5,142
Views
162
CrossRef citations to date
0
Altmetric
Original Articles

One-Dimensional Metal Oxide Nanotubes, Nanowires, Nanoribbons, and Nanorods: Synthesis, Characterizations, Properties and Applications

, , , &
Pages 1-74 | Published online: 16 Mar 2012

REFERENCES

  • Iijima , S. 1991 . Helical microtubules of graphitic carbon . Nature , 354 : 56 – 58 .
  • Hong , B. H. , Bae , S. C. , Lee , C. W. , Jeong , S. and Kim , K. S. 2001 . Ultrathin single-crystalline silver nanowire arrays formed in an ambient solution phase . Science , 294 : 348 – 351 .
  • Zhang , W. X. , Wen , X. G. , Yang , S. H. , Berta , Y. and Wang , Z. L. 2003 . Single-crystalline scroll-type nanotube arrays of copper hydroxide synthesized at room temperature . Adv. Mater. , 15 : 822 – 825 .
  • Fan , R. , Wu , Y. Y. , Li , D. Y. , Yue , M. , Majumdar , A. and Yang , P. D. 2003 . Fabrication of silica nanotube arrays from vertical silicon nanowire templates . J. Am. Chem. Soc. , 125 : 5254 – 5255 .
  • Rabin , O. , Herz , P. R. , Lin , Y. M. , Akinwande , A. I. , Cronin , S. B. and Dresselhaus , M. S. 2003 . Formation of thick porous anodic alumina films and nanowire arrays on silicon wafers and glass . Adv. Func. Mater. , 13 : 631 – 638 .
  • Pan , Z. W. , Dai , Z. R. and Wang , Z. L. 2001 . Nanobelts of semiconducting oxides . Science , 291 : 1947 – 1949 .
  • Hu , J. , Odom , T. W. and Lieber , C. 1999 . Chemistry and physics in one dimension: synthesis and properties of nanowires and nanotubes . Acc. Chem. Res. , 32 : 435 – 445 .
  • Wang , J. , Gudiksen , M. S. , Duan , X. , Cui , Y. and Lieber , C. M. 2001 . Highly polarized photoluminescence and photodetection from single indium phosphide nanowires . Science , 293 : 1455 – 1457 .
  • Tans , S. J. , Devoret , M. H. , Dai , H. , Thess , A. , Smalley , R. E. , Gerrligs , L. J. and Decker , C. 1997 . Individual single-wall carbon nanotubes as quantum wires . Nature , 386 : 474 – 477 .
  • Tans , S. J. , Verschueren , A. R. M. and Dekker , C. 1998 . Room-temperature transistor based on a single carbon nanotube . Nature , 393 : 49 – 52 .
  • Davydov , D. N. , Sattari , P. A. , AlMawlawi , D. , Osika , A. , Haslett , T. L. and Moskovits , M. 1999 . Field emitters based on porous aluminum oxide templates . J. Appl. Phys. , 86 : 3983 – 3987 .
  • Chung , S. W. , Yu , J. Y. and Heath , J. R. 2000 . Silicon nanowire devices . Appl. Phys. Lett. , 76 : 2068 – 2070 .
  • Duan , X. , Huang , Y. , Cui , Y. , Wang , J. and Lieber , C. M. 2001 . Indium phosphide nanowires as building blocks for nanoscale electronicand optoelectronic devices . Nature , 409 : 66 – 69 .
  • Cui , Y. , Wei , Q. , Park , H. and Lieber , C. M. 2001 . Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species . Science , 293 : 1289 – 1292 .
  • Nicewarnmer-peńa , S. R. , Greeman , R. G. , Reiss , B. D. , He , L. , Peńa , D. J. , Walton , I. D. , Cormer , R. , Keating , C. D. and Natan , M. J. 2001 . Submicrometer metallic barcodes . Science , 294 : 137 – 141 .
  • Wu , Y. , Yan , H. , Huang , M. , Messer , B. , Song , J. H. and Yang , P. 2002 . Inorganic semiconductor nanowires: rational growth, assembly, and novel properties . Chem. Eur. J. , 8 : 1260 – 1268 .
  • Sun , T. , Liu , H. , Song , W. , Wang , X. , Jiang , L. , Li , L. and Zhu , D. 2004 . Responsive aligned carbon nanotubes . Angew. Chem. Int. Ed. , 43 : 4663 – 4666 .
  • Jin , M. , Feng , X. , Feng , L. , Sun , T. , Zhai , J. , Li , T. and Jiang , L. 2005 . Superhydrophobic aligned polystyrene nanotube films with high adhesive force . Adv. Mater. , 17 : 1977 – 1981 .
  • Sun , T. , Tan , H. , Han , D. , Fu , Q. and Jiang , L. 2005 . No platelet can adhere—largely improved blood compatibility on nanostructured superhydrophobic surfaces . Small , 1 : 959 – 963 .
  • Somorjai , G. A. 1981 . Proceedings of the Robert A. Welch Foundation conferences on Chemical Research, Houston, Texas, November 9–11, 1981, The surface science of heterogeneous catalysis, in: Heterogeneous Catalysis . Vol. XXV : 83
  • Ertl , G. 1981 . Proceedings of the Robert A. Welch Foundation conferences on Chemical Research, Houston, Texas, November 9–11, 1981, The surface science of heterogeneous catalysis, in: Heterogeneous Catalysis . Vol. XXV : 179
  • Zhou , K. , Wang , X. , Sun , X. M. , Peng , Q. and Li , Y. D. 2005 . Enhanced catalytic activity of ceria nanorods from well-defined reactive crystal planes . J. Catal. , 229 : 206 – 212 .
  • Xie , X. W. , Li , Y. , Liu , Z. Q. , Haruta , M. and Shen , W. J. 2009 . Low-temperature oxidation of CO catalysed by Co3O4 nanorods . Nature , 458 : 746 – 749 .
  • Yang , H. G. , Sun , C. H. , Qiao , S. Z. , Zou , J. , Liu , G. , Smith , S. C. and Cheng , H. M. 2008 . Anatase TiO2 single crystals with a large percentage of reactive facets . Nature , 453 : 638 – 641 .
  • Duan , X. and Lieber , C. M. 2000 . General synthesis of compound semiconductor nanowires . Adv. Mater. , 12 : 198 – 302 .
  • Goldberger , J. , He , R. , Zhang , Y. , Lee , S. , Choi Yan , H.-J. H. and Yang , P. 2003 . Single-crystal gallium nitride nanotubes . Nature , 422 : 599 – 602 .
  • Kong , W. Y. , Ding , Y. , Yang , R. S. and Wang , Z. L. 2004 . Single-crystal nanorings formed by epitaxial self-coiling of polar nanobelts . Science , 303 : 1348 – 1351 .
  • Xia , Y. , Yang , P. , Sun , Y. , Wu , Y. , Mayers , B. , Gates , B. and Yin , Y. 2003 . One-dimensional nanostructures: synthesis, characterization, and applications . Adv. Mater. , 15 : 353 – 389 .
  • Bakkers , E. P. A. M. and Verheijen , M. A. 2003 . Synthesis of InP nanotubes . J. Am. Chem. Soc. , 125 : 3440 – 3441 .
  • Saito , Y. and Matsumoto , T. 1998 . Carbon nano-cages created as cubes . Nature , 392 : 237
  • Cao , P. X. and Wang , Z. L. 2004 . Substrate atomic-termination-induced anisotropic growth of ZnO nanowires/nanorods by the VLS process . J. Phys. Chem. B , 108 : 7534 – 7537 .
  • Pan , Z. W. , Dai , Z. R. , Xu , L. , Lee , S. T. and Wang , Z. L. 2001 . Temperature-controlled growth of silicon-based nanostructures by thermal evaporation of SiO powders . J. Phys. Chem. B , 105 : 2507 – 2514 .
  • Ma , C. , Ding , Y. , Moore , D. , Wang , X. and Wang , Z. L. 2004 . Single-crystal CdSe nanosaws . J. Am. Chem. Soc. , 126 : 708 – 709 .
  • Zhang , Y. , Wang , L. , Liu , X. , Yan , Y. , Chen , C. and Zhu , J. 2005 . Synthesis of nano/micro zinc oxide rods and arrays by thermal evaporation approach on cylindrical shape substrate . J. Phys. Chem. B , 109 : 13091 – 13093 .
  • Huang , M. H. , Mao , S. , Feick , H. , Yan , H. Q. , Wu , Y. Y. , Kind , H. , Weber , E. and Russo , R. 2001 . Room-temperature ultraviolet nanowire nanolasers . Science , 292 : 1897 – 1899 .
  • Wang , Z. L. 2004 . Nanostructures of zinc oxide . Mater. Today , 7 : 26 – 33 .
  • Pileni , M. P. 2000 . II–VI semiconductors made by soft chemistry: syntheses and optical properties . Catal. Today , 58 : 151 – 166 .
  • Steigerwald , M. L. , Alivisatos , A. P. , Gibson , J. M. , Harris , T. D. , Kortan , R. , Muller , A. J. and Thayer , A. M. 1988 . Surface derivatization and isolation of semiconductor cluster molecules . J. Am. Chem. Soc. , 110 : 3046 – 3050 .
  • Simmons , B. A. , Li , S. , John , V. T. , McPherson , G. L. , Bose , A. , Zhou , W. and He , J. 2002 . Morphology of CdS nanocrystals synthesized in a mixed surfactant system . Nano Lett. , 2 : 263 – 268 .
  • Kim , D. , Miyamoto , M. and Nakayama , M. 2003 . Surface-modification effects on luminescence properties of CdS and CdMnS quantum dots prepared by a reverse-micelle method . Phys. Status Solidi (c) , 0 : 1233 – 1236 .
  • Murphy-Wilhelmy , D. and Matijevic , E. 1985 . Preparation of uniform colloidal particles of lead sulfide and of mixed sulfides of cadmium + zinc and cadmium + lead . Colloids Surf. , 16 : 1 – 8 .
  • Ishikawa , T. and Matijevic , E. 1988 . Preparation and properties of uniform colloidal metal phosphates: III. cobalt(II) phosphate . Colloid Interface Sci. , 123 : 122 – 128 .
  • Zhang , D. F. , Sun , L. D. , Yin , J. L. and Yan , C. H. 2003 . Low-temperature fabrication of highly crystalline SnO2 nanorods . Adv. Mater. , 15 : 1022 – 1025 .
  • Matijevic , E. 1993 . Preparation and properties of uniform size colloids . Chem. Mater. , 5 : 412 – 426 .
  • Zou , B. S. , Little , R. B. , Wang , J. P. and El-Sayed , M. A. 1999 . Effect of different capping environments on the optical properties of CdS nanoparticles in reverse micelles . Int. J. Quantum Chem. , 72 : 439 – 450 .
  • Moumen , N. , Bonville , P. and Pileni , M. P. 1996 . Control of the size of cobalt ferrite magnetic fluids: mössbauer spectroscopy . J. Phys. Chem. , 100 : 14410 – 14416 .
  • Liu , C. , Zou , B. , Rondinone , A. J. and Zhang , Z. J. 2000 . Reverse micelle synthesis and characterization of superparamagnetic MnFe2O4 spinel ferrite nanocrystallites . J. Phys. Chem. B , 104 : 1141 – 1145 .
  • Ngo , A. P. , Bonville , P. and Pileni , M. P. 1999 . Nanoparticles of CoxFey zO4: synthesis and superparamagnetic properties . Eur. Phys. J. B , 9 : 583 – 592 .
  • Kang , Y. S. , Risbud , S. , Rabolt , J. F. and Stroeve , P. 1996 . Synthesis and characterization of nanometer-size Fe3O4 and γ-Fe2O3 particles . Chem. Mater. , 8 : 2209 – 2211 .
  • Tang , J. , Myers , M. , Bosnick , K. A. and Brus , L. E. 2003 . Magnetite Fe3O4 manocrystals: spectroscopic observation of aqueous oxidation kinetics . J. Phys. Chem. B , 107 : 7501 – 7506 .
  • Zhang , Z. J. , Wang , Z. L. , Chakoumakos , B. C. and Yin , J. S. 1998 . Temperature dependence of cation distribution and oxidation state in magnetic Mn-Fe ferrite nanocrystals . J. Am. Chem. Soc. , 120 : 1800 – 1804 .
  • Lee , Y. , Lee , J. , Bae , C. J. , Park , J. G. , Noh , H. J. , Park , J. H. and Hyeon , T. 2005 . Large-scale synthesis of uniform and crystalline magnetite nanoparticles using reverse micelles as nanoreactors under reflux conditions . Adv. Funct. Mater. , 15 : 503 – 509 .
  • Sjogren , C. E. , Johansson , C. , Naevestad , A. , Sontum , P. C. , Briley-Saebo , K. and Fahlvik , A. K. 1997 . Crystal size and properties of superparamagnetic iron oxide (SPIO) particles . Magn. Reson. Imaging , 15 : 55 – 67 .
  • Puntes , V. F. , Krishnan , K. M. and Alivisatos , A. P. 2001 . Colloidal nanocrystal shape and size control: the case of cobalt . Science , 291 : 2115 – 2117 .
  • Murray , C. B. , Norris , D. J. and Bawendi , M. G. 1993 . Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites . J. Am. Chem. Soc. , 115 : 8706 – 8715 .
  • Brus , L. E. 1984 . Electron-electron and electron-hole interactions in small semiconductor crystallites: the size dependence of the lowest excited electronic state . J. Chem. Phys. , 80 : 4403 – 4409 .
  • Jagadish , C. and Pearton , S. 2006 . Zinc Oxide Bulk, Thin Films, Nanostructures: Processing, Properties, Applications , New York : Elsevier .
  • Heo , Y. W. , Norton , D. P. , Tien , L. C. , Kwon , Y. , Kang , B. S. , Ren , F. and Pearton , S. J. 2004 . ZnO nanowire growth and devices . 47 : 1 – 47 . Mater. Sci. Eng.
  • Yang , P. D. , Yan , H. Q. , Mao , S. , Russo , R. , Johnson , J. , Saykally , R. , Morris , N. , Pham , J. and He , R. R. 2002 . Controlled growth of ZnO nanowires and their optical properties . Adv. Funct. Mater. , 12 : 323 – 331 .
  • Wang , Z. L. 2008 . Splendid one-dimensional nanostructures of zinc oxide: a new nanomaterial family for nanotechnology . ACS NANO , 2 : 1987 – 1992 .
  • Liu , Z. P. , Li , S. , Yang , Y. , Hu , Z. K. , Peng , S. , Liang , J. B. and Qian , Y. T. 2003 . Shape-controlled synthesis and growth mechanism of one-dimensional nanostructures of trigonal tellurium . New. J. Chem. , 27 : 1748 – 1752 .
  • Fan , W. L. , Sun , S. X. , Song , X. Y. , Zhang , W. M. , Yu , H. Y. , Tan , X. J. and Cao , G. X. 2004 . Controlled synthesis of single-crystalline Mg(OH)2 nanotubes and nanorods via a solvothermal process . J. Solid. State. Chem. , 177 : 2329 – 2338 .
  • Zhou , P. , Xue , D. , Luo , H. and Chen , X. 2002 . Fabrication, structure, and magnetic properties of highly ordered prussian blue nanowire arrays . Nano Lett. , 2 : 845 – 847 .
  • Mor , G. K. , Varghese , O. K. , Paulose , M. , Mukherjee , N. and Grimes , C. A. 2003 . Fabrication of tapered, conical-shaped titania nanotubes . J. Mater. Res. , 18 : 2588 – 2593 .
