1,608
Views
53
CrossRef citations to date
0
Altmetric
Original Articles

Carbon-Based Materials: Growth, Properties, MEMS/NEMS Technologies, and MEM/NEM Switches

&
Pages 66-101 | Published online: 09 Jun 2011

REFERENCES

  • International Technology Roadmap for Semiconductors, 2009, 2010. http://www.itrs.net/Links/2009ITRS/Home2009.htm
  • Ekinci , K. L. and Roukes , M. L. 2005 . Nanoelectromechanical systems . Rev. Sci. Instrum , 76 : 061101
  • Korvink , J. G. and Paul , O. 2006 . MEMS: A Practical Guide to Design, Analysis and Applications , Norwich , NY : Springer .
  • Saya , D. , Fukushima , K. , Toshiyoshi , H. , Hashiguchi , G. , Fujita , H. and Kawakatsu , H. 2002 . ‘Fabrication of single-crystal Si cantilever array’ . Sen. Act. A. Phys. , 95 : 281
  • Sandia Corporation, 2005–2008. http://mems.sandia.gov/
  • Berman , D. , Walker , M. J. and Krim , J. 2008 . Contact voltage induced softening of RF microelectromechanical system gold-on-gold contacts at cryogenic temperatures . J. Appl. Phys. , 108 : 044307
  • Varadan , V. K. , Vinoy , K. J. and Jose , K. A. 2003 . RF MEMS and Their Applications , Chichester , , England : John Wiley & Sons Ltd .
  • Peterson , K. E. 1979 . micromechanical membrane switches on Si . IBM J. R&D. , 23 : 376
  • Zinck , C. , Pinceau , D. , Defaÿ , E. , Delevoye , E. and Barbier , D. 2004 . Development and characterization of membranes actuated by a PZT thin film for MEMS applications . Sens. Act. A , 115 : 483
  • Roberto , V. , Lee , S. H. , Sun , Y. and Li , D. 2006 . An in-plane, bi-directional lectrothermal MEMS actuator . J. Micromech. Microeng. , 16 : 2067
  • Yao , J. Y. 2000 . RF MEMS from a device perspective . J. Micromech. Microeng , 10 : R9
  • Zorman , C. A. and Parro , R. J. 2008 . Micro- and nanomechanical structures for silicon carbide MEMS and NEMS . Phys. Stat. Solidi. , (b) 245 : 1404
  • Cimalla , V. , Pezoldt , J. and Ambacher , O. 2007 . Group III nitride and SiC based MEMS and NEMS: materials properties, technology and applications . J. Phys. D: Appl. Phys. , 40 : 6386
  • Kasu , M. , Ueda , K. , Yamauchi , Y. , Tallaire , A. and Makimoto , T. 2007 . Diamond-based RF power transistors: Fundamentals and applications . Diamond Relat. Mat. , 16 : 1010
  • Koizumi , S. , Watanabe , S. K. , Hasegawa , M. and Kanda , H. 2001 . Ultraviolet emission from a diamond pn junction . Science , 1899 : 292
  • Liao , M. Y. , Koide , Y. and Alvarez , J. 2007 . Single Schottky-barrier photodiode with interdigitated-finger geometry: Application to diamond . Appl. Phys. Lett. , 90 : 123507
  • Shikata , S. , Ikeda , K. , Kumaresan , R. , Umezawa , H. and Tatsumi , N. 2009 . Recent progress of diamond device toward power application . Mater. Sci. Forum , 615/617 : 999
  • Kohn , E. , Gluche , P. and Adamschik , M. 1999 . Diamond MEMS—a new emerging technology . Diamond Relat. Mater. , 8 : 934
  • Sepulveda , N. , Lu , J. , Aslam , D. M. and Sullivan , J. P. 2008 . High-performance polycrystalline diamond micro- and nanoresonators . J. Microelectromech. Syst. , 17 : 473
  • Yamamoto , A. , Norio , N. and Takahiro , T. 2007 . Evaluation of diamond gauge factor up to 500 °C . Diamond Relat. Mater. , 16 : 1670
  • Lee , S. T. , Lin , Z. D. and Jiang , X. 1999 . CVD diamond films: nucleation and growth . Mater. Sci. Eng. R , 25 : 123
  • Teraji , T. 2006 . Chemical vapor deposition of homoepitaxial diamond films . Phys. Stat. Sol. , (a) 13 : 3324
  • Matsumoto , S. , Sato , Y. , Kamo , M. and Setaka , N. 1982 . Vapor deposition of diamond particles from methane . Jpn. J. Appl. Phys. , 21 : L183
  • Kamo , M. , Sato , Y. , Matsumoto , S. and Setaka , N. 1983 . Diamond synthesis from gas-phase in microwave plasma . J. Cryst. Growth , 62 : 642
  • Chen , G. C. , Lan , H. , Li , B. , Dai , F. W. , Askari , S. J. , Song , J. H. , Hei , L. F. , Tang , W. Z. and Lu , X. F. 2007 . Growth feature of layered self-standing diamond films by DC arc plasma jet CVD . J. Cryst. Growth. , 309 : 86
  • Ikada , R. and Lizuka , S. 2005 . Nanocrystalline diamond formation by using an inductively coupled radio-frequency CH4/H2/Ar plasma . Diamond Relat. Mater. , 14 : 446
  • Hara , T. , Yoshitake , T. , Fukugawa , T. , Kubo , H. , Itakura , M. , Kuwano , N. , Tomokiyo , Y. and Nagayama , K. 2006 . Ultrananocrystalline diamond prepared by pulsed laser deposition . Diamond Relat. Mater. , 15 : 649
  • Okumura , Y. , Kanayama , K. and Shogaki , K. 2010 . Electrical characteristic of diamond film synthesized by combustion flame . Combust. Flame , 157 : 1052
  • Gruen , D. M. , Shenderova , O. A. and Vul , A. Ya. 2005 . Synthesis, Properties and Applications of Ultrananocrystalline Diamond , Berlin : Springer .
