium tuberculosis Infection. J Innate Immun. 10(3):239–252. Epub 20180523 PubMed PMID: 29791904; PubMed Central PMCID: PMCPMC6757162. doi: 10.1159/000488952.
  • Miyake K, Shibata T, Fukui R, Sato R, Saitoh SI, Murakami Y. 2022. Nucleic Acid Sensing by Toll-Like Receptors in the Endosomal Compartment. Front Immunol. 13:941931. Epub 20220623. PubMed PMID: 35812450; PubMed Central PMCID: PMCPMC9259784. doi: 10.3389/fimmu.2022.941931.
  • Moreira-Teixeira L, Mayer-Barber K, Sher A, O’Garra A. 2018. Type I interferons in tuberculosis: foe and occasionally friend. J Exp Med. 215(5):1273–1285. Epub 20180417 PubMed PMID: 29666166; PubMed Central PMCID: PMCPMC5940272. doi: 10.1084/jem.20180325.
  • Moreira-Teixeira L, Stimpson PJ, Stavropoulos E, Hadebe S, Chakravarty P, Ioannou M, Aramburu IV, Herbert E, Priestnall SL, Suarez-Bonnet A, et al. 2020. Type I IFN exacerbates disease in tuberculosis-susceptible mice by inducing neutrophil-mediated lung inflammation and NETosis. Nat Commun. 11(1):5566. Epub 2020/11/06. PubMed PMID: 33149141; PubMed Central PMCID: PMCPMC7643080. doi: 10.1038/s41467-020-19412-6.
  • Muleta AJ, Lappan R, Stinear TP, Greening C. 2021. Understanding the transmission of Mycobacterium ulcerans: a step towards controlling Buruli ulcer. PloS Negl Trop Dis. 15(8):e0009678. Epub 20210826. PubMed PMID: 34437549; PubMed Central PMCID: PMCPMC8389476. doi: 10.1371/journal.pntd.0009678.
  • Nair VR, Franco LH, Zacharia VM, Khan HS, Stamm CE, You W, Marciano DK, Yagita H, Levine B, Shiloh MU, et al. 2016. Microfold Cells Actively Translocate Mycobacterium tuberculosis to Initiate Infection. Cell Rep. 16(5):1253–1258. Epub 20160721 PubMed PMID: 27452467; PubMed Central PMCID: PMCPMC4972672. doi: 10.1016/j.celrep.2016.06.080.
  • Nakaya Y, Lilue J, Stavrou S, Moran EA, Ross SR. 2017. AIM2-like receptors positively and negatively regulate the interferon response induced by cytosolic DNA. mBio. 8(4):1–17. Epub 20170705. PubMed PMID: 28679751; PubMed Central PMCID: PMCPMC5573678. doi: 10.1128/mBio.00944-17.
  • Nguyen H, Gazy N, Venketaraman V. 2020. A role of intracellular toll-like receptors (3, 7, and 9) in response to Mycobacterium tuberculosis and co-infection with HIV. Int J Mol Sci. 21(17):6148. Epub 20200826. PubMed PMID: 32858917; PubMed Central PMCID: PMCPMC7503332. doi: 10.3390/ijms21176148.
  • Parisien J-P, Lenoir JJ, Mandhana R, Rodriguez KR, Qian K, Bruns AM, Horvath CM. 2018. RNA sensor LGP2 inhibits TRAF ubiquitin ligase to negatively regulate innate immune signaling. EMBO Rep. 19(6):1–14. Epub 20180416. PubMed PMID: 29661858; PubMed Central PMCID: PMCPMC5989757. doi: 10.15252/embr.201745176.
  • Prevots DR, Marras TK. 2015. Epidemiology of human pulmonary infection with nontuberculous mycobacteria: a review. Clin Chest Med. 36(1):13–34. Epub 2015/02/14. PubMed PMID: 25676516; PubMed Central PMCID: PMCPMC4332564. doi: 10.1016/j.ccm.2014.10.002.
  • Qu M, Zhou X, Li H. 2021. BCG vaccination strategies against tuberculosis: updates and perspectives. Hum Vaccin Immunother. 17(12):5284–5295. Epub 20211202 PubMed PMID: 34856853; PubMed Central PMCID: PMCPMC8903987. doi: 10.1080/21645515.2021.2007711.
  • Ramos HJ, Gale M.Jr. 2011. RIG-I like receptors and their signaling crosstalk in the regulation of antiviral immunity. Curr Opin Virol. 1(3):167–176. PubMed PMID: 21949557; PubMed Central PMCID: PMCPMC3177754. doi: 10.1016/j.coviro.2011.04.004.