  • Li , X. M. , Li , Y. , Li , S. Q. , Zhou , W. W. , Chu , H. B. , Chen , W. and Li , I. L. 2005 . Single crystalline trigonal selenium nanotubes and nanowires synthesized by sonochemical process . Cryst. Growth Des. , 5 : 911 – 916 .
  • Ringsdorf , H. , Schlarb , B. and Verzmer , J. 1988 . Molecular architecture and function of polymeric oriented systems: models for the study of organization, surface recognition, and dynamics of biomembranes . Angew. Chem. Int. Ed. , 27 : 113 – 158 .
  • Che , G. , Lakshmi , B. B. , Fisher , E. R. and Martin , C. R. 1998 . Carbon nanotubule membranes for electrochemical energy storage and production . Nature , 393 : 346 – 349 .
  • Lew , K. K. , Reuther , C. , Carim , A. H. , Redwing , J. M. and Martin , B. R. 2002 . Template-directed vapor–liquid–solid growth of silicon nanowires . J. Vac. Sci. Technol. B , 20 : 389 – 392 .
  • Lew , K. K. and Redwing , J. M. 2003 . Growth characteristics of silicon nanowires synthesized by vapor–liquid–solid growth in nanoporous alumina templates . J. Cryst. Growth. , 254 : 14 – 22 .
  • Greyson , E. C. , Babayan , Y. and Odom , T. W. 2004 . Directed growth of ordered arrays of small-diameter ZnO nanowires . Adv. Mater. , 16 : 1348 – 1352 .
  • Sauer , G. , Brehm , G. , Schneider , S. , Nielsch , K. , Wehrspohn , R. B. , Choi , J. and Hofmeister , H. 2002 . Highly ordered monocrystalline silver nanowire arrays . J. Appl. Phys. , 91 : 3243 – 3247 .
  • Schonenberger , C. , vanderZande , B. M. I. , Fokkink , L. G. J. , Henny , M. , Schmid , C. , Kruger , M. and Bachtold , A. 1997 . Template synthesis of nanowires in porous polycarbonate membranes:electrochemistry and morphology . J. Phys. Chem. B , 101 : 5497 – 5505 .
  • Gates , B. , Mayers , B. , Cattle , B. and Xia , Y. 2002 . Synthesis and characterization of uniform nanowires of trigonal selenium . Adv. Funct. Mater. , 12 : 219 – 227 .
  • Zhang , X. Y. , Wen , G. H. , Chan , Y. F. , Zheng , R. K. , Zhang , X. X. and Wang , N. 2003 . Fabrication and magnetic properties of ultrathin Fe nanowire arrays . Appl. Phys. Lett. , 83 : 3341 – 3343 .
  • Miao , J. Y. , Cai , Y. , Chan , Y. F. , Sheng , P. and Wang , N. 2006 . A novel carbon nanotube structure formed in ultra-long nanochannels of anodic aluminum oxide templates . J. Phys. Chem. B , 110 : 2080 – 2083 .
  • Martin , C. R. 1994 . Nanomaterials: a membrane-based synthetic approach . Science , 266 : 1961 – 1966 .
  • Almawlawi , D. , Liu , C. Z. and Moskovits , M. 1994 . Nanowires formed in anodic oxide nanotemplates . J. Mater. Res. , 9 : 1014 – 1018 .
  • Zheng , M. , Zhang , L. , Zhang , X. , Zhang , J. and Li , G. 2001 . Fabrication and optical absorption of ordered indium oxide nanowire arrays embedded in anodic alumina membranes . Chem. Phys. Lett. , 334 : 298 – 302 .
  • Ugarte , D. , Chatelain , A. and de Heer , W. A. 1996 . Nanocapillarity and chemistry in carbon nanotubes . Science , 274 : 1897 – 1899 .
  • Dujardin , E. , Ebbesen , T. W. , Hiura , H. and Tanigaki , K. 1994 . Capillarity and wetting of carbon nanotubes . Science , 265 : 1850 – 1852 .
  • Ajayan , P. M. and Iijima , S. 1993 . Capillarity-induced filling of carbon nanotubes . Nature , 361 : 333 – 334 .
  • Sloan , J. , Wright , D. M. , Woo , H.-G. , Bailey , S. , Brown , G. , York , A. P. E. and Coleman , K. S. 1999 . Capillarity and silver nanowire formation observed in single walled carbon nanotubes . Chem. Commun. , : 699 – 700 .
  • Shi , K. Y. , Xin , B. F. , Chi , Y. J. and Fu , H. G. 2004 . Assembling porous Fe2O3 nanowire arrays by electrochemical deposition in mesoporous silica SBA-16 films . Acta Chim. Sin. , 62 : 1859 – 1861 .
  • Zheng , M. J. , Zhang , L. D. , Li , G. H. and Shen , W. Z. 2002 . Fabrication and optical properties of large-scale uniform zinc oxide nanowire arrays by one-step electrochemical deposition technique . Chem. Phys. Lett. , 363 : 123 – 128 .
  • Zhang , M. , Bando , Y. and Wada , K. 2001 . Sol-gel template preparation of TiO2 nanotubes and nanorods . J. Mater. Sci. Lett. , 20 : 167 – 170 .
  • Xu , H. , Qin , D. H. , Yang , Z. and Li , H. L. 2003 . Fabrication and characterization of highly ordered zirconia nanowire arrays by sol-gel template method . Mater. Chem. Phys. , 80 : 524 – 528 .
  • Wang , X. Y. , Wang , X. Y. , Huang , W. G. , Sebastian , P. J. and Gamboa , S. 2005 . Sol-gel template synthesis of highly ordered MnO2 nanowire arrays . J. Power Sources , 140 : 211 – 215 .
  • Liu , X. M. and Zhou , Y. C. 2005 . Electrochemical deposition and characterization of Cu2O nanowires . Appl. Phys. A- Mater. Sci. Process , 81 : 685 – 689 .
  • Mintz , T. S. , Bhargava , Y. V. , Thorne , S. A. , Chopdekar , R. , Radmilovic , V. , Shuzuki , Y. and Devine , T. M. 2005 . Electrochemical synthesis of functionalized nickel oxide nanowires . Electrochem. Solid State Lett. , 8 : D26 – D30 .
  • Wang , Y. Q. , Hu , G. Q. , Duan , X. F. , Sun , H. L. and Xue , Q. K. 2002 . Microstructure and formation mechanism of titanium dioxide nanotubes . Chem. Phys. Lett. , 365 : 427 – 431 .
  • Yan , Z. G. , Zhang , Y. W. , You , L. P. , Sia , R. and Yan , C. H. 2004 . General synthesis and characterization of monocrystalline 1D-nanomaterials of hexagonal and orthorhombic lanthanide orthophosphate hydrate . J. Cryst. Growth , 262 : 408 – 414 .
  • Xiong , S. L. , Xi , B. J. , Wang , C. M. , Xu , D. C. , Feng , X. M. , Hu , Z. C. and Qian , Y. T. 2007 . Tunable synthesis of various wurtzite ZnS architectural structures and their photocatalytic properties . Adv. Funct. Mater. , 17 : 2728 – 2738 .
  • Mor , G. K. , Varghese , O. K. , Paulose , M. and Grimes , C. A. 2003 . A self-cleaning room temperature titania-nanotube hydrogen gas sensor . Sens. Lett. , 1 : 42 – 46 .
  • Illy , B. , Shollock , B. A. , Macmanus-Driscoll , J. L. and Ryan , M. P. 2005 . Electrochemical growth of ZnO nanoplates . Nanotechnology , 16 : 320 – 324 .
  • Penn , R. L. and Banfield , J. F. 1999 . Formation of rutile nuclei at anatase {112} twin interfaces and the phase transformation mechanism in nanocrystalline titania . Am. Mineral. , 84 : 871 – 876 .
  • Bakardjieva , S. , Stengl , V. , Szatmary , L. , Subrt , J. , Lukac , J. , Murafa , N. , Niznansky , D. , Cizek , K. , Jirkovsky , J. and Petrova , N. 2006 . Transformation of brookite-type TiO2 nanocrystals to rutile: correlation between microstructure and photoactivity . J. Mater. Chem. , 16 : 1709 – 1716 .
  • Dagan , G. and Tomkiewicz , M. 1993 . Titanium dioxide aerogels for photocatalytic decontamination of aquatic environments . J. Phys. Chem. , 97 : 12651 – 12655 .
  • O’Regan , B. and Grätzel , M. 1991 . A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films . Nature , 353 : 737 – 740 .
  • Bavykin , D. V. , Friedrich , J. M. and Walsh , F. C. 2006 . Protonated titanates and TiO2 nanostructured materials: synthesis, properties, and applications . Adv. Mater. , 18 : 2807 – 2824 .
  • Narayanasamy , A. , Maroni , V. A. and Siegel , R. W. 1989 . Raman spectroscopy of nanophase TiO2 . J. Mater. Res. , 4 : 1246 – 1250 .
  • Chen , X. B. and Mao , S. S. 2007 . Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications . Chem. Rev. , 107 : 2891 – 2959 .
  • Cozzoli , P. D. , Kornowski , A. and Weller , H. 2003 . Low-temperature synthesis of soluble and processable organic-capped anatase TiO2 nanorods . J. Am. Chem. Soc. , 125 : 14539 – 14548 .
  • Cozzoli , P. D. , Fanizza , E. , Comparelli , R. , Curri , M. L. , Agostiano , A. and Laub , D. 2004 . Role of metal nanoparticles in TiO2/Ag nanocomposite-based microheterogeneous photocatalysis . J. Phys. Chem. B , 108 : 9623 – 9630 .
  • Cozzoli , P. D. , Comparelli , R. , Fanizza , E. , Curri , M. L. , Agostiano , A. and Laub , D. 2004 . Photocatalytic synthesis of silver nanoparticles stabilized by TiO2 nanorods: a semiconductor/metal nanocomposite in homogeneous nonpolar solution . J. Am. Chem. Soc. , 126 : 3868 – 3879 .
  • Cozzoli , P. D. , Fanizza , E. , Curri , M. L. , Laub , D. and Agostiano , A. 2005 . Low-dimensional chainlike assemblies of TiO2 nanorod-stabilized Au nanoparticles . Chem. Commun. , : 942 – 944 .
  • Cozzoli , P. D. , Curri , M. L. and Agostiano , A. 2005 . Efficient charge storage in photoexcited TiO2 nanorod-noble metal nanoparticle composite systems . Chem. Commun. , : 3186 – 3188 .
  • Buonsanti , R. , Grillo , V. , Carlino , E. , Giannini , C. , Curri , M. L. , Innocenti , C. , Sangregorio , C. , Agostiano , A. and Cozzoli , P. D. 2006 . Seeded growth of asymmetric binary nanocrystals made of a semiconductor TiO2 rodlike section and a magnetic γ-Fe2O3 spherical domain . J. Am. Chem. Soc. , 128 : 16953 – 16970 .
  • Jun , Y. W. , Casula , M. F. , Sim , J. H. , Kim , S. Y. , Cheon , J. and Alivisatos , A. P. 2003 . Surfactant-assisted elimination of a high energy facet as a means of controlling the shapes of TiO2 nanocrystals . J. Am. Chem. Soc. , 125 : 15981 – 15985 .
  • Zhang , Z. , Zhong , X. , Liu , S. , Li , D. and Han , M. 2005 . Aminolysis route to monodisperse titania nanorods with tunable aspect ratio . Angew. Chem. Int. Ed. , 44 : 3466 – 3470 .
  • Joo , J. , Kwon , S. G. , Yu , T. , Cho , M. , Lee , J. , Yoon , J. and Hyeon , T. 2005 . Large-scale synthesis of TiO2 nanorods via nonhydrolytic sol-gel ester elimination reaction and their application to photocatalytic inactivation of E. coli . J. Phys. Chem. B , 109 : 15297 – 15302 .
  • Yang , S. and Gao , L. 2005 . Low-temperature synthesis of crystalline TiO2 nanorods: mass production assisted by surfactant . Chem. Lett. , 34 : 964 – 965 .
  • Li , X. L. , Peng , Q. , Yi , J. X. , Wang , X. and Li , Y. D. 2006 . Near monodisperse TiO2 nanoparticles and nanorods . Chem. Eur. J. , 12 : 2383 – 2391 .
  • Kim , C. S. , Moon , B. K. , Park , J. H. , Choi , B. C. and Seo , H. J. 2003 . Solvothermal synthesis of nanocrystalline TiO2 in toluene with surfactant . J. Cryst. Growth , 257 : 309 – 315 .
  • Kobayashi , S. , Hanabusa , K. , Hamasaki , N. , Kimura , M. , Shirai , H. and Shinkai , S. 2000 . Preparation of TiO2 hollow-fibers using supramolecular assemblies . Chem. Mater. , 12 : 1523 – 1525 .
  • Jung , J. H. , Kobayashi , H. , Bommel , K. J. C. , Shinkai , S. and Shimizu , T. 2002 . Creation of novel helical ribbon and double-layered nanotube TiO2 structures using an organogel template . Chem. Mater. , 14 : 1445 – 1447 .
  • Jung , J. H. , Shimizu , T. and Shinkai , S. 2005 . Self-assembling structures of steroidal derivatives in organic solvents and their sol-gel transcription into double-walled transition-metal oxide nanotubes . J. Mater. Chem. , 15 : 3979 – 3986 .
  • Gundiah , G. , Mukhopadhyay , S. , Tumkurkar , U. G. , Govindaraj , A. , Maitrab , U. and Rao , C. N. R. 2003 . Hydrogel route to nanotubes of metal oxides and sulfates . J. Mater. Chem. , 13 : 2118 – 2122 .
  • Peng , T. , Hasegawa , A. , Qiu , J. and Hirao , K. 2003 . Fabrication of titania tubules with high surface area and well-developed mesostructural walls by surfactant-mediated templating method . Chem. Mater. , 15 : 2011 – 2016 .
  • Fujikawa , S. and Kunitake , T. 2003 . Surface fabrication of hollow nanoarchitectures of ultrathin titania layers from assembled latex particles and tobacco mosaic viruses as templates . Langmuir , 19 : 6545 – 6552 .
  • Hippe , C. , Wark , M. , Lork , E. and Schulz-Ekloff , G. 1999 . Platinum-filled oxidic nanotubes . Microporous Mesoporous Mater. , 31 : 235 – 239 .
  • Das , K. , Subhendu , S. , Panda , K. and Chaudhuri , S. 2008 . Solvent-controlled synthesis of TiO2 1D nanostructures: Growth mechanism and characterization . J. Cryst. Growth , 310 : 3792 – 3799 .
  • Luo , Z. , Yang , W. , Peng , A. , Zeng , Y. and Yao , J. 2009 . The fabrication of TiO2 nanorods from TiO2 nanoparticles by organic protection assisted template method . Nanotechnology , 20 : 345601
  • Miao , L. , Tanemura , S. , Toh , S. , Kaneko , K. and Tanemura , M. 2004 . Fabrication, characterization and Raman study of anatase-TiO2 nanorods by a heating-sol-gel template process . J. Cryst. Growth , 264 : 246 – 252 .
  • Miao , L. , Tanemura , S. , Toh , S. , Kaneko , K. and Tanemura , M. 2004 . Heating-sol-gel template process for the growth of TiO2 nanorods with rutile and anatase structure . Appl. Surf. Sci. , 238 : 175 – 179 .