  • Auciello , O. , Birrel , J. , Carlisle , J. A. , Gerbi , J. E. , Xiao , X. C. , Pei , B. and Espinosa , H. D. 2004 . Materials science and fabrication process for a new MEMS technology based on ultrananocrystalline diamond thin films . J. Phys. Condens. Matter , 16 : R539
  • Birrel , J. , Carlisle , J. A. , Auciello , O. , Gruen , D. M. and Gibson , J. M. 2002 . Morphology and electronic structure in nitrogen-doped ultrananocrystalline diamond . Appl. Phys. Lett. , 81 : 2235
  • Okushi , H. , Watanabe , H, H. , Ri , H. S. , Yamanaka , S. and Takeuchi , D. 2002 . Device-grade homoepitaxial diamond film growth . J. Cryst. Growth , 237 : 1269
  • Yan , C. S. , Vohra , Y. K. , Mao , H. K. and Hemley , R. J. 2002 . Very high growth rate chemical vapor deposition of single-crystal diamond . Proc. Natl. Acad. Sci. U.S.A. , 99 : 12523
  • Yamada , H. , Chayahara , A. , Mokuno , Y. , Umezawa , H. , Shikata , S. and Fujimori , N. 2010 . Fabrication of 1 inch mosaic crystal diamond wafers . Appl. Phys. Exp. , 3 : 051301
  • Isberg , J. , Hammersberg , J. , Johansson , E. , Wikstrom , T. , Twitchen , D. J. , Whitehead , A. J. , Coe , S. E. and Scarsbrook , G. A. 2002 . High carrier mobility in single-crystal plasma-deposited diamond . Science , 297 : 1670
  • Landstrass , I. M. and Ravi , K. V. 1989 . Resistivity of chemical vapor-deposited diamond films . Appl. Phys. Lett. , 55 : 975
  • Garrido , J. A. , Heimbeck , T. and Stutzmann , M. 2005 . Temperature-dependent transport properties of hydrogen-induced diamond surface conductive channels . Phys. Rev. B , 71 : 245310
  • Maier , F. , Riedel , M. , Mantel , B. , Ristein , J. and Ley , L. 2000 . Origin of surface conductivity in diamond . Phys. Rev. Lett , 85 : 3472
  • Aleksov , A. , Kubovic , A. M. , Kaeb , N. , Spitzberg , U. , Bergmaier , A. , Dollinger , G. , Bauer , T. , Schreck , M. , Stritzker , B. and Kohn , E. 2003 . Diamond field effect transistors—concepts and challenges . Diamond Relat. Mater. , 12 : 391
  • Collins , A. T. 1994 . Properties and Growth of Diamond , Edited by: Davies , G. 261 London , , UK : Inspec .
  • Kohn , E. and Denisenko , A. 2007 . Concepts for diamond electronics . Thin Solid Films , 515 : 4333
  • Katagiri , M. , Isoya , J. , Koizumi , S. and Kanda , H. 2004 . Lightly phosphorus-doped homoepitaxial diamond films grown by chemical vapor deposition . Appl. Phys. Lett. , 85 : 6365
  • Koizumi , S. and Suzuki , M. 2006 . n-Type doping of diamond . Phys. Stat. Sol. (a) , 203 : 3358
  • Kato , H. , Yamasaki , S. and Okushi , H. 2005 . N-type doping of (001)-oriented single-crystalline diamond by phosphorus . Appl. Phys. Lett. , 86 : 222111
  • Chen , Y. G. , Ogura , M. and Okushi , H. 2004 . Ohmic contacts on p-type homoepitaxial diamond and their thermal stability . Diamond Relat. Mater. , 20 : 860
  • Takalkar , R. S. , Davidson , J. L. , Kang , W. P. , Wisitsora-at , A. and Kerns , D. V. 2005 . Edge-shaped diamond field emission arrays . J. Vac. Sci. Technol. B , 23 : 800
  • Ramesham , R. 1999 . Fabrication of diamond microstructures for microelectromechanical systems (MEMS) by a surface micromachining process . Thin Solid Films , 340 : 1
  • Bongrain , A. , Scorsone , E. , Rousseau , L. , Lissorgues , G. , Gesset , C. , Saada , S. and Bergonzo , P. 2009 . Selective nucleation in Si moulds for diamond MEMS fabrication . J. Micromech. Microeng. , 19 : 074015
  • Dorsch , O. , Werner , M. , Obermeier , E. , Harper , R. E. , Johnston , C. and Buckley-Golder , I. M. 1992 . Etching of polycrystalline diamond and amorphous carbon films by RIE . Diamond Relat. Mater. , 1 : 277
  • Yang , Y. R. , Wang , X. D. , Ren , C. X. , Xie , J. F. , Lu , P. F. and Wang , W. Y. 1999 . Diamond surface micromachining technology . Diamond Relat. Mater. , 8 : 1834
  • Ando , Y. , Nishibayashi , Y. , Kobashi , K. , Hirao , T. and Oura , K. 2002 . Smooth and high-rate reactive ion etching of diamond . Diamond Relat. Mater. , 11 : 824
  • Yamada , T. , Yoshikawa , H. , Uetsuka , H. , Kumaragurubaran , S. , Tokuda , N. and Shikata , S. 2007 . Cycle of two-step etching process using ICP for diamond2288;MEMS applications . Diamond Relat. Mater. , 16 : 996
  • Hwang , D. S. , Saito , T. and Fujimori , N. 2004 . New etching process for device fabrication using diamond . Diamond Relat. Mater. , 13 : 2207
  • Xiao , X. , Birrell , J. , Gerbi , J. E. , Auciello , O. and Carlisle , J. A. 2004 . Low temperature growth of ultrananocrystalline diamond . J. Appl. Phys. , 96 : 2232
  • Auciello , O. , Pacheco , S. , Sumant , A. V. , Gudeman , C. , Sampath , S. , Datta , A. , Carpick , R. W. , Adgia , V. P. , Zurcher , P. , Ma , Z. Q. , Yuan , H. C. , Carlisle , J. A. , Kabius , B. , Hiller , J. and Srinivasan , S. 2007 . Are diamond a MEMS’ best friend . IEEE Microwave Mag. , 8 : 61
  • Gaidarzhy , A. , Imboden , M. , Mohanty , P. , Rankin , J. and Sheldon , B. W. 2007 . High quality factor gigahertz frequencies in nanomechanical diamond resonators . Appl. Phys. Lett. , 91 : 203503
  • Yamada , T. , Vinod , P. R. , Hwang , D. S. , Yoshikawa , H. , Shikata , S. and Fujimori , N. 2005 . Self-aligned fabrication of single crystal diamond gated field emitter array . Diamond Relat. Mater , 14 : 2047
  • Hausmann , B. J. M. , Khan , M. , Zhang , Y. , Babinec , T. M. , Martinick , K. , McCutcheon , M. , Hemmer , P. R. and Lončar , M. 2010 . Fabrication of diamond nanowires for quantum information processing applications . Diamond Relat. Mater. , 19 : 621