  • Ranjbar S, Haridas V, Nambu A, Jasenosky LD, Sadhukhan S, Ebert TS, Hornung V, Cassell GH, Falvo JV, Goldfeld AE. 2019. Cytoplasmic RNA sensor pathways and nitazoxanide broadly inhibit intracellular Mycobacterium tuberculosis growth. iScience. 22:299–313. Epub 2019/12/06. PubMed PMID: 31805434; PubMed Central PMCID: PMCPMC6909047. doi: 10.1016/j.isci.2019.11.001.
  • Ren Z, Ding T, Zuo Z, Xu Z, Deng J, Wei Z. 2020. Regulation of MAVS expression and signaling function in the antiviral innate immune response. Front Immunol. 11:1030. Epub 20200527. PubMed PMID: 32536927; PubMed Central PMCID: PMCPMC7267026. doi: 10.3389/fimmu.2020.01030.
  • Ruangkiattikul N, Nerlich A, Abdissa K, Lienenklaus S, Suwandi A, Janze N, Laarmann K, Spanier J, Kalinke U, Weiss S, et al. 2017. cGAS-STING-TBK1-IRF3/7 induced interferon-beta contributes to the clearing of non tuberculous mycobacterial infection in mice. Virulence. 8(7):1303–1315. Epub 20170419 PubMed PMID: 28422568; PubMed Central PMCID: PMCPMC5711412. doi: 10.1080/21505594.2017.1321191.
  • Sabir N, Hussain T, Shah SZA, Zhao D, Zhou X. 2017. IFN-beta: a contentious player in host-pathogen interaction in tuberculosis. Int J Mol Sci. 18(12):2725. Epub 2017/12/21. PubMed PMID: 29258190; PubMed Central PMCID: PMCPMC5751326. doi: 10.3390/ijms18122725.
  • Saiga H, Kitada S, Shimada Y, Kamiyama N, Okuyama M, Makino M, Yamamoto M, Takeda K. 2012. Critical role of AIM2 in Mycobacterium tuberculosis infection. Int Immunol. 24(10):637–644. Epub 2012/06/15. doi: 10.1093/intimm/dxs062.
  • Schorey JS, Cheng Y, Singh PP, Smith VL. 2015. Exosomes and other extracellular vesicles in host-pathogen interactions. EMBO Rep. 16(1):24–43. Epub 2014/12/10. PubMed PMID: 25488940; PubMed Central PMCID: PMCPMC4304727. doi: 10.15252/embr.201439363.
  • Schorey JS, Schlesinger LS. 2016. Innate immune responses to tuberculosis. Microbiol Spectr. 4(6):1–21. Epub 2017/01/15. doi: 10.1128/microbiolspec.TBTB2-0010-2016.
  • Schurz H, Daya M, Möller M, Hoal EG, Salie M. 2015. TLR1, 2, 4, 6 and 9 variants associated with tuberculosis susceptibility: a systematic review and meta-analysis. PloS One. 10(10):e0139711. Epub 20151002. PubMed PMID: 26430737; PubMed Central PMCID: PMCPMC4592262. doi: 10.1371/journal.pone.0139711.
  • Shah S, Bohsali A, Ahlbrand SE, Srinivasan L, Rathinam VAK, Vogel SN, Fitzgerald KA, Sutterwala FS, Briken V. 2013. Cutting edge: mycobacterium tuberculosis but not nonvirulent mycobacteria inhibits IFN-beta and AIM2 inflammasome-dependent IL-1beta production via its ESX-1 secretion system. J Immunol. 191(7):3514–3518. Epub 20130830 PubMed PMID: 23997220; PubMed Central PMCID: PMCPMC3799997. doi: 10.4049/jimmunol.1301331.
  • Singh PP, Li L, Schorey JS. 2015. Exosomal RNA from Mycobacterium tuberculosis-infected cells is functional in recipient macrophages. Traffic. 16(6):555–571. Epub 2015/03/11. PubMed PMID: 25753779; PubMed Central PMCID: PMCPMC5735426. doi: 10.1111/tra.12278.
  • Smyth R, Berton S, Rajabalee N, Chan T, Sun J. 2020. Protein kinase R restricts the intracellular survival of Mycobacterium tuberculosis by promoting selective autophagy. Front Microbiol. 11:613963. Epub 20210122. PubMed PMID: 33552025; PubMed Central PMCID: PMCPMC7862720. doi: 10.3389/fmicb.2020.613963.
