447
Views
19
CrossRef citations to date
0
Altmetric
Original Articles

Composites of Proton-Conducting Polymer Electrolyte Membrane in Direct Methanol Fuel Cells

, &
Pages 51-66 | Published online: 17 May 2007

REFERENCES

  • Chalk , S. G. , Miller , J. F. and Wagner , F. W. 2000 . Challenges for fuel cells in transport applications . Journal of Power Sources , 86 : 40
  • Charnah , R. M. 2000 . Fuel cell drives for road vehicles . Journal of Power Sources , 86 : 130
  • Sattler , G. 2000 . Fuel cells going on-board . Journal of Power Sources , 86 : 61
  • Rastler , D. 2000 . Challenges for fuel cells as stationary power resource in the evolving energy enterprise . Journal of Power Sources , 86 : 34
  • King , J. M. and O'Day , M. J. 2000 . Applying fuel cell experience to sustainable power products . Journal of Power Sources , 86 : 16
  • Hart , D. 2000 . Sustainable energy conversion: fuel cells—the competitive option? . Journal of Power Sources , 86 : 23
  • Kreuer , K. D. 1997 . On the development of proton conducting materials for technological applications . Solid State Ionics , 97 : 1
  • Gonsalves , A. Tech Web Technology News http://www.techweb.com/wire/mobile
  • Chu , D. , Jiang , R. , Gardner , K. , Jacobs , R. , Schmidt , J. , Quakenbush , T. and Stephens , J. 2001 . Polymer electrolyte membrane fuel cells for communication applications . Journal of Power Sources , 96 : 174
  • Wee , J. H. 2006 . Which type of fuel cell is more competitive for portable application: Direct methanol fuel cells or direct borohydride fuel cells? . Journal of Power Sources , 161 : 1
  • Baentsch , F. 2000 . Liberalisation—challenges and opportunities for fuel cells . Journal of Power Sources , 86 : 84
  • Connolly , D. J. , Longwood and Gresham , W. F. U.S. Patent 3282875 . 1966 .
  • Savadogo , O. 2004 . Emerging membranes for electrochemical systems: Part II. High temperature composite membranes for polymer electrolyte fuel cell (PEFC) applications . Journal of Power Sources , 127 : 135
  • Jannasch , P. 2003 . Recent developments in high-temperature proton conducting polymer electrolyte membranes . Current Opinion in Colloid and Interface Science , 8 : 96
  • Fuel Cell Test and Evaluation Center , The U.S. Department of Defense (DoD) . http://www.fctec.com
  • Gebel , G. and Lambard , J. 1997 . Small-angle scattering study of water-swollen perfluorinated ionomer membranes . Macromolecules , 30 : 7914
  • Gebel , G. 2000 . Structural evolution of water swollen perfluorosulfonated ionomers from dry membrane to solution . Polymer , 41 : 5829
  • Eigen , M. 1963 . Proton transfer, acid-base catalysis, and enzymic hydrolysis . Angewandte Chemie , 75 : 489
  • Kreuer , K. D. 2001 . On the development of proton conducting polymer membranes for hydrogen and methanol fuel cells . Journal of Membrane Science , 185 : 29
  • Kreuer , K. D. 2000 . On the complexity of proton conduction phenomena . Solid State Ionics , 149 : 136 – 137 .
  • Steck , A. E. and Stone , C. Development of BAM membrane for fuel cell applications . Proceedings of the Second International Symposium on New Materials for Fuel Cell and Modern Battery Systems . Edited by: Savadago , O. , Roberge , P. R. , Savadago , O. and Roberge , P. R. July 6–10 . pp. 792 Montreal
  • Yoshida , N. , Ishisaki , T. , Watakabe , A. and Yoshitake , M. 1998 . Characterization of Flemion® membranes for PEFC . Elcetrochimica Acta , 43 : 3749
  • Din , X. D. and Michaelides , E. E. 1998 . Transport processes of water and protons through micropores . AlChE Journal , 44 : 35
  • Weber , A. Z. and Newman , J. 2003 . Transport in polymer-electrolyte membranes . Journal of the Electrochemical Society , 150 : A1008