  • Yu , N. and Polycarpou , A. A. 2004 . Use of the focused ion beam technique to produce a sharp spherical diamond indenter for sub-10 nm nanoindentation measurements . J. Vac. Sci. Technol. B , 22 : 668
  • Uzan-Saguy , C. , Cytermann , C. , Brener , R. , Richter , V. , Shaanan , M. and Kalish , R. 1995 . Damage threshold for ion-beam induced graphitization of diamond . Appl. Phys. Lett. , 67 : 1194
  • Parikh , N. R. , Hunn , J. D. , McGucken , E. , Swanson , M. L. , White , C. W. , Rudder , R. A. , Malta , D. , Posthill , J. B. and Markunas , R. J. 1992 . Single-crystal diamond plate liftoff achieved by ion implantation and subsequent annealing . Appl. Phys. Lett. , 61 : 3124
  • Wang , C. F. , Hu , E. L. , Yang , J. and Bulter , J. E. 2007 . Fabrication of suspended single crystal diamond devices by electrochemical etch . J. Vac. Sci. Technol. B , 25 : 730
  • Marehywka , M. , Pehrsson , P. E. , Vestyck , D. J. Jr and Moses , D. 1993 . Low energy ion implantation and electrochemical separation of diamond films . Appl. Phys. Lett. , 63 : 3521
  • Fairchild , B. A. , Olivero , P. , Rubanov , S. , Greentree , A. D. , Waldermann , F. , Taylor , R. A. , Walmsley , I. , Smith , J. M. , Huntington , S. , Gibson , B. C. , Jamieson , D. N. and Prawer , S. 2008 . Fabrication of ultrathin single-crystal diamond membranes . Adv. Mater. , 20 : 4793
  • Liao , M. Y. , Li , C. , Hishita , S. and Koide , Y. 2010 . Batch production of single-crystal diamond bridges and cantilevers for microelectromechanical systems . J. Micromech. Microeng. , 20 : 085002
  • Adamschik , M. , Kusterer , J. , Schmid , P. , Schad , K. B. , Grobe , D. , Floter , A. and Kohn , E. 2002 . Diamond microwave micro relay . Diamond. Relat. Mater. , 11 : 672
  • Schmid , P. , Hernandez-Guillen , F. J. and Kohn , E. 2003 . Diamond switch using new thermal actuation principle . Diamond Relat. Mater. , 12 : 418
  • Kusterer , J. , Lüker , A. , Herfurth , P. , Men , Y. , Ebert , W. , Kirby , P. , O’Keefe , M. and Kohn , E. 2008 . Piezo-actuated nanodiamond cantilever technology for high-speed application . Diamond Relat. Mater. , 17 : 1429
  • Srinivasan , S. , Hiller , J. , Kabius , B. and Auciello , O. 2007 . Piezoelectric/ultrananocrystalline diamond heterostructures for high-performance multifunctional micro/nanoelectromechanical systems . Appl. Phys. Lett. , 90 : 134101
  • Liao , M. Y. , Nakajima , K. , Imura , M. and Koide , Y. 2010 . Improved ferroelectric properties of Pb(Zr0.52,Ti0.48) thin film on single crystal diamond using CaF2 layer . Appl. Phys. Lett. , 96 : 012910
  • Liao , M. Y. , Gotoh , Y. , Tsuji , T. , Nakajima , K. , Imura , M. and Koide , Y. 2010 . Piezoelectric Pb(Zr0.52Ti0.58)O3 thin film on single crystal diamond: structural, electric, dielectric, and field effect transistor properties . J. Appl. Phys. , 107 : 024101
  • Goldsmith , C. , Sumant , A. , Auciello , O. , Carlisle , J. , Zeng , H. , Hwang , J. C.M. , Palego , C. , Wang , W. , Carpick , R.V. , Adiga , P. , Datta , A. , Gudeman , C. , O’Brien , S. and Sampath , S. 2010 . Charging characteristics of ultra-nano-crystalline diamond in RF MEMS capacitive switches . IEEE IMS , : 1246
  • Webster , J. R. , Dyck , C. W. , Sullivan , J. P. , Friedmann , T. A. and Carton , A. J. 2004 . Performance of amorphous diamond RF MEMS capacitive switch . Electronics Lett. , 40 : 43
  • Chee , J. , Karru , R. , Fisher , T. S. and Peroulis , D. 2005 . DC—65 GHz Characterization of Nanocrystalline Diamond Leaky Film for Reliable RF MEMS Switches . 13th GAAS Symposium-Paris , 581
  • Iijima , S. 1991 . Helical microtubules of graphitic carbon . Nature , 354 : 56
  • Jensen , K. , Kim , K. and Zettl , S. 2008 . An atomic-resolution nanomechanical mass sensor . Nature Nanotechnology , 3 : 533
  • Stampfer , C. , Jungen , A. , Linderman , R. , Obergfell , D. , Roth , S. and Hierold , C. 2006 . Nano-electromechanical displacement sensing based on single-walled carbon nanotubes . Nano Lett. , 6 : 1449
  • Li , S. , Yu , Z. , Yen , S. F , Tang , W. C. and Burke , P. J. 2004 . Carbon nanotube transistor operation at 2.6 GHz . Nano Lett. , 4 : 753
  • Sharma , P. and Ahuja , P. 2008 . Recent advances in carbon nanotube-based electronics . Mater. Res. Bull. , 43 : 2517
  • Lu , W. and Lieber , C. M. 2007 . Nanoelectronics from the bottom up . Nature Mater. , 6 : 841
  • Coleman , J. N. , Khan , U. , Blau , W. J. and Gunko , Y. K. 2006 . Small but strong: A review of the mechanical properties of carbon nanotube–polymer composites . Carbon , 44 : 1624
  • Melechko , A. V. , Merkulov , V. I. , McKnight , T. E. , Guillorn , M. A. , Klein , K. L. , Lowndes , D. H. and Simpson , M. L. 2005 . Vertically aligned carbon nanofibers and related structures: Controlled synthesis and directed assembly . J. Appl. Phys. , 97 : 041301
  • Sinha , N. , Ma , J. and Yeow , J. T. W. 2006 . Carbon nanotube-based sensors . J. Nanosci. Nanotech. , 6 : 573
  • Ijima , S. and Ichihashi , T. 1993 . Single-shell carbon nanotubes of 1-nm diameter . Nature , 363 : 603
  • Thess , A. , Lee , R. , Nikolaev , P. , Dai , H. J. , Petit , P. , Robert , J. , Xu , C. H. , Lee , Y. H. , Kim , S. G. , Rinzler , A. G. , Colbert , D. T. , Scuseria , G. E. , Tomanek , D. , Fischer , J. E. and Smalley , R. E. 1996 . Crystalline ropes of metallic carbon nanotubes . Science , 273 : 483