  • Ren , X. , gershon , T. , Iza , D. C. , Munoz-Rojas , D. , Musselman , K. and MacManus-Driscoll , J. L. 2009 . The selective fabrication of large-area highly ordered TiO2 nanorod and nanotube arrays on conductive transparent substrates via sol-gel electrophoresis . Nanotechnology , 20 : 365604
  • Lei , Y. , Zhang , L. D. and Fan , J. C. 2001 . Fabrication, characterization and Raman study of TiO2 nanowire arrays prepared by anodic oxidative hydrolysis of TiCl3 . Chem. Phys. Lett. , 338 : 231 – 236 .
  • Liu , S. and Huang , K. 2004 . Straightforward fabrication of highly ordered TiO2 nanowire arrays in AAM on aluminum substrate . Sol. Energy Mater. Sol. Cells , 85 : 125 – 131 .
  • Lin , Y. , Wu , G. S. , Yuan , X. Y. , Xie , T. and Zhang , L. D. 2003 . Fabrication and optical properties of TiO2 nanowire arrays made by sol-gel electrophoresis deposition into anodic alumina membranes . J. Phys.-Condens. Matter , 15 : 2917 – 2922 .
  • Lee , S. , Jeon , C. and Park , Y. 2004 . Fabrication of TiO2 tubules by template synthesis and hydrolysis with water vapor . Chem. Mater. , 16 : 4292 – 4295 .
  • Sander , M. S. , Cote , M. J. , Gu , W. , Kile , B. M. and Tripp , C. P. 2004 . Template-assisted fabrication of dense, aligned arrays of titania nanotubes with well-controlled dimensions on substrates . Adv. Mater. , 16 : 2052 – 2057 .
  • Chu , S. Z. , Wada , K. , Inoue , S. and Todoroki , S. I. 2002 . Synthesis and characterization of titania nanostructures on glass by Al anodization and sol-gel process . Chem. Mater. , 14 : 266 – 272 .
  • Chen , Y. , Crittenden , J. C. , Hackney , S. , Sutter , L. and Hand , D. W. 2005 . Preparation of a novel TiO2-based p-n junction nanotube photocatalyst . Environ. Sci. Technol. , 39 : 1201 – 1208 .
  • Michailowski , A. , Al-Mawlawi , D. , Cheng , G. S. and Moskovits , M. 2001 . Highly regular anatase nanotubule arrays fabricated in porous anodic templates . Chem. Phys. Lett. , 349 : 1 – 5 .
  • Liu , S. M. , Gan , L. M. , Liu , L. H. , Zhang , W. D. and Zeng , H. C. 2002 . Synthesis of single-crystalline TiO2 nanotubes . Chem. Mater. , 14 : 1391 – 1397 .
  • Kang , T. S. , Smith , A. P. , Taylor , B. E. and Durstock , M. F. 2009 . Fabrication of highly-ordered TiO2 nanotube arrays and their use in dye-sensitized solar cells . Nano. Lett. , 9 : 601 – 606 .
  • Lee , J. H. , Leu , I. C. , Hsu , M. C. , Chung , Y. W. and Hon , M. H. 2005 . Fabrication of aligned TiO2 one-dimensional nanostructured arrays using a one-step templating solution approach . J. Phys. Chem. B , 109 : 13056 – 13059 .
  • Qiu , J. J. , Yu , W. D. , Gao , X. D. and Li , X. M. 2006 . Sol-gel assisted ZnO nanorod array template to synthesize TiO2 nanotube arrays . Nanotechnology , 17 : 4695 – 4698 .
  • Gao , Y. , Luo , H. , Mizusugi , S. and Nagai , M. 2008 . Surfactant-free synthesis of anatase TiO2 nanorods in an aqueous peroxotitanate solution . Cryst. Growth Des. , 8 : 1804 – 1807 .
  • Ke , T. Y. , Peng , C. W. , Lee , C. Y. , Chiu , H. T. and Sheu , H. S. 2009 . {110}-exposed rutile titanium dioxide nanorods in photocatalytic performance . Cryst. Eng. Comm , 11 : 1691 – 1695 .
  • Das , K. , Panda , S. K. and Chaudhuri , S. 2008 . Solvent-controlled synthesis of TiO2 1D nanostructures: growth mechanism and characterization . J. Cryst. Growth , 310 : 3792 – 3799 .
  • Feng , X. , Zhai , J. and Jiang , L. 2005 . The fabrication and switchable superhydrophobicity of TiO2 nanorod films . Angew. Chem. Int. Ed. , 44 : 5115 – 5118 .
  • Kobayashi , M. , Petrykin , V. , Kakihaba , M. and Tomita , K. 2009 . Hydrothermal synthesis and photocatalytic activity of whisker-like rutile-type titanium dioxide . J. Am. Ceram. Soc. , 92 : s21 – s26 .
  • Liu , B. and Aydil , E. S. 2009 . Growth of oriented single-crystalline rutile TiO2 nanorods on transparent conducting substrates for dye-sensitized solar cells . J. Am. Chem. Soc. , 131 : 3985 – 3990 .
  • Zhao , B. , Chen , F. , Huang , Q. W. and Zhang , J. L. 2009 . Brookite TiO2 nanoflowers . Chem. Comm. , : 5115 – 5117 .
  • Wu , J. M. , Hayakawa , S. , Tsuru , K. and Osaka , A. 2002 . Nanocrystalline titania made from interactions of Ti with hydrogen peroxide solutions containing tantalum chloride . Cryst. Growth Des. , 2 : 147 – 149 .
  • Wu , J. M. , Zhang , T. W. , Zeng , Y. W. , Hayakawa , S. , Tsuru , K. and Osaka , A. 2005 . Large-scale preparation of ordered titania nanorods with enhanced photocatalytic activity . Langmuir , 21 : 6995 – 7002 .
  • Wu , J. M. 2004 . Low-temperature preparation of titania nanorods through direct oxidation of titanium with hydrogen peroxide . J. Cryst. Growth , 269 : 347 – 355 .
  • Peng , X. and Chen , A. 2004 . Aligned TiO2 nanorod arrays synthesized by oxidizing titanium with acetone . J. Mater. Chem. , 14 : 2542 – 2548 .
  • Ma , G. , Zhao , X. and Zhu , J. 2005 . Microwave hydrothermal synthesis of rutile TiO2 nanorods . Int. J. Mod. Phys. B , 19 : 2763 – 2768 .
  • Guo , S. , Wu , Z. B. , Wang , H. Q. and Dong , F. 2009 . Synthesis of mesoporous TiO2 nanorods via a mild template-free sonochemical route and their photocatalytic performances . Catal. Commun. , 10 : 1766 – 1770 .
  • Zhang , Y. X. , Li , G. H. , Jin , Y. X. , Zhang , Y. , Zhang , J. and Zhang , L. D. 2002 . Hydrothermal synthesis and photoluminescence of TiO2 nanowires . Chem. Phys. Lett. , 365 : 300 – 304 .
  • Armstrong , A. R. , Armstrong , G. , Canales , J. , García , R. and Bruce , P. G. 2004 . TiO2-B nanowires . Angew. Chem. Int. Ed. , 43 : 2286
  • Jitputtia , J. , Suzukia , Y. and Yoshikawa , S. 2008 . Synthesis of TiO2 nanowires and their photocatalytic activity for hydrogen evolution . Catal. Commun. , 9 : 1265 – 1271 .
  • Yoshida , R. , Suzuki , Y. and Yoshikawa , S. 2005 . Syntheses of TiO2(B) nanowires and TiO2 anatase nanowires by hydrothermal and post-heat treatments . J. Solid State Chem. , 178 : 2179 – 2185 .
  • Nian , J. N. and Teng , H. S. 2006 . Hydrothermal synthesis of single-crystalline anatase TiO2 nanorods with nanotubes as the precursor . J. Phys. Chem. B , 110 : 4193 – 4198 .
  • Yuan , Z. Y. , Zhang , X. B. and Su , B. L. 2004 . Moderate hydrothermal synthesis of potassium titanate nanowires . Appl. Phys. A. , 78 : 1063 – 1066 .
  • Yuan , Z. Y. and Su , B. L. 2004 . Titanium oxide nanotubes, nanofibers and nanowires . Colloid Surf A: Physicochem. Eng. Aspects. , 241 : 173 – 183 .
  • Penn , R. L. and Banfield , J. F. 1999 . Morphology development and crystal growth in nanocrystalline aggregates under hydrothermal conditions: insights from titania . Geochim. Cosmochim. Acta , 63 : 1549 – 1557 .
  • Donnay , J. D. H. and Harker , D. 1937 . A new law of crystal morphology extending the law of Bravais . Am. Mineral. , 22 : 446 – 467 .
  • Pacholski , C. , Kornowski , A. and Weller , H. 2002 . Self-assembly of ZnO: from nanodots to nanorods . Angew. Chem. Int. Ed. , 41 : 1188 – 1191 .
  • Zhao , Y. , Lee , U. H. , Suh , M. and Kwon , Y. U. 2004 . Synthesis and characterization of highly crystalline anatase nanowire arrays . Bull. Korean Chem. Soc. , 25 : 1341 – 1345 .
  • Wen , B. , Liu , C. and Liu , Y. 2005 . Depositional characteristics of metal coating on single-crystal TiO2 nanowires . J. Phys. Chem. B , 109 : 12372 – 12375 .
  • Wen , B. , Liu , C. and Liu , Y. 2005 . Bamboo-shaped Ag-doped TiO2 nanowires with heterojunctions . Inorg. Chem. , 44 : 6503 – 6505 .
  • Wen , B. , Liu , C. and Liu , Y. 2005 . Solvothermal synthesis of ultralong single-crystalline TiO2 nanowires . New J. Chem. , 29 : 969 – 971 .
  • Kasuga , T. , Hiramatsu , M. , Hoson , A. , Sekino , T. and Niihara , K. 1998 . Formation of titanium oxide nanotube . Langmuir , 14 : 3160 – 3163 .
  • Chen , Q. , Zhou , W. Z. , Du , G. H. and Meng , L. M. 2002 . Trititanate nanotubes made via a single alkali treatment . Adv. Mater. , 14 : 1208 – 1211 .
  • Zhang , S. , Peng , L. M. , Chen , Q. , Du , G. H. , Dawson , G. and Zhou , W. Z. 2003 . Formation mechanism of H2Ti3O7 nanotubes . Phys. Rev. Lett. , 91 : 256103
  • Zhang , S. , Chen , Q. and Peng , L. M. 2005 . Structure and formation of H2Ti3O7 nanotubes in an alkali environment . Phys. Rev. B , 71 : 014104
  • Bavykin , D. V. , Parmon , V. N. , Lapkin , A. A. and Walsh , F. C. 2004 . The effect of hydrothermal conditions on the mesoporous structure of TiO2 nanotubes . J. Mater. Chem. , 14 : 3370 – 3377 .
  • Tsai , C. C. and Teng , H. 2004 . Regulation of the physical characteristics of titania nanotube aggregates synthesized from hydrothermal treatment . Chem. Mater. , 16 : 4352 – 4358 .
  • Wang , W. Z. , Varghese , O. K. , Paulose , M. , Grimes , C. A. , Wang , Q. L. and Dickey , E. C. 2004 . A study on the growth and structure of titania nanotubes . J. Mater. Res. , 19 : 417 – 422 .
  • Du , G. H. , Chen , Q. , Che , R. C. , Yuan , Z. Y. and Peng , L. M. 2001 . Preparation and structure analysis of titanium oxide nanotubes . Appl. Phys. Lett. , 79 : 3702 – 3704 .
  • Chen , Q. , Du , G. H. , Zhang , S. and Peng , L. M. 2002 . The structure of trititanate nanotubes . Acta Crystallogr. Sect. B , 58 : 587 – 593 .
  • Wu , D. , Liu , J. , Zhao , X. , Li , A. , Chen , Y. and Ming , N. 2006 . Sequence of events for the formation of titanate nanotubes, nanofibers, nanowires, and nanobelts . Chem. Mater. , 18 : 547 – 553 .
  • Nakahira , A. , Kato , W. , Tamai , M. , Isshiki , T. , Nishio , K. and Aritani , H. 2004 . Synthesis of nanotube from a layered H2Ti4O9 H2O in a hydrothermal treatment using various titania sources . J. Mater. Sci. , 39 : 4239 – 4245 .
  • Yang , J. J. , Jin , Z. S. , Wang , X. D. , Li , W. , Zhang , J. W. , Zhang , S. L. and Guo , X. Y. 2003 . Study on composition, structure and formation process of nanotube Na2Ti2O4(OH)2 . Dalton Trans. , : 3898 – 3901 .
  • Gao , T. , Fjellvåg , H. and Norby , P. 2009 . Crystal structures of titanate nanotubes: a Raman scattering study . Inorg. Chem. , 48 : 1423 – 1432 .
  • Ma , R. , Bando , Y. and Sasaki , T. 2004 . Directly rolling nanosheets into nanotubes . J. Phys. Chem. B , 108 : 2115 – 2119 .
  • Sun , X. and Li , Y. 2003 . Synthesis and characterization of ion-exchangeable titanate nanotubes . Chem. Eur. J. , 9 : 2229 – 2238 .
  • Zhu , H. Y. , Lan , Y. , Gao , X. P. , Ringer , S. P. , Zheng , Z. F. , Song , D. Y. and Zhao , J. C. 2005 . Phase transition between nanostructures of titanate and titanium dioxides via simple wet-chemical reactions . J. Am. Chem. Soc. , 127 : 6730 – 6736 .
  • Wu , X. , Jiang , Q. Z. , Ma , Z. F. , Fu , M. and Shangguan , W. F. 2005 . Synthesis of titania nanotubes by microwave irradiation . Solid State Commun. , 136 : 513 – 517 .
  • Zhuang , H. F. , Lin , C. J. , Lai , Y. K. , Sun , L. and Li , J. 2007 . Some critical structure factors of titanium oxide nanotube array in its photocatalytic activity . Environ. Sci. Technol. , 41 : 4735 – 4740 .
  • Wang , D. A. , Yu , B. , Wang , C. W. , Zhou , F. and Liu , W. M. 2009 . A novel protocol toward perfect alignment of anodized TiO2 nanotubes . Adv. Mater. , 21 : 1964 – 1967 .
  • Wang , D. A. , Liu , Y. , Wang , C. W. , Zhou , F. and Liu , W. M. 2009 . Highly flexible coaxial nanohybrids made from porous TiO2 nanotubes . ACS Nano , 3 : 1249 – 1257 .
  • Mor , G. K. , Shankar , K. , Paulose , M. , Varghese , O. K. and Grimes , C. A. 2006 . Use of highly-ordered TiO2 nanotube arrays in dye-sensitized solar cells . Nano Lett. , 6 : 215 – 218 .
  • Gong , D. , Grimes , C. A. , Varghese , O. K. , Hu , W. , Singh , R. S. , Chen , Z. and Dickey , E. C. 2001 . Titanium oxide nanotube arrays prepared by anodic oxidation . J. Mater. Res. , 16 : 3331 – 3334 .
  • Varghese , O. K. , Gong , D. , Paulose , M. , Ong , K. G. , Dickey , E. C. and Grimes , C. A. 2003 . Extreme changes in the electrical resistance of titania nanotubes with hydrogen exposure . Adv. Mater. , 15 : 624 – 627 .
  • Mor , G. K. , Varghese , O. K. , Paulose , M. and Grimes , C. A. 2005 . Transparent highly ordered TiO2 nanotube arrays via anodization of titanium thin films . Adv. Funct. Mater. , 15 : 1291 – 1296 .
  • Paulose , M. , Varghese , O. K. , Mor , G. K. , Grimes , C. A. and Ong , K. G. 2006 . Unprecedented ultra-high hydrogen gas sensitivity in undoped titania nanotubes . Nanotechnology , 17 : 398 – 402 .