  • Sousa J, Cá B, Maceiras AR, Simões-Costa L, Fonseca KL, Fernandes AI, Ramos A, Carvalho T, Barros L, Magalhães C, et al. 2020. Mycobacterium tuberculosis associated with severe tuberculosis evades cytosolic surveillance systems and modulates IL-1beta production. Nat Commun. 11(1):1949. Epub 20200423. PubMed PMID: 32327653; PubMed Central PMCID: PMCPMC7181847. doi: 10.1038/s41467-020-15832-6.
  • Speth MT, Repnik U, Müller E, Spanier J, Kalinke U, Corthay A, Griffiths G. 2017. Poly(I: c)-Encapsulating nanoparticles enhance innate immune responses to the tuberculosis vaccine Bacille Calmette-Guerin (BCG) via synergistic activation of innate immune receptors. Mol Pharm. 14(11):4098–4112. Epub 20171019 doi: 10.1021/acs.molpharmaceut.7b00795.
  • Srivastava S, Dey S, Mukhopadhyay S. 2023. Vaccines against tuberculosis: where are we now? Vaccines (Basel). 11(5):1–23. Epub 20230522. PubMed PMID: 37243117; PubMed Central PMCID: PMCPMC10223910. doi: 10.3390/vaccines11051013.
  • Stout JE, Koh WJ, Yew WW. 2016. Update on pulmonary disease due to non-tuberculous mycobacteria. Int J Infect Dis. 45:123–134. Epub 2016/03/16. doi: 10.1016/j.ijid.2016.03.006.
  • Su SB, Silver PB, Grajewski RS, Agarwal RK, Tang J, Chan C-C, Caspi RR. 2005. Essential role of the MyD88 pathway, but nonessential roles of TLRs 2, 4, and 9, in the adjuvant effect promoting Th1-mediated autoimmunity. J Immunol. 175(10):6303–6310. doi: 10.4049/jimmunol.175.10.6303.
  • Sugawara-Mikami M, Tanigawa K, Kawashima A, Kiriya M, Nakamura Y, Fujiwara Y, Suzuki K. 2022. Pathogenicity and virulence of Mycobacterium leprae. Virulence. 13(1):1985–2011. PubMed PMID: 36326715; PubMed Central PMCID: PMCPMC9635560. doi: 10.1080/21505594.2022.2141987.
  • Tang J, Sun M, Shi G, Xu Y, Han Y, Li X, Dong W, Zhan L, Qin C. 2017. Toll-like receptor 8 agonist strengthens the protective efficacy of ESAT-6 immunization to Mycobacterium tuberculosis infection. Front Immunol. 8:1972. Epub 20180124. PubMed PMID: 29416532; PubMed Central PMCID: PMCPMC5787779. doi: 10.3389/fimmu.2017.01972.
  • Tang J, Zhan L, Qin C. 2016. Inhibition of TLR8 mediated signaling promotes BCG induced apoptosis in THP-1 cells. Microb Pathog. 93:78–82. Epub 20151130 doi: 10.1016/j.micpath.2015.11.028.
  • Thada S, Horvath GL, Müller MM, Dittrich N, Conrad ML, Sur S, Hussain A, Pelka K, Gaddam SL, Latz E, et al. 2021. Interaction of TLR4 and TLR8 in the innate immune response against Mycobacterium tuberculosis. Int J Mol Sci. 22(4):1560. Epub 20210204. PubMed PMID: 33557133; PubMed Central PMCID: PMCPMC7913854. doi: 10.3390/ijms22041560.
  • Thoresen D, Wang W, Galls D, Guo R, Xu L, Pyle AM. 2021. The molecular mechanism of RIG-I activation and signaling. Immunol Rev. 304(1):154–168. Epub 20210912 PubMed PMID: 34514601; PubMed Central PMCID: PMCPMC9293153. doi: 10.1111/imr.13022.
  • Tkachuk AP, Gushchin VA, Potapov VD, Demidenko AV, Lunin VG, Gintsburg AL. 2017. Multi-subunit BCG booster vaccine GamTBvac: Assessment of immunogenicity and protective efficacy in murine and guinea pig TB models. PloS One. 12(4):e0176784. Epub 20170428. PubMed PMID: 28453555; PubMed Central PMCID: PMCPMC5409163. doi: 10.1371/journal.pone.0176784.
  • To K, Cao R, Yegiazaryan A, Owens J, Venketaraman V. 2020. General overview of nontuberculous mycobacteria opportunistic pathogens: mycobacterium avium and mycobacterium abscessus. J Clin Med. 9(8):2541. Epub 20200806. PubMed PMID: 32781595; PubMed Central PMCID: PMCPMC7463534. doi: 10.3390/jcm9082541.