  • Yacaman , M. J. , Yoshida , M. M. , Rendon , L. and Santiesteban , J. G. 1993 . Catalytic growth of carbon microtubules with fullerene structure . Appl. Phys. Lett. , 62 : 202
  • Bethune , D. S. , Kiang , C. H. , de Vries , M. S. , Gorman , G. , Savoy , R. , Vazquez , J. and Beyers , R. 1993 . Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls . Nature , 363 : 605
  • Guo , T. , Nikolaev , P. , Thess , A. , Colbert , D. and Smalley , R. 1995 . Catalytic growth of single-walled nanotubes by laser vaporization . Chem. Phys. Lett. , 243 : 49
  • Li , Y. , Cui , R. , Ding , L. , Liu , Y. , Zhou , W. , Zhang , Y. , Jin , Z. , Peng , F. and Liu , J. 2010 . How catalysts affect the growth of single-walled carbon nanotubes on substrates . Advan. Mater. , 22 : 1508
  • Dupuis , A. C. 2005 . The catalyst in the CCVD of carbon nanotubes-a review . Prog. Mater. Sci. , 50 : 929
  • Cassell , A. M. , Raymakers , J. A. , Kong , J. and Dai , H. J. 1999 . Large scale CVD synthesis of single-walled carbon nanotubes . J. Phys. Chem. B , 103 : 6484
  • Meyyappan , M. 2009 . A review of plasma enhanced chemical vapour deposition of carbon nanotubes . J. Phys. D: Appl. Phys. , 42 : 213001
  • Andrews , R. , Jacques , D. , Qian , D. and Rantell , T. 2002 . Multiwall carbon nanotubes: synthesis and application . Acc. Chem. Res. , 35 : 1008
  • Mia , J. and Wang , J. N. 2008 . Purification of single-walled carbon nanotubes by a highly efficient and nondestructive approach . Chem. Mater. , 20 : 2895
  • Hou , P. X. , Liu , C. and Cheng , H. M. 2008 . Purification of carbon nanotubes . Carbon , 46 : 2003
  • Li , W. , Wen , J. , Sennett , M. and Ren , Z. 2003 . Clean double-walled carbon nanotubes synthesized by CVD . Chemical Phys. Lett. , 368 : 299
  • Zimmerman , J. L. , Bradley , R. K. , Huffman , C. B. , Hauge , R. H. and Margrave , J. L. 2000 . Gas-phase purification of single-wall carbon nanotubes . Chem. Mater. , 12 : 1361
  • Haddon , R. , Sipper , J. , Rinzler , A. and Papadimitrakopoulos , F. 2004 . Purification and separation of carbon nanotubes . MRS Bull. , 29 : 4252
  • Tseng , S. H. , Palathinkal , T. J. and Tai , N. H. 2010 . Nondestructive purification of single-walled carbon nanotube rope through a battery-induced ignition and chemical solution approach . Carbon , 48 : 2159
  • Treacy , M. M. J. , Ebbesen , T. W. and Gibson , J. M. 1996 . Exceptionally high Young's modulus observed for individual carbon nanotubes . Nature , 381 : 678
  • Krishnan , A. , Dujardin , E. , Ebbesen , T. W. , Yianilos , P. N. and Treacy , M. M. J. 1998 . Young's modulus of single-walled nanotubes . Phys. Rev. B , 58 : 14013
  • Salvetat , J. P. , Bonard , J. M. , Thomson , N. H. , Kulik , A. J. , Forr´o , L. , Benoit , W. and Zuppiroli , L. 1999 . Mechanical properties of carbon nanotubes . Appl. Phys. A , 69 : 255
  • Wong , E. W. , Sheehan , P. E. and Lieber , C. M. 1997 . Nanobeam mechanics: elasticity, strength, and toughness of nanorods and nanotubes . Science , 277 : 1971
  • Yu , M. F. , Files , B. S. , Arepalli , S. and Ruoff , R. S. 2000 . Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties . Physic. Rev. Lett. , 84 : 5552
  • Wu , Y. , Huang , M. Y. , Wang , F. , Huang , X. M. H. , Rosenblatt , S. , Huang , L. , Yan , H. G. , O’Brien , S. P. , Hone , J. and Heinz , Tony F. 2008 . Determination of the Young's modulus of structurally defined carbon nanotubes . Nano Lett. , 12 : 4158
  • Poncharal , P. , Wang , Z. L. , Ugarte , D. and de Heer , W. A. 1999 . Electrostatic deflections and electromechanical resonances of carbon nanotubes . Science , 283 : 1513
  • Touze , T. C. , Yeh , H. L. and Tsai , C. H. 2010 . Young's Modulus of nanowires measured by Electrostatic attraction: application to multi-walled carbon nanotubes . Curr. Nanosci. , 6 : 249
  • Wang , Z. L. , Gao , R. P. , Poncharal , P. , de Heer , W. A. , Dai , Z. R. and Pan , Z. W. 2001 . Mechanical and electrostatic properties of carbon nanotubes and nanowires . Mater. Sci. Eng., C , 16 : 3
  • Zeng , D. , Wei , X. J. , Liu , Z. , Chen , Q. , Li , X. and Zheng , Q. 2009 . Tunable resonant frequencies for determining Young's moduli of nanowires . J. Appl. Phys. , 105 : 114311
  • Yakobson , B. I. , Brabec , C. J. and Bernholc , J. 1996 . Nanomechanics of carbon tubes: instabilities beyond linear response . Phys. Rev. Lett. , 76 : 2511
  • Lu , J. P. 1997 . Elastic properties of carbon nanotubes and nanoropes . Phys. Rev. Lett. , 79 : 1297
  • Natsuki , T. , Tantrakarn , K. and Endo , M. 2004 . Prediction of elastic properties for single-walled carbon nanotubes . Carbon , 42 : 39
  • Sun , X. and Zhao , W. 2005 . Prediction of stiffness and strength of single-walled carbon nanotubes by molecular-mechanics based finite element approach . Mater. Sci. Eng. A , 390 : 366
  • Herna´ndez , E. , Goze , C. , Bernier , P. and Rubio , A. 1998 . Elastic properties of C and BxCyNz composite nanotubes . Phys. Rev. Lett. , 80 : 4502
  • Hwang , C. C. , Wang , Y. C. , Kuo , Q. Y. and Lu , J. M. 2010 . Molecular dynamics study of multi-walled carbon nanotubes under uniaxial loading . Physica E , 42 : 775
  • Huang , Y. , Wu , J. and Hwang , K. C. 2006 . Thickness of graphene and single-wall carbon nanotubes . Phys. Rev. B , 74 : 245413