  • Ruan , C. , Paulose , M. , Varghese , O. K. , Mor , G. K. and Grimes , C. A. 2005 . Fabrication of highly ordered TiO2 nanotube arrays using an organic electrolyte . J. Phys. Chem. B , 109 : 15754 – 15759 .
  • Shankar , K. , Paulose , M. , Mor , G. K. , Varghese , O. K. and Grimes , C. A. 2005 . A study on the spectral photoresponse and photoelectrochemical properties of flame-annealed titania nanotube-arrays . J. Phys. D , 38 : 3543 – 3549 .
  • Varghese , O. K. , Paulose , M. , Shankar , K. , Mor , G. K. and Grimes , C. A. 2005 . Water-photolysis properties of micron-length highly-ordered titania nanotube-arrays . J. Nanosci. Nanotechnol. , 5 : 1158 – 1165 .
  • Paulose , M. , Shankar , K. , Yoriya , S. , Prakasam , H. E. , Varghese , O. K. , Mor , G. K. and Latempa , T. A. 2006 . Anodic growth of highly ordered TiO2 nanotube arrays to 134 μm in length . J. Phys. Chem. B , 110 : 16179
  • Ruan , C. M. , Paulose , M. , Varghese , O. K. and Grimes , C. A. 2006 . Enhanced photoelectrochemical-response in highly ordered TiO2 nanotube-arrays anodized in boric acid containing electrolyte . Sol. Energy Mater. Sol. Cells , 90 : 1283 – 1295 .
  • Macak , J. M. , Tsuchiya , H. and Schmuki , P. 2005 . High-aspect-ratio TiO2 nanotubes by anodization of titanium . Angew. Chem. Int. Ed. , 44 : 2100 – 2102 .
  • Macak , J. M. , Tsuchiya , H. , Ghicov , A. and Schmuki , P. 2005 . Dye-sensitized anodic TiO2 nanotubes . Electrochem. Commun. , 7 : 1133 – 1137 .
  • Prida , V. M. , Hernandez-Velez , M. , Cervera , M. , Pirota , K. , Sanz , R. , Navas , D. and Asenjo , A. 2005 . Magnetic behaviour of arrays of Ni nanowires by electrodeposition into self-aligned titania nanotubes . J. Magn. Magn. Mater. , 294 : e69 – e72 .
  • Quan , X. , Yang , S. , Ruan , X. and Zhao , H. 2005 . Preparation of titania nanotubes and their environmental applications as electrode . Environ. Sci. Technol. , 39 : 3770 – 3775 .
  • Tsuchiya , H. , Macak , J. M. , Taveira , L. , Balaur , E. , Ghicov , A. , Sirotna , K. and Schmuki , P. 2005 . Self-organized TiO2 nanotubes prepared in ammonium fluoride containing acetic acid electrolytes . Electrochem. Commun. , 7 : 576 – 580 .
  • Zhao , J. , Wang , X. , Chen , R. and Li , L. 2005 . Fabrication of titanium oxide nanotube arrays by anodic oxidation . Solid State Commun. , 134 : 705 – 710 .
  • Cai , Q. Y. , Yang , L. X. and Yu , Y. 2006 . Investigations on the self-organized growth of TiO2 nanotube arrays by anodic oxidization . Thin Solid Films , 515 : 1802 – 1806 .
  • Lee , W. J. , Alhoshan , M. and Smyrl , W. H. 2006 . Titanium dioxide nanotube arrays fabricated by anodizing processes . J. Electrochem. Soc. , 153 : B499 – B505 .
  • Macak , J. M. , Aldabergerova , S. , Ghicov , A. and Schmuki , P. 2006 . Smooth anodic TiO2 nanotubes: annealing and structure . Phys. Status Solidi (a) , 203 : R67 – R69 .
  • Macak , J. M. , Tsuchiya , H. , Berger , S. , Bauer , S. , Fujimoto , S. and Schmuki , P. 2006 . On wafer TiO2 nanotube-layer formation by anodization of Ti-films on Si . Chem. Phys. Lett. , 428 : 421 – 425 .
  • Bauer , S. , Kleber , S. and Schmuki , P. 2006 . TiO2 nanotubes: tailoring the geometry in H3PO4/HF electrolytes . Electrochem. Commun. , 8 : 1321 – 1325 .
  • Yuan , Z. Y. , Zhou , W. Z. and Su , B. L. 2002 . Hierarchical interlinked structure of titanium oxide nanofibers . Chem. Commun. , : 1202 – 1203 .
  • Kukovecz , A. , Hodos , M. , Horvath , E. , Radnoczi , G. , Konya , Z. and Kiricsi , I. 2005 . Oriented crystal growth model explains the formation of titania nanotubes . J. Phys. Chem. B , 109 : 17781 – 17783 .
  • Li , W. , Liu , C. , Zhou , Y. X. , Bai , Y. , Feng , X. , Yang , Z. H. and Lu , L. H. 2008 . Enhanced photocatalytic activity in anatase/TiO2(B) core-shell nanofiber . J. Phys. Chem. C , 112 : 20539 – 20545 .
  • Yang , D. J. , Liu , H. W. , Zheng , Z. F. , Yuan , Y. , Zhao , J. C. , Waclawik , E. R. and Ke , X. B. 2009 . An efficient photocatalyst structure: TiO2(B) nanofibers with a shell of anatase nanocrystals . J. Am. Chem. Soc. , 131 : 17885 – 17893 .
  • Sun , C. H. , Wang , N. X. , Zhou , S. Y. , Hu , X. J. , Zhou , S. Y. and Chen , P. 2008 . Preparation of self-supporting hierarchical nanostructured anatase/rutile composite TiO2 film . Chem. Commun. , : 3293 – 3295 .
  • Yuan , Z. Y. , Colomer , J. F. and Su , B. L. 2002 . Titanium oxide nanoribbons . Chem. Phys. Lett. , 363 : 362 – 366 .
  • Kiatkittipong , K. , Ye , C. , Scott , J. and Amal , R. 2010 . Understanding hydrothermal titanate nanoribbon formation . Cryst. Growth & Des. , 10 : 3618 – 3625 .
  • Fu , N. , Wu , Y. Q. , Jin , Z. L. and Lu , G. X. 2010 . Structural-dependent photoactivities of TiO2 nanoribbon for visible-light-induced H2 evolution: the roles of nanocavities and alternate structures . Langmuir , 26 : 447 – 455 .
  • Chen , J. Z. , Li , B. , Zheng , J. F. , Jia , S. P. , Zhao , J. H. , Jing , H. W. and Zhu , Z. P. 2011 . Role of one-dimensional ribbonlike nanostructures in dye-sensitized TiO2-based solar cells . J. Phys. Chem. C, , 115 : 7104 – 7113 .
  • Beuvier , T. , Plouet , M. R. , Le Granvalet , M. M. , Brousse , T. , Crosnier , O. and Brohan , L. 2010 . TiO2(B) nanoribbons as negative electrode material for lithium ion batteries with high rate performance . Inorg. Chem., , 49 : 8457 – 8464 .
  • Trovarelli , A. 1996 . Catalytic properties of ceria and CeO2-containing materials . Catal. Rev. Sci. Eng. , 38 : 439 – 520 .
  • Lin , K. S. and Chowdhury , Sujan . 2010 . Synthesis, characterization, and application of 1-D cerium oxide nanomaterials: a review . Int. J. Mol. Sci., , 11 : 3226 – 3251 .
  • Carrettin , S. , Concepción , P. , Corma , A. , López Nieto , J. M. and Puntes , V. F. 2004 . Nanocrystalline CeO2 increases the activity of Au for CO oxidation by two orders of magnitude . Angew. Chem. Int. Ed. , 43 : 2538 – 2540 .
  • Ho , C. , Yu , J. C. , Kwong , T. K. , Mak , A. C. and Lai , S. 2005 . Morphology-controllable synthesis of mesoporous CeO2 nano- and microstructures . Chem. Mater. , 17 : 4514 – 4522 .
  • Niu , F. , Zhang , D. , Shi , L. , He , X. , Li , H. , Mai , H. and Yan , T. 2009 . Facile synthesis, characterization and low-temperature catalytic performance of Au/CeO2 nanorods . Mater. Lett. , 63 : 2132 – 2135 .
  • Venezia , A. M. , Pantaleo , G. , Longo , A. , Carlo , G. D. , Casaletto , M. P. , Liotta , F. L. and Deganello , G. 2005 . Relationship between structure and CO oxidation activity of ceria-supported gold catalysts . J. Phys. Chem. B , 109 : 2821 – 2827 .
  • Weststrate , C. J. , Resta , A. , Westerstrom , R. , Lundgren , E. , Mikkelsen , A. and Andersen , J. N. 2008 . CO Adsorption on a Au/CeO2 (111) Model Catalyst . J. Phys. Chem. C , 112 : 6900 – 6906 .
  • Hsiao , W. I. , Lin , Y. S. , Chen , Y. C. and Lee , C. S. 2007 . The effect of the morphology of nanocrystalline CeO2 on ethanol reforming . Chem. Phys. Lett. , 441 : 294 – 299 .
  • Erdőhelyi , A. , Raskő , J. , Kecskés , T. , Tth , M. , Dömök , M. and Baán , K. 2006 . Hydrogen formation in ethanol reforming on supported noble metal catalysts . Catal. Today , 116 : 367 – 376 .
  • Idriss , H. 2004 . Ethanol reactions over the surfaces of noble metal/cerium oxide catalysts . Platinum Met. Rev. , 48 : 105 – 115 .
  • Sheng , P. Y. , Bowmaker , G. A. and Idriss , H. 2004 . The Reactions of Ethanol over Au/CeO2 . Appl. Catal. A , 261 : 171 – 181 .
  • Laosiripojana , N. and Assabumrungrat , S. 2005 . Catalytic dry reforming of methane over high surface area ceria . Appl. Catal. B , 60 : 107 – 116 .
  • Jacobs , G. , Crawford , A. , Williams , L. , Patterson , P. M. and Davis , B. H. 2004 . Low temperature water–gas shift: comparison of thoria and ceria catalysts . Appl. Catal. A , 267 : 27 – 33 .
  • Fu , Q. , Kudriavtseva , S. , Saltsburg , H. and Flytzani-Stephanopoulos , M. 2003 . Gold–ceria catalysts for low-temperature water-gas shift reaction . Chem. Eng. J. , 93 : 41 – 53 .
  • Fu , Q. , Weber , A. and Flytzani-Stephanopoulos , M. 2001 . Nanostructured Au-CeO2 catalysts for low-temperature water-gas shift . Catal. Lett. , 77 : 87 – 95 .
  • Fu , Q. , Saltsburg , H. and Flytzani-Stephanopoulos , M. 2003 . Active nonmetallic Au and Pt species on ceria-based water-gas shift catalysts . Science , 301 : 935 – 938 .
  • Fu , Q. , Deng , W. L. , Saltsburg , H. and Flytzani-Stephanopoulos , M. 2005 . Activity and stability of low-content gold–cerium oxide catalysts for the water-gas shift reaction . Appl. Cata. B , 56 : 57 – 68 .
  • Si , R. and Flytzani-Stephanopoulos , M. 2008 . Shape and crystal-plane effects of nanoscale ceria on the activity of Au-CeO2 catalysts for the water-gas shift reaction . Angew. Chem. Int. Ed. , 47 : 2884 – 2287 .
  • Rodriguez , J. A. , Ma , S. , Liu , P. , Hrbek , J. , Evans , J. and Perez , M. 2007 . Activity of CeOx and TiOx nanoparticles grown on Au(111) in the water-gas shift reaction . Science , 318 : 1757 – 1760 .
  • Vantomme , A. , Yuan , Z. Y. , Du , G. H. and Su , B. L. 2005 . Surfactant-assisted large-scale preparation of crystalline CeO2 nanorods . Langmuir , 21 : 1132 – 1135 .
  • Yuan , Z. Y. , Idakiev , V. , Vantomme , A. , Tabakova , T. , Ren , T. Z. and Su , B. L. 2008 . Mesoporous and nanostructured CeO2 as supports of nano-sized gold catalysts for low-temperature water-gas shift reaction . Catal. Today , 131 : 203 – 210 .
  • Terribile , D. , Trovarelli , A. , Llorca de Leitenburg , J. C. and Dolcetti , G. 1998 . The synthesis and characterization of mesoporous high-surface area ceria prepared using a hybrid organic/inorganic route . J. Catal. , 178 : 299 – 308 .
  • Jana , N. R. , Gearheart , L. , Obare , S. O. , Johnson , C. J. , Edler , K. J. , Mann , S. and Murphy , C. J. 2002 . Liquid crystalline assemblies of ordered gold nanorods . J. Mater. Chem. , 12 : 2909 – 2912 .
  • Jana , N. R. , Gearheart , L. and Murphy , C. J. 2001 . Wet chemical synthesis of high aspect ratio cylindrical gold nanorods . J. Phys. Chem. B , 105 : 4065 – 4067 .
  • Yuan , Z. Y. and Su , B. L. 2003 . Surfactant-assisted nanoparticle assembly of mesoporous β-FeOOH (akaganeite) . Chem. Phys. Lett. , 381 : 710 – 714 .
  • Ren , T. Z. , Yuan , Z. Y. and Su , B. L. 2004 . Microwave-assisted preparation of hierarchical mesoporous−macroporous boehmite AlOOH and γ-Al2O3 . Langmuir , 20 : 1531 – 1534 .
  • Blin , J. L. , Flammant , R. and Su , B. L . 2001 . Synthesis of nanostructured mesoporous zirconia using CTMABr-ZrOCl2·8H2O systems: a kinetic study of synthesis mechanism . Int. J. Inorg. Mater. , 3 : 959 – 972 .
  • Knowles , J. A. and Hudson , M. J. 1995 . Preparation and characterization of mesoporous, high-surface-area zirconium(IV) oxides . J. Chem. Soc. Chem. Commun. , : 2083 – 2084 .
  • Pan , C. , Zhang , D. and Shi , L. 2008 . CTAB assisted hydrothermal synthesis, controlled conversion and CO oxidation properties of CeO2 nanoplates, nanotubes, and nanorods . J. Solid State Chem. , 181 : 1298 – 1306 .
  • Sun , C. W. , Li , H. , Zhang , H. R. , Wang , Z. X. and Chen , L. Q. 2005 . Controlled synthesis of CeO2 nanorods by a solvothermal method . Nanotechnology , 16 : 1454 – 1463 .
  • Kuiry , S. C. , Patil , S. D. , Deshpande , S. and Seal , S. 2005 . Spontaneous self-assembly of cerium oxide nanoparticles to nanorods through supraaggregate formation . J. Phys. Chem. B , 109 : 6936 – 6939 .
  • Filankembo , A. , Giorgio , S. , Lisiecki , I. and Pileni , M. P. 2003 . Is the anion the major parameter in the shapecontrol of nanocrystals? . J. Phys. Chem. B , 107 : 7492 – 7500 .
  • Alargova , R. G. , Petkov , J. T. and Petsev , D. N. 2003 . Micellization and interfacial properties of alkyloxyethylene sulfate surfactants in the presence of multivalent counterions . J. Colloid Interface Sci. , 261 : 1 – 11 .
  • Suslick , K. S. 1990 . Sonochemistry . Science , 247 : 1439 – 1445 .
  • Spalla , O. , Nabavi , M. , Minter , J. and Cabane , B. 1996 . Osmotic compression of mixtures of polymers and particles . Colloid Polym. Sci. , 274 : 555 – 567 .