  • Motupally , S. , Becker , A. J. and Weidner , J. W. 2000 . Diffusion of Water in Nafion 115 membranes . Journal of Electrochemical Society , 147 : 3171
  • Ren , X. , Springer , T. E. and Gottesfeld , S. 2000 . Water and methanol uptakes in Nafion membranes and membrane effects on direct methanol cell performance . Journal of Electrochemical Society , 147 : 92
  • Barragan , V. M. , Ruiz-Bauza , C. , Villaluenga , J. P. G. and Seoane , B. 2004 . Transport of methanol and water through Nafion membranes . Journal of Power Sources , 130 : 22
  • Sakari , T. , Takenaka , H. , Wakabayashi , N. , Kawami , Y. and Tori , K. 1985 . Gas permeation properties of solid polymer electrolyte (SPE), membranes . Journal of Electrochemical Society , 132 : 1328
  • Gilpa , X. and Hogarth , M. 2001 . Department of Trade and Industry (UK) Homepage http://ww.dtigov.uk/renewable/pdf/f0200189.pdf
  • Adjemian , K. T. , Lee , S. J. , Srinivasan , S. , Benziger , J. and Bocarsly , A. B. 2002 . Investigation of PEMFC operation above 100°C employing perfluorosulfonic acid silicon oxide composite membranes . Journal of Power Sources , 109 : 356
  • Yeo , S. C. and Eisenberg , A. 1997 . Physical properties and supermolecular structure of perfluorinated ion-containing (nafion) polymers . Journal of Applied Polymer Science , 21 : 875
  • Jung , D. H. , Bun , M. Y. , Young , C. S. , Shin , D. R. and Peck , D. H. 2001 . A performance evaluation of direct methanol fuel cell using impregnated tetraethyl-orthosilicate in cross-linked polymer membrane . International Journal of Hydrogen Energy , 26 : 1263
  • Kordesch , K. , Hacker , V. and Bachhiesl , U. 2001 . Direct methanol—air fuel cells with membranes plus circulating electrolyte . Journal of Power Sources , 96 : 200
  • Kreuer , K. D. 2001 . On the development of proton conducting polymer membranes for hydrogen and methanol fuel cells . Journal of Membrane Science , 185 : 29
  • Feser , J. P. , Prasad , A. K. and Advani , S. G. 2006 . Experimental characterization of in-plane permeability of gas diffusion layers . Journal of Power Sources , 162 : 1226
  • Kundu , P. P. and Pal , A. 2006 . Reviews in Chemical Engineering , 22 : 125
  • Roziere , J. and Jones , D. J. 2003 . Non-fluorinated polymer materials for proton exchange membrane fuel cells . Annual Reviews of Materials Research , 33 : 503
  • Kerres , J. A. 2005 . Blended and cross-linked ionomer membranes for application in membrane fuel cells . Fuel Cells , 5 : 230
  • Arico , A. S. , Baglio , V. , Di-Blasi , A. and Antonucci , V. 2004 . Symposium K: Solid-State Ionics Fuel Cells: PEM and SOFC . Materials Research Society ,
  • Traversa , E. and Licoccia , S. 2006 . Increasing the operation temperature of polymer electrolyte membranes for fuel cell: From nanocomposites to hybrids . Journal of Power Sources , 159 : 12
  • Lin , C. W. , Fan , K. C. and Thangamuthu , R. 2006 . Preparation and characterization of high selectivity organic-inorganic hybrid-laminated Nfion 115 membranes for DMFC . Journal of Membrane Science , 278 : 437
  • Kim , H. J. , Kim , H. J. , Shul , Y. G. and Han , H. S. 2004 . Journal of Power Sources , 135 : 66
  • Park , Y. S. and Yamazaki , Y. 2006 . Low water/methanol permeable Nafion/CHP organic-inorganic composite membrane with high crystallinity . European Polymer Journal , 42 : 375
  • Ren , S. , Sun , G. , Li , C. , Song , S. , Xin , Q. and Yang , X. 2006 . Sulfated zirconia-Nafion composite membranes for high temperature direct methanol fuel cells . Journal of Power Sources , 157 : 724
  • Li , X. 2005 . Principles of Fuel Cells , New York : Taylor & Francis .