  • Berber , S. , Kwon , Y. K. and Tomanek , D. 2000 . Unusually high thermal conductivity of carbon nanotubes . Phys. Rev. Lett. , 84 : 4613
  • Hone , J. , Whitney , M. , Piskoti , C. and Zettl , A. 1999 . Thermal conductivity of single-wall carbon nanotubes . Phys. Rev. B , 59 : R2514
  • Kim , P. , Shi , L. , Majumdar , A. and McEuen , P. L. 2001 . Thermal transport measurements of individual multiwalled nanotubes . Phys. Rev. Lett. , 87 : 215502
  • Pop , E. , Mann , D. , Wang , Q. , Goodson , K. and Dai , H. 2006 . Thermal conductance of an individual single-wall carbon nanotube above room temperature . Nano Lett , 6 : 96
  • Choi , T. Y. , Poulikakos , D. , Tharian , J. and Sennhauser , U. 2006 . Measurement of thermal conductivity of individual multiwalled carbon nanotubes by the four-point 3-ω method . Nano. Lett. , 6 : 1589
  • Savin , A. V. , Kivshar , Y. S. and Hu , B. 2009 . Effect of substrate on thermal conductivity of single-walled carbon nanotubes . EPL , 88 : 26004
  • Donadio , D. and Galli , G. 2009 . Thermal conductivity of isolated and interacting carbon nanotubes: Comparing results from molecular dynamics and the Boltzmann transport equation . Phys. Rev. Lett. , 103 : 149901
  • Wang , Z. L. , Tang , D. W. , Li , X. B. , Zhang , W. G. , Zheng , X. H. , Zheng , L. X.Y. , Zhu , T. , Jin , A. Z. , Yang , H. F. and Gu , C. Z. 2007 . Length-dependent thermal conductivity of an individual single-wall carbon nanotube . Appl. Phys. Lett. , 91 : 123119
  • Pettes , M. T. and Shi , L. 2009 . Thermal and structural characterization of individual single-, double-, and multi-walled carbon nanotubes . Adv. Funct. Mater. , 19 : 3918
  • Aliev , A. E. , Lima , M. H. , Silverman , E. M. and Baughman , R. H. 2010 . Thermal conductivity of multi-walled carbon nanotube sheets: radiation losses and quenching of phonon modes . Nanotechnology , 21 : 035709
  • Avouris , P. , Chen , Z. and Perebeinos , V. 2007 . Carbon-based electronics . Nature Nanotechnology , 2 : 605
  • Tans , S. J. , Devoret , M. H. , Dai , H. , Thess , A. , Smalley , R. , Geerlings , L. J. and Dekker , C. 1997 . Individual single-wall carbon nanotubes as quantum wires . Nature , 386 : 474
  • Ebbesen , T. W. , Lezec , H. J. , Hiura , H. , Bennett , J. W. , Ghaemi , H. F. and Thio , T. 1996 . Electrical conductivity of individual carbon nanotubes . Nature , 382 : 54
  • Naeemi , A. and Meind , J. D. 2006 . Compact physical models for multiwall carbon -nanotube interconnects . IEEE Electron Device Lett. , 27 : 338
  • Javey , A. , Qi , P. , Wang , Q. and Dai , H. 2004 . Ten- to 50-nm-long quasi-ballistic carbon nanotube devices obtained without complex lithography . Proc. Natl. Acad. Sci. U.S.A. , 101 : 13408
  • Fukuda , T. , Arai , F. and Dong , L. X. 2003 . Assembly of nanodevices with carbon nanotubes through nanorobotic manipulations . Proc. IEEE , 91 : 1803
  • Nygard , J. and Cobden , D. H. 2001 . Quantum dots in suspended single-wall carbon nanotubes . Appl. Phys. Lett. , 79 : 4216
  • Babic , B. , Furer , J. , Sahoo , S. , Farhangfar , S. and Scho 1nenberger , C. 2003 . Intrinsic thermal vibrations of suspended doubly clamped single-wall carbon nanotubes . Nano Lett , 3 : 1577
  • Lee , S. B. , Teo , K. B. K. , Amaratunga , G. A. J. , Milne , W. I. , Chhowalla , M. , Hasko , D. G. and Ahmed , H. 2003 . Fabrication of multiwalled carbon nanotube bridges by poly-methylmethacrylate suspended dispersion . J. Vac. Sci. Technol. B , 21 : 996
  • Lee , K. , Duchamp , M. , Kulik , G. , Magrez , A. , Seo , J. W. , Jeney , S. , Kulik , A. J. , Sundaram , R. S. , Brugger , J. and Forro , L. 2007 . Uniformly dispersed deposition of colloidal nanoparticles and nanowires by boiling . Appl. Phys. Lett. , 91 : 173112
  • Krupke , R. , Hennrich , F. , Weber , H. B. , Kappes , M. and Lohneysen , H. 2003 . Simultaneous deposition of metallic bundles of single-walled carbon nanotubes using ac-dielectrophoresis . Nano Lett. , 3 : 1019
  • Marquardt , C. W. , Blatt , S. , Hennrich , F. , Lo hneysen , H. and Krupke , R. 2006 . Probing Dielectrophoretic Force Fields with Metallic Carbon Nanotubes . Appl. Phys. Lett , 89 : 183117
  • Duchamp , M. , Lee , K. , Dwir , B. , Seo , J. W. , Kapon , E. , Forro , La szlo and Magrez , A. 2010 . Controlled positioning of carbon nanotubes by dielectrophoresis: Insights into the solvent and substrate role . ACS Nano , 4 : 279
  • Krupke , R. , Hennrich , F. , Lohneysen , H. and Kappes , M. 2003 . Separation of metallic from semiconducting single-walled carbon nanotubes . Science , 301 : 344
  • Lee , S. W. , Lee , D. S. , Yu , H. Y. , Campbell , E. E. B. and Park , Y. W. 2004 . Production of individual suspended single-walled carbon nanotubes using the ac electrophoresis technique . Appl. Phys. A , 78 : 283
  • Vijayaraghavan , A. , Blatt , S. , Weissenberger , D. , Oron-Car , M. , Hennrich , F. , Gerthsen , D. , Hahn , H. and Krupke , R. 2007 . Ultra-large-scale directed assembly of single-walled carbon nanotube devices . Nano Lett. , 7 : 1556
  • Meit , M. A. , Zhou , Y. , Gaur , A. , Jeon , S. , Usrey , M. L. , Strano , M. S. and Rogers , J. A. 2004 . solution casting and transfer printing single-walled carbon nanotube films . Nano Lett , 4 : 1643