  • Zhang , D. , Fu , H. , Shi , L. , Pan , C. , Li , Q. , Chu , Y. and Yu , W. 2007 . Synthesis of CeO2 nanorods via ultrasonication assisted by polyethylene glycol . Inorg. Chem. , 46 : 2446 – 2451 .
  • Yu , T. Y. , Joo , J. , Park , Y. I. and Hyeon , T. 2005 . Large-scale nonhydrolytic sol-gel synthesis of uniform-sized ceria nanocrystals with spherical, wire, and tadpole shapes . Angew. Chem. Int. Ed. , 44 : 7411 – 7514 .
  • Qi , R. J. , Zhu , Y. J. , Cheng , G. F. and Huang , Y. H. 2005 . Sonochemical synthesis of single-crystalline CeOHCO3 rods and their thermal conversion to CeO2 rods . Nanotechnology , 16 : 2502 – 2506 .
  • Tang , C. C. , Bando , Y. , Liu , B. D. and Golberg , D. 2005 . Cerium oxide nanotubes prepared from cerium hydroxide nanotubes . Adv. Mater. , 17 : 3005 – 3009 .
  • Zhang , D. , Pan , C. , Shi , L. , Huang , L. , Fang , J. and Fu , H. 2009 . A highly reactive catalyst for CO oxidation: CeO2 nanotubes synthesized using carbon nanotubes as removable templates . Micropor. Mesopor. Mater. , 117 : 193 – 200 .
  • Zhang , D. , Fu , H. , Shi , L. , Fang , J. and Li , Q. 2007 . Carbon nanotube assisted synthesis of CeO2 nanotubes . J. Solid State Chem., , 180 : 654 – 660 .
  • Fang , J. , Cao , Z. , Zhang , D. , Shen , X. , Ding , W. and Shi , L. 2008 . Preparation and CO conversion activity of ceria nanotubes by carbon nanotubes templating method . J. Rare Earths, , 26 : 153 – 157 .
  • Zhang , D. , Shi , L. , Fu , H. and Fang , J. 2006 . Ultrasonic-assisted preparation of carbon nanotube/cerium oxide composites . Carbon, , 44 : 2849 – 2867 .
  • Yu , K. L. , Ruan , G. L. , Ben , Y. H. and Zou , J. J. 2007 . Convenient synthesis of CeO2 nanotubes . Mater. Sci. Eng. B, , 139 : 197 – 200 .
  • Bocchetta , P. , Santanaria , M. and Di Quarto , F. 2008 . Cerium oxyhydroxide nanowire growth via electrogeneration of base in nonaqueous electrolytes . Electrochem. Solid State Lett. , 11 : k93 – k97 .
  • Mai , H. X. , Sun , L. D. , Zhang , Y. W. , Si , R. , Feng , W. , Zhang , H. P. , Liu , H. C. and Yan , C. H. 2005 . Shape-selective synthesis and oxygen storage behavior of ceria nanopolyhedra, nanorods, and nanocubes . J. Phys. Chem. B , 109 : 24380 – 24385 .
  • Gao , F. , Lu , Q. and Komarneni , S. 2006 . Fast synthesis of cerium oxide nanoparticles and nanorods . J. Nanosci. Nanotech. , 6 : 3812 – 3819 .
  • Karakoti , A. S. , Kuchibhatla , S. V. N. T. , Baer , D. R. , Thevuthasan , S. , Sayle , D. C. and Seal , S. 2008 . Self-assembly of cerium oxide nanostructures in ice molds . Small , 4 : 1210 – 1216 .
  • Chen , H. L. , Zhu , H. Y. , Wang , H. , Dong , L. and Zhu , J. J. 2006 . Sonochemical fabrication and characterization of ceria (CeO2) nanowires . J. Nanosci. Nanotech. , 6 : 157 – 161 .
  • Pan , C. S. , Zhang , D. S. , Shi , L. Y. and Fang , J. H. 2008 . Template-free synthesis, controlled conversion, and CO oxidation properties of CeO2 nanorods, nanotubes, nanowires, and nanocubes . Eur. J. Inorg. Chem. , 15 : 2429 – 2436 .
  • Tang , B. , Zhuo , L. H. , Ge , J. C. , Wang , G. L. , Shi , Z. Q. and Niu , J. Y. 2005 . A surfactant-free route to single-crystalline CeO2 nanowires . Chem. Commun. , : 3565 – 3567 .
  • Chen , Y. C. , Chen , K. B. , Lee , C. S. and Lin , M. C. 2009 . Direct synthesis of Zr-doped ceria nanotubes . J. Phys. Chem. C , 113 : 5031 – 5034 .
  • Gu , L. N. and Meng , G. Y. 2008 . Preparation of Sm-doped ceria (SDC) nanowires and tubes by gas–liquid co-precipitation at room temperature . Mater. Res. Bull. , 43 : 1555 – 1561 .
  • Godinho , M. , Ribeiro , C. , Longo , E. and Leite , E. R. 2008 . Influence of microwave heating on the growth of gadolinium-doped cerium oxide nanorods . Cryst. Growth Des. , 8 : 384 – 386 .
  • Grozdanov , I. 1994 . Electroless chemical deposition technique for Cu2O thin films . Mater. Lett. , 19 : 281 – 285 .
  • Mysyrowicz , A. , Benson , E. and Fortin , E. 1996 . Directed beam of excitons produced by stimulated scattering . Phys. Rev. Lett. , 77 : 896 – 899 .
  • Johnsen , K. and Kavoulakis , G. M. 2001 . Probing Bose-Einstein condensation of excitons with electromagnetic radiation . Phys. Rev. Lett., , 86 : 858 – 861 .
  • Snoke , D. 1996 . Coherent exciton waves . Science , 273 : 1351 – 1352 .
  • Reitz , J. B. and Solomon , E. I. 1998 . Propylene oxidation on copper oxide surfaces: Electronic and geometric contributions to reactivity and selectivity . J. Am. Chem. Soc. , 120 : 11467 – 11478 .
  • Ramirez-Ortiza , J. , Ogura , T. , Medina-Valtierra , J. , Acosta-Ortiz , S. , Bosch , P. , de los Reyes , J. A. and Lara , V. H. 2001 . A catalytic application of Cu2O and CuO films deposited over fiberglass . Appl. Surf. Sci. , 174 : 177 – 184 .
  • Wang , H. , Xu , J. Z. , Zhu , J. J. and Chen , H. Y. 2002 . Preparation of CuO nanoparticles by microwave irradiation . J. Cryst. Growth. , 244 : 88 – 99 .
  • Wang , W. , Zhan , Y. , Wang , X. , Liu , Y. , Zheng , C. and Wang , G. 2002 . Synthesis and characterization of CuO nanowhiskers by novel one-step, solid state reaction in the presence of the nonionic surfactant . Mater. Res. Bull., , 37 : 1093 – 1100 .
  • Norman , M. R. and Freeman , A. 1986 . Model supercell local density calculations of the 3d excitation spectra in NiO . Phys. Rev. B: Condens. Matter Mater. Phys., , 33 : 8896 – 8898 .
  • Kumar , R. V. , Diamant , Y. and Gedanken , A. 2000 . Sonochemical synthesis and characterization of nanometer-size transition metal oxides from metal acetates . Chem. Mater. , 12 : 2301 – 2305 .
  • Ziolo , J. , Borsa , F. , Corti , M. and Suzuki , E. 1990 . Cu nuclear-quadrupole resonance and magnetic phase-transition in CuO . J. Appl. Phys., , 67 : 5864 – 5866 .
  • Cao , H. and Suib , S. L. 1994 . Highly efficient heterogeneous photooxidation of 2-propanol to acetone with amorphous manganese oxide catalysts . J. Am. Chem. Soc. , 116 : 5334 – 5342 .
  • Poizot , P. , Laruelle , S. , Grugeon , S. , Dupont , L. and Tarascon , J. M. 2000 . Nano-sized transition-metaloxides as negative-electrode materials for lithium-ion batteries . Nature , 407 : 496 – 499 .
  • Grugeon , S. , Laruelle , S. , Herrera-Urbina , R. , Dupont , L. , Poizot , P. and Tarascon , J. M. 2001 . Particle size effects on the electrochemical performance of copper oxides toward lithium . J. Electrochem. Soc., , 148 : A285 – A292 .
  • Debart , A. , Dupont , L. , Poizot , P. , Leriche , J. B. and Tarascon , J. M. 2001 . A transmission electron microscopy study of the reactivity mechanism of tailor-made CuO particles toward lithium . J. Electrochem. Soc. , 148 : A1266 – A1274 .
  • Zhang , D. W. , Chen , C. H. , Zhang , J. and Ren , F. 2005 . Novel electrochemical milling method to fabricate copper nanoparticles and nanofibers . Chem. Mater. , 17 : 5242 – 5245 .
  • Yu , Y. , Du , F. P. , Yu , J. C. , Zhuang , Y. Y. and Wong , P. K. 2004 . One-dimensional shape-controlled preparation of porous Cu2O nano-whiskers by using CTAB as a template . J. Solid State Chem. , 177 : 4640 – 4647 .
  • Cao , M. H. , Hu , C. W. , Wang , Y. H. , Guo , Y. H. , Guo , C. X. and Wang , E. B. 2003 . A controllable synthetic route to Cu, Cu2O, and CuO nanotubes and nanorods . Chem. Commun. , : 1884 – 1885 .
  • Qu , Y. L. , Li , X. Y. , Chen , G. H. , Zhang , H. J. and Chen , Y. Y. 2008 . Synthesis of Cu2O nano-whiskers by a novel wet-chemical route . Mater. Lett. , 62 : 886 – 888 .
  • Xiong , Y. J. , Li , Z. Q. , Zhang , R. , Xie , Y. , Yang , J. and Wu , C. Z. 2003 . From complex chains to 1D metal oxides: a novel strategy to Cu2O nanowires . J. Phys. Chem. B. , 107 : 3697 – 3702 .
  • Singh , C. B. and Sahoo , B. 1974 . Transition metal cluster complexes-I: trinuclear dimethylglyoximato and acetylacetonedioximato copper(II) complexes. their infrared and electronic spectra and magnetic properties . J. Inorg. Nucl. Chem. , 36 : 1259 – 1264 .
  • Wang , W. , Liu , Z. , Liu , Y. , Xu , C. , Zheng , C. and Wang , G. 2003 . A simple wet-chemical synthesis and characterization of CuO nanorods . Appl. Phys. A. , 76 : 417 – 420 .
  • Wang , X. Q. , Xi , G. C. , Xiong , S. L. , Liu , Y. K. , Xi , B. J. , Yu , W. C. and Qian , Y. T. 2007 . Solution-Phase Synthesis of Single-Crystal CuO Nanoribbons and Nanorings . Cryst. Growth Des. , 7 : 930 – 934 .
  • Liu , Q. , Liang , Y. Y. , Liu , H. J. , Hong , J. M. and Xu , Z. 2006 . Solution phase synthesis of CuO nanorods . Mater. Chem. Phys. , 98 : 519
  • Wang , W. Z. , Zhan , Y. J. and Wang , G. H. 2001 . One-step, solid-state reaction to the synthesis of copper oxide nanorods in the presence of a suitable surfactant . Chem. Commun. , : 727 – 728 .
  • Li , Y. , Yang , X. Y. , Rooke , J. , Van Tendeloo , G. and Su , B. L. 2010 . Ultralong Cu(OH)2 and CuO nanowire bundles: PEG200 directed crystal growth for enhanced photocatalytic performance . J. Colloid Interface Sci. , 348 : 303 – 312 .
  • Tasaki , K. 1996 . Poly(oxyethylene)-water interactions: a molecular dynamics study . J. Am. Chem. Soc. , 118 : 8459 – 8469 .
  • Derkaoui , N. , Said , S. , Grohens , Y. , Olier , R. and Privat , M. 2007 . PEG400 novel phase description in water . J. Colloid Interface Sci. , 305 : 330 – 338 .
  • Yan , S. C. , Shen , K. , Zhang , Y. , Zhang , Y. P. and Xiao , Z. D. 2009 . Synthesis of copper oxide nanostructures with controllable morphology by microwave-assisted method . J. Nanosci. Nanotechno. , 9 : 4886 – 4891 .
  • Wang , W. W. , Zhu , Y. J. , Cheng , G. F. and Huang , Y. H. 2006 . Microwave-assisted synthesis of cupric oxide nanosheets and nanowhiskers . Mater. Lett. , 60 : 609 – 612 .
  • Liu , Y. , Chu , Y. , Zhuo , Y. J. , Li , M. Y. , Li , L. L. and Dong , L. 2007 . Anion-Controlled Construction of CuO Honeycombs and Flowerlike Assemblies on Copper Foils . Cryst. Growth Des. , 7 : 467 – 470 .
  • Liu , X. M. and Zhou , Y. C. 2005 . Electrochemical deposition and characterization of Cu2O nanowires . Appl. Phys. A. , 81 : 685 – 689 .
  • Wu , Y. Y. , Livneh , T. , Zhang , Y. X. , Cheng , G. S. , Wang , J. F. , Tang , J. and Moskovits , M. 2004 . Templated synthesis of highly ordered mesostructured nanowires and nanowire arrays . Nano. Lett. , 4 : 2337 – 2342 .
  • Shin , H. S. , Song , J. Y. and Yu , J. 2009 . Template-assisted electrochemical synthesis of cuprous oxide nanowires . Mater. Lett. , 63 : 397 – 399 .
  • Walton , A. S. , Gorzny , M. L. , Bramble , J. P. and Evans , S. D. 2009 . Photoelectric properties of electrodeposited copper(I) oxide nanowires . J. Electrochem. Soc. , 156 : K191 – K195 .
  • Huang , L. M. , Wang , H. T. , Wang , Z. B. , Mitra , A. , Zhao , D. Y. and Yan , Y. S. 2002 . Cuprite nanowires by electrodeposition from lyotropic reverse hexagonal liquid crystalline phase . Chem. Mater. , 14 : 876 – 880 .
  • Li , M. , Schnablegger , H. and Mann , S. 2000 . Coupled synthesis and self-assembly of nanoparticles to give structures with controlled organization . Nature , 402 : 393 – 395 .
  • Tanori , J. and Pileni , M. P. 1995 . Change in the shape of copper nanoparticles in ordered phases . Adv. Mater. , 7 : 862 – 864 .
  • Tanori , J. and Pileni , M. P. 1997 . Control of the shape of copper metallic particles by using a colloidal system as template . Langmuir. , 13 : 639 – 646 .
  • Walsh , D. and Mann , S. 1996 . Chemical synthesis of microskeletal calcium phosphate in bicontinuous microemulsions . Chem. Mater. , 8 : 1944 – 1953 .
  • Singh , D. P. , Neti , N. R. , Sinha , A. S. K. and Srivastava , O. N. 2007 . Growth of different nanostructures of Cu2O (nanothreads, nanowires, and nanocubes) by simple electrolysis based oxidation of copper . J. Phys. Chem. C. , 111 : 1638 – 1645 .
  • Li , M. Y. , Dong , W. S. , Liu , C. L. , Liu , Z. T. and Lin , F. Q. 2008 . Ionic liquid-assisted synthesis of copper oxalate nanowires and their conversion to copper oxide nanowires . J. Cryst. Growth. , 310 : 4628 – 4634 .
  • Lu , C. H. , Qi , L. M. , Yang , J. H. , Zhang , D. Y. , Wu , N. Z. and Ma , J. M. 2004 . Simple template-free solution route for the controlled synthesis of Cu(OH)2 and CuO nanostructures . J. Phys. Chem. B. , 108 : 17825 – 17831 .