  • Kim , H. J. , Shul , Y. G. and Han , H. 2006 . Sulfonic-functionalized heteropolyacid-silica nanoparticles for high temperature operation of a direct methanol fuel call . Journal of Power Sources , 158 : 137
  • Lee , K. , Nam , J. H. , Lee , J. H. , Lee , Y. , Cho , S. M. , Jung , C. H. , Choi , H. G. , Chang , Y. Y. , Kwon , Y. U. and Nam , J. D. 2005 . Methanol and proton transport control by using layered double hydroxide nanoplatelets for direct methanol fuel cell . Electrochemistry Communications , 7 : 113
  • Bauer , F. and Porada , M. W. 2006 . Comparison between Nafion and a Nafion zirconium phosphate nanocomposite in fuel cell applications . Fuel Cells , 6 : 261
  • Rhee , C. H. , Kim , Y. , Lee , J. S. , Kim , H. K. and Chang , H. 2006 . Nanocomposite membranes of surface-sulfonated titanate and Nafion for direct methanol fuel cells . Journal of Power Sources , 159 : 1015
  • Song , M. K. , Park , S. B. , Kim , Y. T. , Kim , K. H. , Min , S. K. and Rhee , H. W. 2004 . Characterization of polymer-layered silicate nanocomposite membranes for direct methanol fuel cells . Electrochimica Acta , 50 : 639
  • Jung , D. H. , Cho , S. Y. , Peck , D. H. , Shin , D. R. and Kim , J. S. 2003 . Preparation and performance of a Nafion/montmorillonite nanocomposite membrane for direct methanol fuel cell . Journal of Power Sources , 118 : 205
  • Liu , J. , Wang , H. , Cheng , S. and Chan , K. Y. 2005 . Nafion-polyfurfuryl alcohol nanocomposite membranes for direct methanol fuel cells . Journal of Membrane Science , 246 : 95
  • Shen , Y. , Qiu , X. , Shen , J. , Xi , J. and Zhu , W. 2006 . PVDF-g-PSSA and Al2O3 composite proton exchange membranes . Journal of Power Sources , 161 : 54
  • Jung , B. , Kim , B. and Yang , J. M. 2004 . Transport of methanol and protons through partially sulfonated polymer blend membranes for direct methanol fuel cell . Journal of Membrane Science , 245 : 61
  • Bae , B. and Kim , D. 2003 . Sulfonated polystyrene grafted polypropylene composite electrolyte membranes for direct methanol fuel cells . Journal of Membrane Science , 220 : 75
  • Tricoli , V. 1998 . Proton and methanol transport in poly(perfluorosulfonate) membranes containing Cs+ and H+cations . Journal of the Electrochemical Society , 145 : 3798
  • Hatanaka , T. , Hasegawa , N. , Kamiya , A. , Kawasumi , M. , Morimoto , Y. and Kawahara , K. 2002 . Cell performances of direct methanol fuel cells with grafted membranes . Fuel , 81 : 2173
  • Shin , J. P. , Chang , B. J. , Kim , J. H. , Lee , S. B. and Suh , D. H. 2005 . Sulfonated polystyrene/PTFE composite membranes . Journal of Membrane Science , 251 : 247
  • Honma , I. , Hirakawa , S. , Yamada , K. and Bae , J. M. 1999 . Synthesis of organic/inorganic nanocomposites protonic conducting membrane through sol-gel processes . Solid State Ionics , 118 : 29
  • Chang , H. Y. and Lin , C. W. 2003 . Roton conducting membranes based on PEG/SiO2 nanocomposites for direct methanol fuel cells . Journal of Membrane Science , 218 : 295
  • Samitha , B. , Sridhar , S. and Khan , A. A. 2005 . Proton conducting composite membranes from polysulfone and heteropolyacid for fuel cell applications . Journal of Polymer Science: Part B: Polymer Physics , 43 : 1538
  • Tan , A. R. , de Carvalho , L. M. and Gomes , A. D. S. 2005 . Nanostructured proton-conducting membranes for fuel cell applications . Macromolecular Symposium , 229 : 168
  • Pefkianakis , E. K. , Deimede , V. , Daletou , M. K. , Gourdoupi , N. and Kallitsis , J. K. 2005 . Novel polymer electrolyte membrane, based on pyridine containing poly(ether sulfone), for application in high temperature fuel cells . Macromolecular Rapid Communications , 26 : 1724
  • Wang , Z. , Ni , H. , Zhao , C. , Li , X. , Fu , T. and Na , H. 2006 . Investigation of sulfonated poly(ether ether ketone sulfone)/heteropolyacid composite membranes for high temperature fuel cell applications . Journal of Polymer Science: Part B: Polymer Physics , 44 : 1967
  • Hill , M. L. , Kim , Y. S. , Einsla , B. R. and McGrath , J. E. 2006 . Zirconium hydrogen phosphate/disulfonated poly(arylene ether sulfone) copolymer composite membranes for proton exchange membrane fuel cells . Journal of Membrane Science , 283 : 102
  • Karthikeyan , C. S. , Nunes , S. P. , Prado , L. A. S. A. , Ponce , M. L. , Silva , S. , Ruffmann , B. and Schulte , K. 2005 . Polymer nanocomposite membranes for DMFC application . Journal of Membrane Science , 254 : 139