  • Terrones , H. , Kordatos , K. , Hsu , W. K. , Hare , J. P. , Townsend , P. D. , Prassides , K. , Cheetham , A. K. , Kroto , H. W. and Walton , D. R. W. 1997 . Controlled production of aligned-nanotube bundles . Nature , 388 : 52
  • Cassell , A. M. , Franklin , N. R. , Tombler , T. W. , Chan , E. M. , Han , J. and Dai , H. 1999 . Directed growth of free-standing single-walled carbon nanotubes . J. Am. Chem. Soc. , 121 : 7975
  • Mateiu , R. , Stockli , T. , Knapp , H. F. , Keles , Y. , Boggild , P. and Boisen , A. 2007 . Batch fabrication of nanotubes suspended between microelectrodes . Microelect. Eng. , 84 : 1431
  • Jungen , A. , Stampfer , C. , Hoetzel , J. , Bright , V. M. and Hierold , C. 2006 . Process integration of carbon nanotubes into microelectromechanical systems . Sens. Act. A , 130/131 : 885
  • Kong , J. , Soh , H. T. , Cassell , A. M. , Quate , C. F. and Dai , H. 1998 . Synthesis of individual single-walled carbon nanotubes on patterned silicon wafers . Nature , 395 : 878
  • Min , Y. S. , Bae , E. J. , Park , J. B. and Park , W. 2006 . Direct photolithographic route to selective growth of single-walled carbon nanotubes using a modified photoresist with ferrocene . Nanotechnology , 17 : 116
  • Lu , M. , Jang , M. W. , Haugstad , G. , Campbel , S. A. and Cui , T. 2009 . Well-aligned and suspended single-walled carbon nanotube film: Directed self-assembly, patterning, and characterization . Appl Phys. Lett. , 94 : 261903
  • Hayamizu , Y. , Yamada , T. , Mizuno , K. , Davis , R. C. , Futaba , D. N. , Yumura , M. and Hata , K. 2008 . Integrated three-dimensional microelectromechanical devices from processable carbon nanotube wafers . Nature Nanotechn. , 3 : 289
  • Hayamizu , Y. , Davis , R C. , Yamada , T. , Futaba , D. N. , Yasuda , S. , Yumura , M. and Hata , K. 2009 . Mechanical properties of beams from self-assembled closely packed and aligned single-walled carbon nanotubes . Phys. Rev. Lett. , 102 : 175502
  • Hata , K. , Futaba , N. , Mizuno , K. , Namai , T. , Yumura , M. and Iijima , S. 2004 . Water-assisted highly efficient synthesis of impurity-free single-walled carbon nanotubes . Science , 306 : 1362
  • Su , W. S. , Lin , C. M. , Chen , T. H. and Fang , W. 2009 . Patterning and growth of carbon nanotubes on a highly structured 3D substrate surface . J. Micromech. Microeng. , 19 : 105009
  • Dequesnes , M. , Rotkin , S. V. and Aluru , N. R. 2002 . Calculation of pull-in voltages for carbon-nanotube-based nanoelectromechanical switches . Nanotechnology , 13 : 120
  • Kinaret , J. M. , Nord , T. and Viefers , S. 2003 . A carbon-nanotube-based nanorelay . Appl. Phys. Lett. , 82 : 1287
  • Kim , P. and Lieber , C. M. 1999 . Nanotube nanotweezers . Science , 286 : 2148
  • Lee , S. W. , Lee , D. S. , Morjan , R. E. , Ho Jhang , S. , Sveningsson , M. , Nerushev , O. A. , Park , Y. W. and Campbell , E. B. 2004 . A Three-Terminal Carbon Nanorelay . Nano Lett , 4 : 2027
  • Dujardin , E. , Derycke , V. , Goffman , M. F. , Lefèvre , R. and Bourgoin , J. P. 2005 . Self-assembled switches based on electroactuated multiwalled nanotubes . Appl. Phys. Lett. , 87 : 193107
  • Kaul , A. B. , Wong , E. W. , Epp , L. and Hunt , B. D. 2006 . Electromechanical Carbon Nanotube Switches for High-Frequency Applications . Nano Lett , 6 : 942
  • Lee , S. W. , Erriksson , A. , Sourab , A. A. and Cambell , E. E. B. 2009 . Carbon-nanotube-based nano electromechanical switches . J. Kor. Phy. Soc. , 55 : 957
  • Jang , J. E. , Ch , S. N. , Choi , Y. , Gehan Amaratung , A. J. , Kang , D. J. , Hasko , D. G. , Jung , J. E. and Kim , J. M. 2005 . Nanoelectromechanical switches with vertically aligned carbon nanotubes . Appl. Phys. Lett. , 87 : 163114
  • Jang , J. E. , Cha , S. N. , Choi , Y. , Bulter , T. P. , Kang , D. J. , Hasko , D. G. , Jung , J. E. , Jin , Y. W. , Kim , J. M. and Amaratung , G. A. J. 2008 . Nanoelectromechanical switche with low voltage drive . Appl. Phys. Lett. , 93 : 113105
  • Arun , A. , Acquaviva , D. , Fernandez-Bolanos , M. , Salet , P. , Le-Poche , H. , Pantigny , P. , Idda , T. and Ionescu , A.M. 2010 . Carbon nanotube vertical membranes for electrostatically actuated micro-electro-mechanical devices . Microelectr. Eng. , 87 : 1281
  • Lu , M. , Jang , M. W. , Campbell , S. A. and Cui , T. H. 2010 . Aligned dense single-walled carbon nanotube beams and cantilevers for nanoelectromechanical systems applications . J. Vac. Sci. Technol. B , 28 : 522
  • Jang , J. E. , Cha , S. N. , Choi , Y. J. , Kang , D. J. , Bulter , T. P. , Hasko , D. G. , Jung , J. E. , Kim , J. M. and Amartunga , G. A. J. 2008 . Nature Nanotech. , 3 : 26
  • Kaul , A. , Epp , L. and Wong , E. 2008 . Carbon nanotube mechanical switches for communication and memory applications . Proc. SPIE , 6959 : 695909 – 1 .
  • Geim , A. K. and Novoselov , K. S. 2007 . The rise of graphene . Nature Mater. , 6 : 183
  • Novoselov , K. S. , Geim , A. K. , Morozov , S. V. , Jiang , D. , Zhang , Y. , Dubonos , S. V. , Grigorieva , I. V. and Firsov , A. A. 2004 . Electric field effect in atomically thin carbon films . Science , 306 : 666
  • Taghioskoui , M. 2009 . Trends in graphene research . Mater. Today , 12 : 34
  • Geim , A. K. and Graphene . 2008 . status and prospects . Science , 324 : 530
  • Chen , C. Y. , Kim , P. , Kymissis , I. , Stormer , H. L. , Heinz , T. F. and Hone , J. Dec 2009 . NEMS applications of graphene. Electron Devices Meeting (IEDM) . 2009 IEEE International , : 1 – 4 .