  • Zhang , W. X. , Wen , X. G. and Yang , S. H. 2003 . Controlled reactions on a copper surface: Synthesis and characterization of nanostructured copper compound films . Inorg. Chem. , 42 : 5005 – 5014 .
  • Wen , X. G. , Zhang , W. X. and Yang , S. H. 2003 . Synthesis of Cu(OH)2 and CuO nanoribbon arrays on a copper surface . Langmuir. , 19 : 5898 – 5903 .
  • Zhang , W. X. , Ding , S. X. , Yang , Z. H. , Liu , A. P. , Qian , Y. T. , Tang , S. P. and Yang , S. H. 2006 . Growth of novel nanostructured copper oxide (CuO) films on copper foil . J. Cryst. Growth. , 291 : 479 – 484 .
  • Hsieh , C. T. , Chen , J. M. , Lin , H. H. and Shih , H. C. 2003 . Synthesis of well-ordered CuO nanofibers by a self-catalytic growth mechanism . Appl. Phys. Lett. , 82 : 3316 – 3318 .
  • Liu , Y. L. , Liao , L. , Li , J. C. and Pan , C. X. 2007 . From copper nanocrystalline to CuO nanoneedle array: synthesis, growth mechanism, and properties . J. Phys. Chem. C., , 111 : 5050 – 5056 .
  • Umar , A. A. and Oyama , M. 2007 . A seed-mediated growth method for vertical array of single-crystalline CuO nanowires on surfaces . Cryst. Growth Des., , 7 : 2404 – 2409 .
  • Zhang , X. , Wang , G. , Zhang , W. , Hu , N. , Wu , H. and Fang , B. 2008 . Seed-mediated growth method for epitaxial array of CuO nanowires on surface of Cu nanostructures and its application as a glucose sensor . J. Phys. Chem. C. , 112 : 8856 – 8862 .
  • Orel , Z. C. , Anžlovar , A. , Dražić , G. and Žigon , M. 2007 . Cuprous oxide nanowires prepared by an additive-free polyol process . Cryst. Growth Des. , 7 : 453 – 458 .
  • Chen , Z. Z. , Shi , E. W. , Zheng , Y. Q. , Li , W. J. , Xiao , B. and Zhuang , J. Y. 2003 . Growth of hex-pod-like Cu2O whisker under hydrothermal conditions . J. Cryst Growth. , 249 : 294 – 300 .
  • Zhu , C. L. , Chen , C. N. , Hao , L. Y. , Hu , Y. and Chen , Z. Y. 2004 . Template-free synthesis of Cu2O(OH)3 nanoribbons and use as sacrificial template for CuO nanoribbon . J. Cryst. Growth. , 263 : 473 – 479 .
  • Gao , X. P. , Bao , J. L. , Pan , G. L. , Zhu , H. Y. , Huang , P. X. , Wu , F. and Song , D. Y. 2004 . Preparation and electrochemical performance of polycrystalline and single crystalline CuO nanorods as anode materials for Li ion battery . J. Phys. Chem. B. , 108 : 5547 – 5551 .
  • Dar , M. A. , Kim , Y. S. , Kim , W. B. , Sohn , J. M. and Shin , H. S. 2008 . Structural and magnetic properties of CuO nanoneedles synthesized by hydrothermal method . Appl. Surf. Sci. , 254 : 7477 – 7481 .
  • Chang , Y. and Zeng , H. C. 2004 . Controlled synthesis and self-assembly of single-crystalline CuO nanorods and nanoribbons . Cryst. Growth Des. , 4 : 397 – 402 .
  • Singh , D. P. , Ojha , A. K. and Srivastava , O. N. 2009 . Synthesis of Different Cu(OH)2 and CuO (Nanowires, Rectangles, Seed-, Belt-, and Sheetlike) Nanostructures by Simple Wet Chemical Route . J. Phys. Chem. C., , 113 : 3409 – 3418 .
  • Saravanan , P. , Alam , S. and Mathur , G. N. 2005 . A liquid-liquid interface technique to form films of CuO nanowhiskers . Thin Solid Films. , 491 : 168 – 172 .
  • Thackeray , M. M. 1997 . Manganese oxides for lithium batteries . Prog. Solid State Chem. , 25 : 1 – 71 .
  • Ammundsen , B. and Paulsen , J. 2001 . Novel lithium-ion cathode materials based on layered manganese oxides . Adv. Mater. , 13 : 943 – 956 .
  • Xia , Y. Y. and Yoshio , M. 1995 . Studies on Li-Mn-O spinel system (obtained from melt-impregnation method) as a cathode for 4 V lithium batteries Part 2. Optimum spinel from gamma-MnOOH . J. Power Sources. , 57 : 125 – 131 .
  • Lee , Y. S. and Yoshio , M. 2001 . Preparation of orthorhombic LiMnO2 material by quenching . Electrochem. Solid State Lett. , 4 : A166 – A169 .
  • Levi , E. , Zinigrad , E. , Teller , H. , Levi , M. D. , Aurbach , D. , Mengeritsky , E. , Elster , E. , Dan , P. , Granot , E. and Yamin , H. 1997 . Structure and electrochemical studies of 3 V LixMnO2 cathodes for rechargeable Li batteries . J. Electrochem. Soc. , 144 : 4133 – 4141 .
  • Sanchez , L. , Farcy , J. and Tirado , J. 1996 . Low-temperature mixed spinel oxides as lithium insertion compounds . J. Mater. Chem. , 6 : 37 – 39 .
  • Thackeray , M. M. , David , W. I. F. and Bruce , P. G. 1983 . Lithium insertion into manganese spinels . Mater. Res. Bull. , 18 : 461 – 472 .
  • Kanasaku , T. , Amezawa , K. and Yamamoto , N. 2000 . Hydrothermal synthesis and electrochemical properties of Li-Mn-spinel . Solid. Stat. Ion. , 133 : 51 – 56 .
  • Buerger , M. J. 1936 . The symmetry and crystal structure of manganite Mn(OOH) . Z. Kristallogr., , 95 : 163 – 174 .
  • Kohler , T. , Armbruster , T. J. and Libowitzky , E. 1997 . Hydrogen bonding and Jahn-Teller distortion in groutite, alpha-MnOOH, and manganite, gamma-MnOOH, and their relations to the manganese dioxides ramsdellite and pyrolusite . J. Solid State Chem. , 133 : 486 – 500 .
  • Pauling , L. 1929 . The principles determining the structure of complex ionic crystals . J. Am. Chem. Soc. , 51 : 1010 – 1026 .
  • Goodenough , J. B. and Loeb , A. L. 1955 . Theory of ionic ordering, crystal distortion, and magnetic exchange due to covalent forces in spinels . Phys. Rev. , 98 : 391 – 408 .
  • Hu , C. C. , Wu , Y. T. and Chang , K. H. 2008 . Low-temperature hydrothermal synthesis of Mn3O4 and MnOOH single crystals: determinant influence of oxidants . Chem. Mater. , 20 : 2890 – 2894 .
  • Zhang , Y. G. , Liu , Y. , Guo , F. , Hu , Y. H. , Liu , X. Z. and Qian , Y. T. 2005 . Single-crystal growth of MnOOH and beta-MnO2 microrods at lower temperatures . Solid State Commun. , 134 : 523 – 527 .
  • Sun , X. D. , Ma , C. L. , Wang , Y. D. and Li , H. D. 2002 . Preparation and characterization of MnOOH and β-MnO2 whiskers . Inorg. Chem. Commun. , 5 : 747 – 750 .
  • Zhou , F. , Zhao , X. , Yuan , C. and Xu , H. 2007 . Synthesis of gamma-MnOOH nanorods and their isomorphous transformation into beta-MnO2 and alpha-Mn2O3 nanorods . J. Mater. Sci. , 42 : 9978 – 9982 .
  • Chiu , Van Q. and Hering , J. G. 2000 . Arsenic adsorption and oxidation at manganite surfaces. 1. Method for simultaneous determination of adsorbed and dissolved arsenic species . Environ. Sci. Technol. , 34 : 2029 – 2034 .
  • McKenzie , R. M. 1980 . The adsorption of lead and other heavy metals on oxides of manganese and iron . Aust. J. Soil Res. , 18 : 61 – 73 .
  • Bochatay , L. , Persson , P. and Sjöberg , S. 2000 . Metal ion coordination at the water-manganite (gamma-MnOOH) interface I. An EXAFS study of cadmium(II) . J. Colloid Interface Sci. , 229 : 584 – 592 .
  • Zhang , Y. C. , Qiao , T. and Hu , X. Y. 2004 . Detection of similar to ∼103 copies of DNA by an electrochemical enzyme-amplified sandwich assay with ambient O2 as the substrate . J. Solid State Chem. , 177 : 4093 – 4097 .
  • Folch , B. , Larionova , J. , Guari , Y. , Guérin , C. and Reibel , C. 2005 . Synthesis of MnOOH nanorods by cluster growth route from [Mn12O12(RCOO)16(H2O)n] (R = CH3, C2H5). Rational conversion of MnOOH into Mn3O4 or MnO2 nanorods . J. Solid State Chem. , 178 : 2368 – 2375 .
  • Zhang , Y. C. , Qiao , T. , Hu , X. Y. and Zhou , W. D. 2005 . Simple hydrothermal preparation of gamma-MnOOH nanowires and their low-temperature thermal conversion to beta-MnO2 nanowires . J. Cryst. Growth. , 280 : 652 – 657 .
  • Xi , G. C. , Peng , Y. Y. , Zhu , Y. C. , Xu , L. Q. , Zhang , W. Q. , Yu , W. C. and Qian , Y. T. 2004 . Preparation of beta-MnO2 nanorods through a gamma-MnOOH precursor route . Mater. Res. Bull. , 39 : 1641 – 1648 .
  • Yang , Z. H. , Zhang , Y. C. , Zhang , W. X. , Wang , X. , Qian , Y. T. , Wen , X. G. and Yang , S. H. 2006 . Nanorods of manganese oxides: Synthesis, characterization and catalytic application . J. Solid State Chem. , 179 : 679 – 684 .
  • Li , Y. , Tan , H. , Lebedev , O. , Verbeeck , J. , Biermans , E. , Van Tendeloo , G. and Su , B. L. 2010 . Insight into the growth of multiple branched MnOOH nanorods . Crysal Grow. Design , 10 : 2969 – 2976 .
  • Penn , R. L. and Banfield , J. F. 1998 . Imperfect oriented attachment: dislocation generation in defect-free nanocrystals . Science , 281 : 969 – 971 .
  • Du , J. , Gao , Y. , Chai , L. , Zou , G. , Li , Y. and Qian , Y. 2006 . Hausmannite Mn3O4 nanorods: synthesis, characterization and magnetic properties . Nanotechnology. , 17 : 4923 – 4928 .
  • Dong , X. Y. , Zhang , X. T. , Liu , B. , Wang , H. Z. , Li , Y. C. , Huan , Y. B. and Du , Z. L. 2006 . Controlled synthesis of manganese oxohydroxide (MnOOH) and Mn3O4 nanorods using novel reverse micelles . J. Nanosci. Nanotech. , 6 : 818 – 822 .
  • Mi , Y. , Zhang , X. , Yang , Z. , Li , Y. , Zhou , S. , Zhang , H. , Zhu , W. , He , D. and Wang , J. 2007 . Shape selective growth of single crystalline MnOOH multipods and 1D nanowires by a reductive hydrothermal method . Mater. Lett. , 61 : 1781 – 1784 .
  • Sharma , P. K. and Whittingham , M. S. 2001 . The role of tetraethyl ammonium hydroxide on the phase determination and electrical properties of gamma-MnOOH synthesized by hydrothermal . Mater. Lett. , 48 : 319 – 323 .
  • Tao , L. , Sun , C. G. , Fan , M. L. , Huang , C. J. , Wu , H. L. , Chao , Z. S. and Zhai , H. S. 2006 . A redox-assisted suptamolecular assembly of manganese oxide nanotube . Mater. Res. Bull. , 41 : 2035 – 2040 .
  • Brock , S. L. , Duan , N. , Tian , Z. R. , Giraldo , O. , Zhou , H. and Suib , S. L. 1998 . A review of porous manganese oxide materials . Chem. Mater. , 10 : 2619 – 2628 .
  • Thackeray , M. M. 1995 . Structural consideration of layered and spinel lithiated oxides for lithium ion batteries . J. Electr. Chem. Soc. , 142 : 2558 – 2563 .
  • Hong , X. L. , Zhang , G. Y. , Zhu , Y. I. and Yang , H. Q. 2003 . Sol-gel synthesis and characterization of mesoporous manganese oxide . Mater. Res. Bull. , 38 : 1695 – 1703 .
  • Feng , Q. , Kanoh , H. and Ooi , K. 1999 . Manganese oxide porous crystals . J. Mater. Chem. , 9 : 319 – 333 .
  • Ching , S. , Welch , E .J. , Hughes , S. M. , Bahadoor , A. B. F. and Suib , S. L. 2002 . Nonaqueous sol-gel syntheses of microporous manganese oxides . Chem. Mater. , 14 : 1292 – 1299 .
  • Ching , S. , Hughes , S. M. , Gray , T. P. and Welch , E. J. 2004 . Manganese oxide thin films prepared by nonaqueous sol-gel processing: preferential formation of birnessite . Micropor. Mesopor. Mater. , 76 : 41 – 49 .
  • Duan , N. G. , Suib , S. L. and O’Young , C. L. 1995 . Sol–gel synthesis of cryptomelane, an octahedral molecular sieve . Chem. Commun. , : 1367 – 1368 .
  • Bach , S. , Henry , M. , Baffier , N. and Livage , J. 1990 . Sol-gel synthesis of manganese oxides . J. Solid State Chem. , 88 : 325 – 333 .
  • Ching , S. , Landrigan , J. A. , Jorgensen , M. L. , Duan , N. , Suib , S. L. and O’Young , C. L. 1995 . Sol-gel synthesis of birnessite from KMnO4 and simple sugars . Chem. Mater. , 7 : 1604 – 1606 .
  • Ching , S. , Petrovay , D. J. , Jorgensen , M. L. and Suib , S. L. 1997 . Sol-gel synthesis of layered birnessite–type manganese oxides . Inorg. Chem. , 36 : 883 – 890 .
  • Le , G. P. , Baffier , N. , Bach , S. and Pereira-Ramos , J. P. 1996 . Synthesis, ion exchange and electrochemical properties of lamellar phyllomanganates of the birnessite group . Mater. Res. Bull. , 31 : 63 – 75 .
  • Ching , S. , Roark , J. L. , Duan , N. and Suib , S. L. 1997 . Sol-gel route to the tunneled manganese oxide cryptomelane . Chem. Mater. , 9 : 750 – 754 .
  • Post , J. E. 1999 . Manganese oxide minerals: crystal structures and economic and environmental significance . Proc. Natl. Acad. Sci. U.S.A. , 96 : 3447 – 3454 .
  • Seo , J. W. , Jun , Y. W. , Ko , S. J. and Cheon , J. 2005 . In situ one-pot synthesis of 1-dimensional transition metal oxide nanocrystals . J. Phys. Chem. B. , 109 : 5389 – 5391 .
  • Yuan , Z. Y. , Ren , T. Z. , Du , G. H. and Su , B. L. 2004 . A facile preparation of single-crystalline alpha-Mn2O3 nanorods by ammonia-hydrothermal treatment of MnO2 . Chem. Phys. Lett., , 389 : 83 – 86 .