  • Troy A, Esparza-Gonzalez SC, Bartek A, Creissen E, Izzo L, Izzo AA. 2020. Pulmonary mucosal immunity mediated through CpG provides adequate protection against pulmonary Mycobacterium tuberculosis infection in the mouse model. A role for type I interferon. Tuberculosis (Edinb). 123:101949. Epub 20200606. PubMed PMID: 32741537; PubMed Central PMCID: PMCPMC7399211. doi: 10.1016/j.tube.2020.101949.
  • Van Dis E, Sogi KM, Rae CS, Sivick KE, Surh NH, Leong ML, Kanne DB, Metchette K, Leong JJ, Bruml JR, et al. 2018. STING-activating adjuvants elicit a Th17 immune response and protect against Mycobacterium tuberculosis infection. Cell Rep. 23(5):1435–1447. PubMed PMID: 29719256; PubMed Central PMCID: PMCPMC6003617. doi: 10.1016/j.celrep.2018.04.003.
  • Vanino E, Granozzi B, Akkerman OW, Munoz-Torrico M, Palmieri F, Seaworth B, Tiberi S, Tadolini M. 2023. Update of drug-resistant tuberculosis treatment guidelines: a turning point. Int J Infect Dis. 130 Suppl 1(Suppl 1):S12–S15. Epub 20230312. doi: 10.1016/j.ijid.2023.03.013.
  • Varzari A, Deyneko IV, Vladei I, Grallert H, Schieck M, Tudor E, Illig T. 2019. Genetic variation in TLR pathway and the risk of pulmonary tuberculosis in a Moldavian population. Infect Genet Evol. 68:84–90. Epub 20181205 doi: 10.1016/j.meegid.2018.12.005.
  • Wang J, Gao J, Huang C, Jeong S, Ko R, Shen X, Chen C, Zhong W, Zou Y, Yu B, et al. 2022. Roles of AIM2 gene and AIM2 inflammasome in the pathogenesis and treatment of psoriasis. Front Genet. 13:929162. Epub 20220902. PubMed PMID: 36118867; PubMed Central PMCID: PMCPMC9481235. doi: 10.3389/fgene.2022.929162.
  • Wang MG, Zhang MM, Wang Y, Wu SQ, Zhang M, He JQ. 2018. Association of TLR8 and TLR9 polymorphisms with tuberculosis in a Chinese Han population: a case-control study. BMC Infect Dis. 18(1):561. Epub 20181113. PubMed PMID: 30424735; PubMed Central PMCID: PMCPMC6234681. doi: 10.1186/s12879-018-3485-y.
  • Wassermann R, Gulen MF, Sala C, Perin SG, Lou Y, Rybniker J, Schmid-Burgk JL, Schmidt T, Hornung V, Cole ST, et al. 2015. Mycobacterium tuberculosis differentially activates cGAS- and inflammasome-dependent intracellular immune responses through ESX-1. Cell Host Microbe. 17(6):799–810. Epub 20150602 doi: 10.1016/j.chom.2015.05.003.
  • Watson RO, Bell SL, MacDuff DA, Kimmey JM, Diner EJ, Olivas J, Vance RE, Stallings CL, Virgin HW, Cox JS, et al. 2015. The cytosolic sensor cGAS detects Mycobacterium tuberculosis DNA to induce type I interferons and activate autophagy. Cell Host Microbe. 17(6):811–819. Epub 2015/06/07. PubMed PMID: 26048136; PubMed Central PMCID: PMCPMC4466081. doi: 10.1016/j.chom.2015.05.004.
  • Wiens KE, Ernst JD. 2016. The mechanism for type I interferon induction by Mycobacterium tuberculosis is bacterial strain-dependent. PloS Pathog. 12(8):e1005809. Epub 20160808. PubMed PMID: 27500737; PubMed Central PMCID: PMCPMC4976988. doi: 10.1371/journal.ppat.1005809.
  • Yamashiro LH, Oliveira SC, Báfica A. 2014. Innate immune sensing of nucleic acids from mycobacteria. Microbes Infect. 16(12):991–997. Epub 20141002 doi: 10.1016/j.micinf.2014.09.006.
  • Zaks K, Jordan M, Guth A, Sellins K, Kedl R, Izzo A, Bosio C, Dow S. 2006. Efficient immunization and cross-priming by vaccine adjuvants containing TLR3 or TLR9 agonists complexed to cationic liposomes. J Immunol. 176(12):7335–7345. doi: 10.4049/jimmunol.176.12.7335.
  • Zhuang L, Ye Z, Li L, Yang L, Gong W. 2023. Next-generation TB vaccines: progress, challenges, and prospects. Vaccines (Basel). 11(8):1–56. Epub 20230731. PubMed PMID: 37631874; PubMed Central PMCID: PMCPMC10457792. doi: 10.3390/vaccines11081304.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.