  • Meyer , J. C. , Geim , A. K. , Katsnelson , M. I. , Novoselov , K. S. , Booth , T. J. and Roth , S. 2007 . The structure of suspended grapheme sheets . Nature , 446 : 60
  • Fernandez-Moran , H. 1960 . Single crystal of graphite and mica as specimen support for electron microscopy . J. Appl. Phys. , 1844 : 31
  • Liang , X. , Chang , A. S. P. , Zhang , Y. , Harteneck , B. D. , Choo , H. , Olynick , D. L. and Cabrini , S. 2009 . Electrostatic force assisted exfoliation of prepatterned few-layer graphenes into device sites . Nano Lett. , 9 : 467
  • Stankovich , S. , Dikin , D. A. , Piner , R. D. , Kohlhaas , K. A. , Kleinhammes , A. , Jia , Y. , Wu , Y. , Nguyen , S. T. and Ruoff , R. S. 2007 . Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide . Carbon , 45 : 1558
  • Wu , Z. S. , Ren , W. , Gao , L. , Zhao , J. , Chen , Z. , Liu , B. , Tang , D. , Yu , B. , Jiang , C. and Chen , H. 2009 . ACS Nano. , 3 : 411
  • Cote , L. J. , Cruz-Silva , R. and Huang , J. 2009 . Flash Reduction and patterning of graphite oxide and its polymer composite . J. Am.Chem. Soc. , 131 : 11027
  • Hernandez , Y. , Nicolosi , V. , Lotya , M. , Blighe , F. M. , Sun , Z. , De , S. , McGovern , I. T. , Holland , B. , Byrne , M. , Gunko , Y. K. , Boland , J. J. , Niraj , P. , Duesberg , G. , Krishnamurthy , S. , Goodhue , R. , Hutchison , J. , Scardaci , V. , Ferrari , A. C. and Coleman , J. N. 2008 . High-yield production of graphene by liquid-phase exfoliation of graphite . Nature Nanotech. , 3 : 563
  • Li , X. , Zhang , G. , Bai , X. D. , Sun , X. M. , Wang , X. R. , Wang , E. G. and Dai , H. J. 2008 . Highly conducting graphene sheets and Langmuir–Blodgett films . Nature Nanotech. , 3 : 538
  • Berger , C. , Song , Z. , Li , T. , Li , X. A. , Ogbazghi , Y. , Feng , R. , Dai , Z. , Marchenkov , A. N. , Conrad , E. H. , First , P. N. and de Heer , Walt A. 2004 . Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics . J. Phys. Chem. B , 108 : 19912
  • De Heer , W. A. , Berger , C. , Wu , X. , First , P. N. , Conrad , E. H. , Li , X. , Li , T. , Sprinkle , M. , Hass , J. , Sadowski , M. L. , Potemski , M. and Martinez , G. 2007 . Epitaxial graphene . Solid Stat. Comm , 143 : 92
  • Sutter , P. 2009 . Epitaxial graphene: How silicon leaves the scene . Nature Mater , 8 : 171
  • Emtsev , K. V. , Bostwick , A. , Horn , K. , Jobst , J. , Kellogg , G. L. , Ley , L. , McChesney , J. L. , Ohta , T. , Reshanov , S. A. , Rohrl , J. , Rotenberg , E. , Schmid , A. K. , Waldmann , D. , Weber , H. B. and Seyller , T. 2009 . Toward wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide . Nature Mater , 8 : 203
  • Kim , K. S. , Zhao , Y. , Jang , H. , Lee , S. Y. , Kim , J. M. , Kim , K. S. , Ahn , J. H. , Kim , P. , Choi , J. and Hong , B. H. 2009 . Large-scale pattern growth of graphene films for stretchable transparent electrodes . Nature , 457 : 706
  • Reina , A. , Jia , X. , Ho , J. , Nezich , D. , Son , H. , Bulovic , V. , Dresselhaus , M. S. and Kong , J. 2009 . Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition . Nano Lett , 9 : 30
  • Obraztsov , A. N. , Obraztsova , E. A. , Tyurnina , A. V. and Zolotukhin , A. A. 2007 . Chemical vapor deposition of thin graphite films of nanometer thickness . Carbon , 45 : 2017
  • Piner , R. , Velamakanni , A. , Jung , I. , Tutuc , E. , Banerjee , S. K. , Colombo , L. and Ruoff , R. S. 2009 . Graphene films on copper foils large-area synthesis of high-quality and uniform . Science , 324 : 1312
  • Kosynkin , D. V. , Higginbotham , A. L. , Sinitskii1 , A. , Lomeda , J. R. , Dimiev , A. , Price , B. K. and Tour , J. M. 2009 . Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons . Nature , 458 : 872
  • Jiao , L. Y. , Zhang , L. , Wang , X. R. , Diankov , G. and Dai , H. J. 2009 . Narrow graphene nanoribbons from carbon nanotubes . Nature , 458 : 877
  • Poot , M. and Van Der Zant , H. S. J. 2008 . Nanomechanical properties of few-layer graphene membranes . Appl. Phys. Lett. , 92 : 063111
  • Lee , C. , Wei , X. , Kysar , J. W. and Hone , J. 2008 . Measurement of the elastic properties and intrinsic strength of monolayer grapheme . Science , 321 : 385
  • Frank , W. , Tanenbaum , D. M. , Van Der Zande , A. M. and McEuen , P. L. 2007 . Mechanical properties of suspended graphene sheets . J. Vac. Sci. Technol. B , 25 : 2558
  • Navarro , C. G. , Burghard , M. and Kern , K. 2008 . Elastic properties of chemically derived single graphene sheets . Nano Lett. , 8 : 2045
  • Van Der Zande , A. M. , San Paulo , A. , Lassagne , B. , McEuen , P. L. , Bachtold , A. and Garcia-Sanchez , D. 2008 . Imaging mechanical vibrations in suspended graphene sheets . Nano Lett. , 8 : 1399
  • Jiang , J. W. , Wang , J. S. and Li , B. W. 2009 . Young's modulus of graphene: A molecular dynamics study . Phys. Rev. B. , 80 : 113405
  • Hernandex , E. , Goze , C. , Bernier , P. and Rubio , A. 1998 . Elastic properties of C and BxCyNz Composite Nanotubes . Phys. Rev. Lett. , 80 : 4502
  • Zhao , H. , Min , K. and Aluru , N. R. 2009 . Size and chirality2288;properties of grapheme under uniaxial tension . Nano Lett. , 9 : 3012
  • Kong , B. D. , Paul , S. , Buongiorno Nardelli , M. and Kim , K. W. 2009 . First-principles analysis of lattice thermal conductivity in monolayer and bilayer graphene . Phys. Rev. B , 80 : 033406
  • Balandin , A. A. , Ghosh , S. , Bao , W. , Calizo , I. , Teweldebrhan , D. , Miao , F. and Lau , C. N. 2008 . Superior thermal conductivity of single-layer graphene . Nano Lett. , 8 : 902
  • Bolotion , K. I. , Sikes , K. J. , Jiang , Z. , Klima , M. , Fudenberg , G. , Hone , J. , Kim , P. and Stormer , H. L. 2008 . Ultrahigh electron mobility in suspended graphene . Solid State Commun , 146 : 351
  • Morozov , S. V. , Novoselov , K. S. , Katsnelson , M. I. , Schedin , F. , Elias , D. C. , Jaszczak , J. A. and Geim , A. K. 2008 . Giant intrinsic carrier mobilities in graphene and its bilayer . Phys. Rev. Lett. , 100 : 016602
  • Murali , R. , Yang , Y. , Brenner , K. , Beck , T. and Meind , J. D. 2009 . Breakdown current density of graphene nanoribbons . Appl. Phys. Lett. , 94 : 243114
  • Jafri , S. H. M. , Carva , K. , Widenkvist , E. , Blom , T. , Sanyal , B. , Fransson , J. , Eriksson , O. , Jansson , U. , Grennberg , H. , Karis , O. , Quinlan , R. A. , Holloway , B. C. and Leifer , K. 2010 . Conductivity engineering of graphene by defect formation . J. Phys. D: Appl. Phys , 43 : 045404
  • Venugopal , A. , Colombo , L. and Vogel , E. M. 2010 . Contact resistance in few and multilayer graphene devices . Appl. Phys. Lett. , 96 : 013512
  • Li , X. , Zhu , Y. , Cai , W. , Borysiak , M. , Han , B. , Chen , D. , Piner , R. D. , Colombo , L. and Ruoff , R. S. 2009 . Transfer of large-area graphene films for high-performance transparent conductive electrodes . Nano Lett. , 9 : 4359
  • Kim , K. S. , Zhao , Y. , Jang , H. , Lee , S. Y. , Kim , J. M. , Kim , K. S. , Ahn , J. H. , Kim , P. , Choi , J. Y. and Hong , B. H. 2009 . Large-scale pattern growth of graphene films for stretchable transparent electrodes . Nature , 457 : 706
  • Cao , H. , Yu , Q. , Colby , R. , Pandey , D. , Park , C. S. , Lian , J. , Zemlyanov , D. , Childres , I. , Drachev , V. , Stach , E. , Hussain , M. , Li , H. , Pei , S. S. and Chen , Y. P. 2010 . Large-scale graphitic thin films ynthesized on Ni and transferred to insulators: Structural and electronic properties . J. Appl. Phys. , 107 : 044310
  • Obraztsov , A. N. 2009 . Chemical vapor deposition making graphene on a large scale . Nature Nanotechnol , 4 : 212
  • Lee , Y. , Bae , S. , Jang , H. , Jang , S. , Zhu , S. E. , Sim , S. H. , Song , Y. , Hong , B. H. and Ahn , J. H. 2010 . Wafer-scale synthesis and transfer of graphene films . Nano Lett. , 10 : 490
  • Hashimoto , A. , Terasaki , H. , Morita , K. , Hibino , H. and Tanaka , S. A breakthrough toward wafer-size epitaxial graphene transfer . arXiv:1005.4725 , [cond-mat.mtrl-sci] 26 May 2010.