  • Yuan , Z. Y. , Ren , T. Z. , Du , G. H. and Su , B. L. 2005 . Facile preparation of single-crystalline nanowires of gamma-MnOOH and beta-MnO2 . Appl. Phys. A. , 80 : 743 – 747 .
  • Ren , T. Z. , Yuan , Z. Y. , Du , G. H. and Su , B. L. 2006 . Facile preparation of nanostructured manganese oxides by hydrotreatment of commercial particles . Stud. Surf. Sci. Catal. , 162 : 425 – 432 .
  • Du , G. H. , Yuan , Z. Y. and Van Tendeloo , G. 2005 . Transmission electron microscopy and electron energy-loss spectroscopy analysis of manganese oxide nanowires . Appl. Phys. Lett. , 86 : 063113
  • Giovanoli , R. and Leuenberger , V. 1969 . Ueber die Oxydation von Manganoxidhydroxid . Helv. Chim. Acta. , 52 : 2333 – 2347 .
  • Giovanoli , R. 1994 . Thermogravimetry of manganese dioxides . Thermochim. Acta. , 234 : 303 – 313 .
  • Zheng , Y. H. , Cheng , Y. , Bao , F. , Wang , Y. S. and Qin , Y. 2006 . Multiple branched alpha-MnO2 nanofibers: a two-step epitaxial growth . J. Cryst. Growth. , 286 : 156 – 161 .
  • Wang , X. and Li , Y. D. 2002 . Selected-control hydrothermal synthesis of alpha- and beta-MnO2 single crystal nanowires . J. Am. Chem. Soc. , 124 : 2880 – 2881 .
  • Wang , X. and Li , Y. 2003 . Synthesis and formation mechanism of manganese dioxide nanowires/nanorods . Chem. Eur. J. , 9 : 300 – 306 .
  • Xue , X. Y. , Xing , L. L. , Wang , Y. G. and Wang , T. H. 2009 . Preparation, characterization and electrical transport properties of individual alpha-MnO2 and beta-MnO2 nanorods . Solid State Sci. , 11 : 2106 – 2110 .
  • Ma , R. , Bando , Y. , Zhang , L. and Sasaki , T. 2004 . Layered MnO2 nanobelts: hydrothermal synthesis and electrochemical measurements . Adv. Mater. , 16 : 918 – 922 .
  • Whittingham , M. S. 2004 . Lithium batteries and cathode materials . Chem. Rev. , 104 : 4271 – 4302 .
  • Livage , J. 1999 . Optical and electrical properties of vanadium oxides synthesized from alkoxides . Coord. Chem. Rev. , 190-192 : 391 – 403 .
  • Fu , H. , Liu , Z. P. , Li , Z. H. , Wang , W. N. and Fan , K. N. 2006 . Periodic density functional theory study of propane oxidative dehydrogenation over V2O5(001) surface . J. Am. Chem. Soc. , 128 : 11114 – 11123 .
  • Nihuoul , G. , Leroux , Ch. , Madigou , V. and Durak , J. 1999 . Application of the static concentration waves theory to structural transitions in some oxides . Solid State Ionics , 117 : 105 – 112 .
  • Anderson , J. S. and Kahn , A. S. 1970 . Phase equilibria in the vanadium-oxygen system . J. Less-Common Met. , 22 : 209 – 218 .
  • Oka , Y. , Ohtani , T. , Yamamoto , N. and Takada , T. 1989 . Phase transition and electrical properties of VO2 (A) . Nippon Seramikkusu Kyokai Gakujutsu Ronbunshi , 97 : 1134 – 1137 .
  • Hagrman , D. , Zubieta , J. , Warren , C. J. , Meyer , L. M. , Treacy , M. M. J. and Haushalter , R. C. 1998 . A new polymorph of VO2 prepared by soft chemical methods . J. Solid State Chem. , 138 : 178 – 182 .
  • Enjalbert , R. and Galy , J. 1986 . A refinement of the structure of V2O5 . Acta Crystallogr. Sect. C , 42 : 1467 – 1469 .
  • Zavalij , P. Y. and Whittingham , M. S. 1999 . Structural chemistry of vanadium oxides with open frameworks . Acta Crystallogr. Sect. B , 55 : 627 – 663 .
  • Wang , Y. and Cao , G. Z. 2006 . Synthesis and enhanced intercalation properties of nanostructured vanadium oxides . Chem. Mater. , 18 : 2787 – 2804 .
  • Santulli , A. C. , Xu , W. Q. , Parise , J. B. , Wu , L. S. , Aronson , M. C. , Zhang , F. , Nam , C. Y. , Black , C. T. , Tiano , A. L. and Wong , S. S. 2009 . Synthesis and characterization of V2O3 nanorods . Phys. Chem. Chem. Phys. , 11 : 3718 – 3726 .
  • Asim , N. , Radiman , S. , Yarmo , M. A. and Golriz , M. S. B. 2009 . Vanadium pentoxide: synthesis and characterization of nanorod and nanoparticle V2O5 using CTAB micelle solution . Micro. Meso. Mater. , 120 : 397 – 401 .
  • Chou , S. L. , Wang , J. Z. , Sun , J. Z. , Wexler , D. , Forsyth , M. , Liu , H. K. and MacFarlane , D. R. 2008 . High capacity, safety, and enhanced cyclability of lithium metal battery using a V2O5 nanomaterial cathode and room temperature ionic liquid electrolyte . Chem. Mater. , 20 : 7044 – 7051 .
  • Murphy , D. W. , Christian , P. A. , DiSalvo , F. J. and Waszczak , J. V. 1979 . Lithium incorporation by vanadium pentoxide . Inorg. Chem., , 18 : 2800 – 2803 .
  • Abello , L. , Husson , E. , Repelin , Y. R. and Lucazeau , G. 1983 . Vibrational spectra and valence force field of crystalline V2O5 . Spectrochim. Acta A , 39 : 641 – 651 .
  • Winter , M. , Türgen , D. B. , Spahr , M. E. and Novak , P. 1998 . Insertion electrode materials for rechargeable lithium batteries . Adv. Mater., , 10 : 725 – 763 .
  • Murphy , D. W. 1982 . Intercalation Chemistry , Edited by: Whittingham , M. S. and Jacobsen , A.J. 563 New York , , USA : Academic Press .
  • Hyde , B. G. and Anderson , S. 1989 . Inorganic Crystal Structures , 16 New York , , USA : Wiley .
  • Hagrman , P. J. , Finn , R. C. and Zubieta , J. 2001 . Molecular manipulation of solid state structure: influences of organic components on vanadium oxide architectures . Solid State Sci. , 3 : 745 – 774 .
  • Owens , B. B. , Passerini , S. and Smyrl , W. H. 1999 . Lithium ion insertion in porous metal oxides . Electrochim. Acta , 45 : 215 – 224 .
  • Spahr , M. E. , Stoschitzki-Bitterli , P. , Nesper , R. , Haas , O. and Novák , P. 1999 . Vanadium oxide nanotubes: a new nanostructured redox-active material for the electrochemical insertion of lithium . J. Electrochem. Soc. , 146 : 2780 – 2783 .
  • O’Hare , D. 1991 . Inorganic Materials , Edited by: Bruce , D. W. and O’Hare , D. 165 New York , , USA : John Wiley & Sons Press .
  • Schőllhorn , R. 1987 . Chemical Physics of Intercalation , Edited by: Legr , A. P. and Flandrois , S. Vol. 172 , 149 New York : NATO Series B, Plenum Press .
  • Murphy , D. W. , Sunshine , S. A. and Zahurak , S. M. 1987 . Chemical Physics of Intercalation , Edited by: Legrand , A. P. and Flandrois , S. Vol. 172 , 173 New York : NATO Series B, Plenum Press .
  • Murphy , D. W. , Christian , P. A. , Disalvo , F. J. and Waszczak , J. V. 1985 . Redox intercalation reactions of vanadium oxide phosphate dihydrate (VOPO4.2H2O) with mono- and divalent cations . Inorg. Chem. , 24 : 1782 – 1787 .
  • Sediri , F. , Touati , F. and Gharbi , N. 2007 . A one-step hydrothermal way for the synthesis of vanadium oxide nanotubes containing the phenylpropylamine as template obtained via non-alkoxide route . Mater Lett. , 61 : 1946 – 1950 .
  • Bouhaouss , A. and Aldebert , P. 1983 . Intercalation d’ions alkylammonium et d’alkylamines a longues chaines dans les gels de V2O5 . Mater. Res. Bull. , 18 : 1247 – 1256 .
  • Krumeich , F. , Muhr , H.-J. , Niederberger , M. , Bieri , F. and Nesper , R. 2000 . The cross-sectional structure of vanadium oxide nanotubes studied by transmission electron microscopy and electron spectroscopic imaging . Z. Anorg. Allg. Chem. , 626 : 2208 – 2216 .
  • Vera-Robles , L. I. and Campero , A. 2008 . A Novel Approach to Vanadium Oxide Nanotubes by Oxidation of V4+ species . J. Phys. Chem .C , 112 : 19930 – 19933 .
  • Aguiar , E. V. , Costa , L. O. O. and Fraga , M. A. 2009 . Impregnating ionic Pt species on vanadium oxide nanotubes . Cat. Today , 142 : 207 – 210 .
  • O’Dwyer , C. , Lavayen , V. , Tanner , D. A. , Newcomb , S. B. , Benavente , E. , González , G. and Torres , C. M. S. 2009 . Reduced surfactant uptake in three dimensional assemblies of VOx nanotubes improves reversible Li+ intercalation and charge capacity . Adv. Funct. Mater. , 19 : 1736 – 1745 .
  • Nesper , R. , Spahr , M. E. , Niederberger , M. and Bitterli , P. 1997 . Int. Patent Appl. PCT/CH97/00470 , Bern : Bundesamt für Geistiges Eigentum .
  • Spahr , M. E. , Bitterli , P. , Nesper , R. , Müller , M. , Krumeich , F. and Nissen , H. U. 1998 . Redox-qctive nanotubes of vanadium oxide . Angew. Chem. Int. Ed. , 37 : 1263 – 1265 .
  • Krumeich , F. , Muhr , H. J. , Niederberger , M. , Bieri , F. , Schnyder , B. and Nesper , R. 1999 . Morphology and topochemical reactions of novel vanadium oxide nanotubes . J. Am. Chem. Soc. , 121 : 8324 – 8331 .
  • Muhr , H. J. , Krumeich , F. , Schòholzer , U. P. , Bieri , F. , Niederberger , M. , Gauckler , L. J. and Nesper , R. 2000 . Vanadium oxide nanotubes—a new flexible vanadate nanophase . Adv. Mater. , 12 : 231 – 234 .
  • Corr , S. A. , Grossman , M. , Furman , J. D. , Melot , B. C. , Cheetham , A. K. , Heier , K. R. and Seshadri , R. 2008 . Controlled reduction of vanadium oxide nanoscrolls: crystal structure, morphology, and electrical properties . Chem. Mater. , 20 : 6396 – 6404 .
  • Niederberger , M. , Muhr , H.-J. , Krumeich , F. , Bieri , F. , Gnther , D. and Nesper , R. 2000 . Low-cost synthesis of vanadium oxide nanotubes via two novel non-alkoxide routes . Chem. Mater. , 12 : 1995 – 2000 .
  • Nesper , R. , Muhr , H.-J. and Niederberger , M. 2000 . Int. Patent Appl. PCT/CH00/00570 , Bundesamt für Geistiges Eigentum, Bern .
  • Niederberger , M. 2000 . Dissertation No. 13971 , Zürich , , Switzerland : ETH .
  • Shi , S. , Cao , M. , He , X. and Xie , H. 2007 . Surfactant-assisted hydrothermal growth of single-crystalline ultrahigh-aspect-ratio vanadium oxide nanobelts . Cryst. Growth Des. , 7 : 1893 – 1897 .
  • Zhang , S. D. , Li , Y. M. , Wu , C. Z. and Zheng , F. 2009 . Novel flowerlike metastable vanadium dioxide (B) micronanostructures: facile synthesis and application in aqueous lithium ion batteries . J. Phys. Chem. C , 113 : 15058 – 15067 .
  • Djerdj , I. , Sheptyakov , D. , Gozzo , F. , Arcon , D. , Nesper , R. and Niederberger , M. 2008 . Oxygen self-doping in hollandite-type vanadium oxyhydroxide nanorods . J. Am. Chem. Soc. , 130 : 11364 – 11375 .
  • Taufiq-Yap , Y. H. , Wong , Y. C. , Zainal , Z. and Hussein , M. Z. 2009 . Synthesis of self-assembled nanorod vanadium oxide bundles by sonochemical treatment . J. Nat. Gas Chem. , 18 : 312 – 318 .
  • Wang , Y. , Zhang , Z. , Zhu , Y. , Li , Z. , Vajtai , R. , Ci , L. and Ajayan , P. M. 2008 . Nanostructured VO2 photocatalysts for hydrogen production . ACS Nano , 2 : 1492 – 1496 .
  • Zhou , F. , Zhao , X. M. , Yuan , C. G. and Li , L. 2008 . Vanadium pentoxide nanowires: hydrothermal synthesis, formation mechanism, and phase control parameters . Cryst. Growth Des. , 8 : 723 – 727 .
  • Bachmann , H. G. , Ahmed , F. R. and Barnes , W. H. 1961 . The crystal structure of vanadium pentoxide . Z. Kristallogr. , 115 : 110 – 131 .
  • Rao , C. N. R. and Govindaraj , A. 2009 . Synthesis of inorganic nanotubes . Adv. Mater. , 21 : 4208 – 4233 .
  • Durupthy , O. , Steunou , N. , Coradin , T. , Maquet , J. , Bonhomme , C. and Livage , J. 2005 . Influence of pH and ionic strength on vanadium(V) oxides formation. From V2O5·nH2O gels to crystalline NaV3O8·1.5H2O . J. Mater. Chem. , 15 : 1090 – 1098 .
  • Durupthy , O. , Steunou , N. , Coradin , T. and Livage , J. 2006 . Intercalation of dipeptides during V2O5.nH2O xerogel condensation . J. Phys. Chem. Solids , 67 : 944 – 949 .
  • Livage , J. 2000 . Vanadium pentoxide sol and gel mesophases . J. Sol-Gel Sci. Technol. , 19 : 275 – 278 .
  • Livage , J. , Bouhedja , L. and Bonhomme , C. 1998 . Chemically controlled condensation of polyoxovanadates . J. Sol-Gel Sci. Technol. , 13 : 65 – 70 .
  • Chen , X. , Sun , X. M. and Li , Y. D. 2002 . Self-Assembling vanadium oxide nanotubes by organic molecular templates . Inorg. Chem. , 41 : 4524 – 4530 .
  • Liu , J. F. , Wang , X. , Peng , Q. and Li , Y. D. 2005 . Vanadium pentoxide nanobelts: highly selective and stable ethanol sensor materials . Adv. Mater. , 17 : 764 – 767 .
  • Liu , J. F. , Li , Q. H. , Wang , T. H. , Yu , D. P. and Li , Y. D. 2004 . Metastable vanadium dioxide nanobelts: hydrothermal synthesis, electrical transport, and magnetic properties . Angew. Chem. Int. Ed. , 43 : 5048 – 5052 .
  • Ribeiro , W. A. Jr., C. , Leite , E. R. and Mastelaro , V. R. 2009 . Vanadium pentoxide nanostructures: an effective control of morphology and crystal structure in hydrothermal conditions . Cryst. Growth Des. , 9 : 3626 – 3631 .