  • Nunes , S. P. , Ruffmann , B. , Rikowski , E. , Vetter , S. and Richau , K. 2002 . Inorganic modification of proton conductive polymer membranes for direct methanol fuel cells . Journal of Membrane Science , 203 : 215
  • Ruffmann , B. , Silva , H. , Schulte , B. and Nunes , S. P. 2003 . Organic/inorganic composite membranes for application in DMFC . Solid State Ionics , 162–163 : 269
  • Ponce , M. L. , Prado , L. A. S. A. , Silva , V. and Nunes , S. P. 2004 . Membranes for direct methanol fuel cell based on modified heteropolyacids . Desalination , 162 : 383
  • Silva , V. S. , Ruffmann , B. , Vetter , S. , Mendes , A. , Madeira , L. M. and Nunes , S. P. 2005 . Characterization and application of composite membranes in DMFC . Catalysis Today , 104 : 205
  • Silva , V. S. , Weisshaar , S. , Reissner , R. , Ruffmann , B. , Vetter , S. , Mendes , A. , Madeira , L. M. and Nunes , S. P. 2005 . Performance and efficiency of a DMFC using non-fluorinated composite membranes operating at low/medium temperatures . Journal of Power Sources , 145 : 485
  • Karthikeyan , C. S. , Nunes , S. P. and Schulte , K. 2006 . Permeability and conductivity studies on ionomer-polysilsesquioxane hybrid materials . Macromolecular Chemistry and Physics , 207 : 336
  • Gaowen , Z. and Zhentao , Z. 2005 . Organic/inorganic composite membranes for application in DMFC . Journal of Membrane Science , 261 : 107
  • Krishnan , P. , Park , J. S. and Kim , C. S. 2006 . Preparation of proton-conducting sulfonated poly(ether ether ketone)/boron phosphate composite membranes by an in situ sol-gel process . Journal of Membrane Science , 279 : 220
  • Su , Y. H. , Liu , Y. L. , Sun , Y. M. , Lai , J. Y. , Guiver , M. D. and Gao , Y. 2005 . Using silica nanoparticles for modifying sulfonated poly(phthalazinone ether ketone) membrane for direct methanol fuel cell: A significant improvement on cell performance . Journal of Power Sources , 155 : 111
  • Zaidi , S. M. J. and Ahmad , M. I. 2006 . Novel SPEEK/heteropolyacids loaded MCM-41 composite membranes for fuel cell applications . Journal of Membrane Science , 279 : 548
  • Park , Y. and Nagai , M. 2001 . Proton exchange nanocomposite membranes based on 3-glycidoxypropyltrimethoxysilane, silicotungstic acid and α -zirconium phosphate hydrate . Solid State Ionics , 145 : 149
  • Halla , J. D. , Mamak , M. , Williams , D. E. and Ozin , G. A. 2003 . Meso-SiO2-C12EO10OH-CF3SO3H-A novel proton conducting solid electrolyte . Advanced Functional Materials , 13 : 133
  • Munakata , H. , Chiba , H. and Kanumura , K. 2005 . Enhancement on proton conductivity of inorganic-organic composite electrolyte membrane by addition of sulfonic acid group . Solid State Ionics , 176 : 2445
  • Nagai , M. and Chiba , Y. 2005 . Fabrication and evaluation of inorganic-organic composite protonic conductors using inorganic sols as a dispersoid . Solid State Ionics , 176 : 2995
  • Wang , S. , Otomo , J. , Ogura Wen , C. , Nagamoto , H. and Takahashi , H. 2005 . Preparation and characterization of proton-conducting CsHSO4-SiO2 nanocomposite electrolyte membranes . Solid State Ionics , 176 : 755
  • Matsuda , A. , Nakamoto , N. , Tadanaga , K. , Minami , T. and Tatsumisago , M. 2006 . Operation of PEFC using composite sheets composed of phosphosilicate gels and thermally stable organic polymers . Solid State Ionics , 177 : 2437
  • Asensio , J. A. , Borros , S. and Romero , P. D. 2004 . Sulfonated poly(2,5-benzimidazole) (SABPBI) impregnated with phosphoric acid as proton conducting membranes for polymer electrolyte fuel cells . Electrochimica Acta , 49 : 4461
  • He , R. , Li , Q. , Bach , A. , Jensen , J. O. and Bjerrum , N. J. 2006 . Physicochemical properties of phosphoric acid doped Polybenzimidazole membranes for fuel cells . Journal of Membrane Science , 277 : 38
  • Daletou , M. K. , Gourdoupi , N. and Kallitsis , J. K. 2005 . Proton conducting membranes based on blends of PBI with aromatic polyethers containing pyridine units . Journal of Membrane Science , 252 : 115
  • Yamazaki , Y. , Jang , M. Y. and Taniyama , T. 2004 . Proton conductivity of zirconium tricarboxybutylphosphonate/PBI nanocomposite membrane . Science and Technology of Advanced Materials , 5 : 455
  • Jang , M. Y. and Yamazaki , Y. 2005 . Preparation and characterization of composite membranes composed of zirconium tricarboxybutylphosphonate and Polybenzimidazole for intermediate temperature operation . Journal of Power Sources , 139 : 2

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.