  • Levendorf , M. P. , Ruiz-Vargas , C. S. , Garg , S. and Park , J. 2009 . Transfer-free batch fabrication of single layer graphene transistors . Nano Lett. , 9 : 4479
  • Shivaraman , S. , Barton , R. A. , Yu , X. , Alden , J. , Herman , L. H. , Chandrashekhar , M. , Park , J. , McEuen , P. L. , Parpia , J. M. , Craighead , H. G. and Spence , M. G. 2009 . Free-standing epitaxial graphene . Nano Lett , 9 : 3100
  • Kato , M. , Ichimura , M. , Arai , E. and Ramasamy , P. 2003 . Electrochemical etching of 6H-SiC using aqueous KOH solutions with low surface roughness . Jpn. J. Appl. Phys. , 42 : 4233
  • Bunch , J. S. , Van Der Zande , Arend M. , Verbridge , Scott S. , Frank , Ian W. , Tanenbaum , David M. , Parpia , Jeevak M. , Craighead , Harold G. and McEuen , P. L. 2007 . Graphene resonator . Science , 315 : 490
  • Zande , A. M. , Barton , R. A. , Alden , J. S. , Ruiz-Vargas , C. S. , Whitney , W. S. , Pham , P. H. Q. , Park , J. , Parpia , J. M. , Craighead , H. G. and McEuen , P. L. 2010 . Large-scale arrays of single-layer graphene resonators . Nano Lett. , 10 : 4869
  • Robinson , J. T. , Zalalutdinov , M. , Baldwin , J. W. , Snow , E. S. , Wei , Z. Q. , Sheehan , P. and Houston , B. H. 2008 . Wafer-scale reduced graphene oxide films for nanomechanical devices . Nano Lett , 8 : 3441
  • Milaninia , A. K. M. , Baldo , M. A. , Reina , A. and Kong , J. 2009 . Graphene electromechanical switch fabricated by chemical vapor deposition . Appl. Phys. Lett. , 95 : 183105
  • Wei , D. C. , Liu , Y. , Zhang , H. L. , Huang , L. P. , Wu , B. , Chen , J. Y. and Yu , G. 2009 . Scale synthesis of few-layer graphene ribbons with controlled morphologies by a template method and their applications in nanoelectromechanical switches . J. Am. Chem. Soc. , 131 : 11147
  • Dragoman , M. , Dragoman , D. , Coccetti , F. , Plana , R. and Muller , A. A. 2009 . Microwave switches based on graphene . J. Appl. Phys. , 105 : 054309
  • Chen , Z. , Tong , L. M. , Wu , Z. Y. and Liu , Z. F. 2008 . Fabrication of electromechanical carbon nanotubes . Appl. Phys. Lett. , 92 : 103116
  • Luo , J. K. , Fu , Y. Q. , Le , H. R. , Williams , J. A. , Spearing , S. M. and Milne , W. I. 2007 . Diamond and diamond-like carbon MEMS . J. Micomech. Microeng. , 17 : S147
  • Robertson , J. 2002 . Diamond-like amorphous carbon . Mater. Sci. Eng. R , 37 : 129
  • Peiner , E. , Tibrewala , A. , Bandorf , R. , Luthje , H. , Doering , L. and Limmer , W. 2007 . Damond-like carbon MEMS . J. Micromech. Microeng. , 17 : S83 – S90 .
  • Bak , J. H. , Kim , Y. D.S. , Hong , S. B , Lee , Y. , Lee , S. R. , Jang , J. H. , Kim , M. Y. , Char , K. , Hong , S. and Park , Y. D. 2007 . High-frequency micromechanical resonators from aluminium–carbon nanotube nanolaminates . Nature Mater , 7 : 459
  • Feng , X. L. , White , C. J. , Hajimiri , A. and Roukkes , M. L. 2008 . A self-sustaining ultrahigh-frequency nanoelectromechanical oscillator . Nature Nanotech , 3 : 342
  • Aslam , M. , Taher , I. , Masood , A. , Tamor , M. A. and Potter , T. J. 1992 . Piezoresistivity in vapor-deposited diamond films . Appl. Phys. Lett. , 60 : 2923
  • Yamamoto , A. , Nawachi , N. , Tsutsumoto , T. and Terayama , A. 2005 . Pressure sensor using p-type polycrystalline diamond piezoresistors . Diamond Relat. Mater. , 14 : 657
  • Privorotskaya , N. , Liu , Y. S. , Lee , J. , Zeng , H. , Carlisle , J. A. , Radadia , A. , Millet , L. , Bashir , R. and King , W. P. 2010 . Rapid thermal lysis of cell using silicon-diamond microcantilever heaters . Lab Chip , 10 : 1130
  • Helbling , T. , Roman , C. and Hierold , C. 2010 . Signal-to-noise ratio in carbon nanotube electromechanical piezoresistive sensors . Nano Lett , DOI: 10.1021/nl101031e
  • Cao , J. , Wang , Q. and Dai , H. J. 2003 . Electromechanical properties of metallic, quasimetallic, and semiconducting carbon nanotubes under stretching . Phys. Rev. Lett. , 90 : 157601
  • Park , S. , An , J. , Suk , J. W. and Ruoff , R. S. 2010 . Small, graphene based actuators . Small , 6 : 210
  • Sul , O. and Yang , E. H. 2009 . Multi-walled carbon nanotube-aluminum bimorph nanoactuator . Nanotechnology , 20 : 095502
  • Liao , M. Y. , Hishita , S. , Watanebe , W. , Koizumi , S. and Koide , Y. 2010 . Suspended single-crystal diamond nanowires for high-performance nanoelectromechanical switches . Adva. Mater. , 22 : 5393

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.