  • Gao , S. K. , Chen , Y. Z. , Luo , H. Y. , Jiang , L. L. , Ye , B. H. , Wei , M. D. and Wei , K. M. 2008 . Single-crystal vanadium pentoxide nanowires . J. Nanosci. Nanotech. , 8 : 3500 – 3503 .
  • Pan , D. , Zhang , S. , Chen , Y. and Hou , J. G. 2002 . Hydrothermal preparation of long nanowires of vanadium oxide . J. Mater. Res. , 17 : 1981 – 1984 .
  • Schlecht , U. , Knez , M. , Duppel , V. , Kienle , L. and Burghard , M. 2004 . Boomerang-shaped VOX belts: Twinning within isolated nanocrystals . Appl. Phys. A , 78 : 527 – 529 .
  • Feng , Y. , Yuan , Z. Y. , Li , Y. , Yang , X. Y. and Su , B. L. 2009 . Metal Oxide Nanostructures, Their Applications , Edited by: Umar , A. and Hahn , Y.-B. Vol. 2 , Los Angeles, California , , USA : American Scientific Publishers . Chapter 13
  • Jia , C. , Sun , L. , Yan , Z. , You , L. , Luo , F. , Han , X. , Pang , Y. , Zhang , Z. and Yan , C. 2005 . Single-Crystalline Iron Oxide Nanotubes . Angew. Chem. Int. Ed. , 44 : 4328 – 4333 .
  • Zhong , Z. , Ho , J. , Teo , J. , Shen , S. and Gedanken , A. 2007 . Synthesis of porous α-Fe2O3 nanorods and deposition of very small gold particles in the pores for catalytic oxidation of CO . Chem. Mater. , 19 : 4776 – 4782 .
  • Almeida , T. P. , Fay , M. , Zhu , Y. and Brown , P. D. 2009 . Process map for the hydrothermal synthesis of α-Fe2O3 nanorods . J. Phys. Chem. C , 113 : 18689 – 18698 .
  • Suber , L. , Imperatori , P. , Ausanio , G. , Fabbri , F. and Hofmeister , H. 2005 . Synthesis, morphology, and magnetic characterization of iron oxide nanowires and nanotubes . J. Phys. Chem. B , 109 : 7103 – 7109 .
  • Wan , J. , Chen , X. , Wang , Z. , Yang , X. and Qian , Y. T. 2005 . A soft-template-assisted hydrothermal approach to single-crystal Fe3O4 nanorods . J. Cryst. Growth , 276 : 571 – 576 .
  • Kumar , R. V. , Koltypin , Y. , Xu , X. N. , Yeshurun , Y. , Gedanken , A. and Felner , I. 2001 . Fabrication of magnetite nanorods by ultrasound irradiation . J. Appl. Phys. , 89 : 6324 – 6328 .
  • Wang , J. , Chen , Q. , Zeng , C. and Hou , B. 2004 . Magnetic-field-induced growth of single-crystalline Fe3O4 nanowires . Adv. Mater. , 16 : 137 – 140 .
  • Zhang , H. , Wu , J. , Zhai , C. , Ma , X. , Du , N. , Tu , J. and Yang , D. 2008 . From cobalt nitrate carbonate hydroxide hydrate nanowires to porous Co3O4 nanorods for high performance lithium-ion battery electrodes . Nanotechnology , 19 : 035711
  • Li , Y. , Tan , B. and Wu , Y. 2006 . Freestanding mesoporous quasi-single-crystalline Co3O4 nanowire arrays . J. Am. Chem. Soc. , 128 : 14258 – 14259 .
  • Li , Y. , Tan , B. and Wu , Y. 2008 . Mesoporous Co3O4 nanowire arrays for lithium ion batteries with high capacity and rate capability . Nano. Lett. , 8 : 265 – 270 .
  • Tian , B. Z. , Liu , X. Y. , Yang , H. F. , Xie , S. H. , Yu , C. Z. , Tu , B. and Zhao , D. Y. 2003 . General synthesis of ordered crystallized metal oxide nanoarrays replicated by microwave-digested mesoporous silica . Adv. Mater. , 15 : 1370 – 1374 .
  • Du , J. , Chai , L. , Wang , G. , Li , K. and Qian , Y. 2008 . Controlled synthesis of one-dimensional single-crystal Co3O4 nanowires . Aust. J. Chem. , 61 : 153 – 158 .
  • Keng , P. Y. , Kim , B. Y. , Shim , I-B. , Sahoo , R. , Veneman , P. E. , Armstrong , N. R. and Yoo , H. 2009 . Colloidal polymerization of polymer-coated ferromagnetic nanoparticles into cobalt oxide nanowires . ACS Nano , 3 : 3143 – 3157 .
  • Hu , L. , Peng , Q. and Li , Y. 2008 . Selective synthesis of Co3O4 nanocrystal with different shape and crystal plane effect on catalytic property for methane combustion . J. Am. Chem. Soc. , 130 : 16136 – 16137 .
  • Li , T. , Yang , S. , Huang , L. , Gu , B. and Du , Y. 2004 . A novel process from cobalt nanowire to Co3O4 nanotube . Nanotechnology , 15 : 1479 – 1482 .
  • Xu , C. K. , Xu , G. D. and Wang , G. H. 2003 . Preparation and characterization of NiO nanorods by thermal decomposition of NiC2O4 precursor . J. Mater. Sci. , 38 : 779 – 782 .
  • Vayssieres , L. and Graetzel , M. 2004 . Highly ordered SnO2 nanorod arrays from controlled aqueous growth . Angew. Chem. Int. Ed. , 43 : 3666 – 3670 .
  • Wang , Y. and Lee , J. Y. 2004 . Molten Salt Synthesis of Tin Oxide Nanorods: Morphological and Electrochemical Features . J. Phys. Chem. B , 108 : 17832 – 17837 .
  • Xu , C. K. , Zhao , X. L. , Liu , S. and Wang , G. H. 2003 . Large-scale synthesis of rutile SnO2 nanorods . Solid State Commun. , 125 : 301 – 304 .
  • Shukla , S. , Brinley , E. , Cho , H. and Seal , S. 2005 . Electrospinning of hydroxypropyl cellulose fibers and their application in synthesis of nano and submicron tin oxide fibers . Polymer , 46 : 12130 – 12145 .
  • Qu , L. , He , C. , Yang , Y. , He , Y. and Liu , Z. 2005 . Hydrothermal synthesis of alumina nanotubes templated by anionic surfactant . Mater Lett. , 59 : 4034 – 4037 .
  • Tang , B. , Ge , J. , Zhuo , L. , Wang , G. , Niu , J. , Shi , Z. and Dong , Y. 2005 . A facile and controllable synthesis of γ-Al2O3 nanostructures without a surfactant . Eur. J. Inorg. Chem. , : 4366 – 4369 . 2005
  • Sorescu , M. , Diamandescu , L. , Tarabasanu Mihaila , D. and Teodorescu , V. S. 2004 . Nanocrystalline rhombohedral In2O3 synthesized by hydrothermal and postannealing pathways . J. Mater. Sci. , 39 : 675 – 677 .
  • Bao , J. , Xu , D. , Zhou , Q. , Xu , Z. , Feng , Y. and Zhou , Y. 2002 . An array of concentric composite nanostructure of metal nanowires encapsulated in zirconia nanotubes: preparation, characterization, and magnetic properties . Chem. Mater. , 14 : 4709 – 4713 .
  • Zhang , J. , Liu , Z. G. , Lin , C. K. and Lin , J. 2005 . A simple method to synthesize β-Ga2O3 nanorods and their photoluminescence properties . J. Cryst. Growth , 280 : 99 – 106 .
  • Wang , G. , Wang , Z. , Zhang , Y. , Fei , G. and Zhang , L. 2004 . Controlled synthesis and characterization of large-scale, uniform Dy(OH)3 and Dy2O3 single-crystal nanorods by a hydrothermal method . Nanotechnology , 15 : 1307 – 1311 .
  • Pol , V. G. , Palchik , O. , Gedanken , A. and Felner , I. 2002 . Synthesis of europium oxide nanorods by ultrasound irradiation . J. Phys. Chem. B , 106 : 9737 – 9743 .
  • Li , Q. Sh. , Feng , C. H. , Jiao , Q. Z. , Guo , L. , Liu , C. M. and Xu , H. B. 2004 . Shape-controlled synthesis of yttria nanocrystals under hydrothermal conditions . Phys. Status Solidi (a) , 201 : 3055 – 3059 .
  • Huang , P. X. , Wu , F. , Zhu , B. L. , Gao , X. P. , Zhu , H. Y. , Yan , T. Y. , Huang , W. P. , Wu , S. H. and Song , D. Y. 2005 . CeO2 nanorods and gold nanocrystals supported on CeO2 nanorods as catalyst . J. Phys. Chem. B , 109 : 19169 – 19174 .
  • Guzman , J. , Carrettin , S. and Corma , A. 2005 . Spectroscopic evidence for the supply of reactive oxygen during CO oxidation catalyzed by gold supported on nanocrystalline CeO2 . J. Am. Chem. Soc. , 127 : 3286 – 3287 .
  • Venezia , A. M. , Pantaleo , G. , Longo , A. , Di Carlo , G. , Casaletto , M. P. , Liotta , F. L. and Deganello , G. 2005 . Relationship between structure and CO oxidation activity of ceria-supported gold catalysts . J. Phys. Chem. B , 109 : 2821 – 2827 .
  • Patzke , G. R. , Krumeich , F. and Nesper , R. 2002 . Oxidic nanotubes and nanorods—anisotropic modules for a future nanotechnology . Angew. Chem. Int. Ed. , 41 : 2446 – 2461 .
  • Liu , X. , Zhou , K. , Wang , L. , Wang , B. and Li , Y. 2009 . Oxygen vacancy clusters promoting reducibility and activity of ceria nanorods . J. Am. Chem. Soc. , 131 : 3140 – 3141 .
  • Fu , Q. , Saltsburg , H. and Flytzani-Stephanopoulos , M. 2003 . Active nonmetallic Au and Pt species on ceria-based water-gas shift catalysts . Science , 301 : 935 – 938 .
  • Andreeva , D. , Idakiev , V. , Tabakova , T. , Ilieva , L. , Falaras , P. , Bourlinos , A. and Travlos , A. 2002 . Low-temperature water-gas shift reaction over Au/CeO2 catalysts . Catal. Today , 72 : 51 – 57 .
  • Lin , C. H. , Chien , S. H. , Chao , J. H. , Sheu , C. Y. , Cheng , Y. C. , Huang , Y. J. and Tsai , C. H. 2002 . The synthesis of sulfated titanium oxide nanotubes . Catal. Lett. , 80 : 153 – 159 .
  • Kleinhammes , A. , Wagner , G. W. , Kulkarni , H. , Jia , Y. , Zhang , Q. , Qin , L. C. and Wu , Y. 2005 . Decontamination of 2-chloroethyl ethylsulfide using titanate nanoscrolls . Chem. Phys. Lett. , 411 : 81 – 85 .
  • Cao , J. , Sun , J. Z. , Li , H. Y. , Hong , J. and Wang , M. 2004 . A facile room-temperature chemical reduction method to TiO2@CdS core/sheath heterostructure nanowires . J. Mater. Chem. , 14 : 1203 – 1206 .
  • Hodos , M. , Horvath , E. , Haspel , H. , Kukovecz , A. , Konya , Z. and Kiricsi , I. 2004 . Photosensitization of ion-exchangeable titanate nanotubes by CdS nanoparticles . Chem. Phys. , 399 : 512 – 515 .
  • Xu , J. C. , Lu , M. , Guo , X. Y. and Lia , H. L. 2005 . Zinc ions surface-doped titanium dioxide nanotubes and its photocatalysis activity for degradation of methyl orange in water . J. Mol. Catal. A. Chem. , 226 : 123 – 127 .
  • Wang , M. , Guo , H.D. J. and Li , L. 2005 . High activity of novel Pd/TiO2 nanotube catalysts for methanol electro-oxidation . J. Solid State Chem. , 178 : 1996 – 2000 .
  • Lin , C. H. , Lee , C. H. , Chao , J. H. , Kuo , C. Y. , Cheng , Y. C. , Huang , W. N. , Chang , H. W. , Huang , Y. M. and Shih , M. K. 2004 . Photocatalytic generation of H-2 gas from neat ethanol over Pt/TiO2 nanotube catalysts . Catal. Lett. , 98 : 61 – 66 .
  • Idakiev , V. , Yuan , Z. Y. , Tabakova , T. and Su , B. L. 2005 . Titanium oxide nanotubes as supports of nano-sized gold catalysts for low temperature water-gas shift reaction . Appl. Catal. A , 281 : 149 – 155 .
  • Akita , T. , Okumura , M. , Tanaka , K. , Ohkuma , K. , Kohyama , M. , Koyanagi , T. , Date , M. , Tsubota , S. and Haruta , M. 2005 . Transmission electron microscopy observation of the structure of TiO2 nanotube and Au/TiO2 nanotube catalyst . Surf. Interface Anal. , 37 : 265 – 269 .
  • Wang , Y. G. and Zhang , X. G. 2004 . Preparation and electrochemical capacitance of RuO2/TiO2 nanotubes composites . Electrochim. Acta , 49 : 1957 – 1962 .
  • Bavykin , D. V. , Lapkin , A. A. , Plucinski , P. K. , Friedrich , J. M. and Walsh , F. C. 2005 . TiO2 nanotube-supported ruthenium(III) hydrated oxide: a highly active catalyst for selective oxidation of alcohols by oxygen . J. Catal. , 235 : 10 – 17 .
  • Bavykin , D. V. , Lapkin , A. A. , Plucinski , P. K. , Friedrich , J. M. and Walsh , F. C. 2005 . Reversible storage of molecular hydrogen by sorption into multilayered TiO2 nanotubes . J. Phys. Chem. B , 109 : 19422 – 19427 .
  • Lim , S. H. , Luo , J. , Zhong , Z. , Ji , W. and Lin , J. 2005 . Room-temperature hydrogen uptake by TiO2 nanotubes . Inorg. Chem. , 4 ( 4 ) : 4124 – 4126 .
  • Varghese , O. K. , Gong , D. , Paulose , M. , Ong , K. O. , Dickey , E. C. and Grimes , C. A. 2003 . Extreme changes in the electrical resistance of titania nanotubes with hydrogen exposure . Adv. Mater. , 15 : 624 – 627 .
  • Zhou , Y. K. , Cao , L. , Zhang , F. B. , He , B. L. and Li , H. L. 2003 . Lithium insertion into TiO2 nanotube prepared by the hydrothermal process . J. Electrochem. Soc. , 150 : A1246 – A1249 .
  • Armstrong , A. R. , Armstrong , G. , Canales , J. and Bruce , P. G. 2005 . TiO2–B nanowires as negative electrodes for rechargeable lithium batteries . J. Power Sources , 146 : 501 – 506 .
  • Li , J. , Tang , Z. and Zhang , Z. 2005 . H-titanate nanotube: a novel lithium intercalation host with large capacity and high rate capability . Electrochem. Commun. , 7 : 62 – 67 .
  • Kavan , L. , Graetzel , M. , Rathousky , J. and Zukal , A. 1996 . Nanocrystalline TiO2 (anatase) electrodes: surface morphology, adsorption, and electrochemical properties . J. Electrochem. Soc. , 143 : 394 – 400 .
  • Li , J. , Tang , Z. and Zhang , Z. 2006 . Pseudocapacitive characteristic of lithium ion storage in hydrogen titanate nanotubes . Chem. Phys. Lett. , 418 : 506 – 510 .
  • Kavan , L. , Kalbac , M. , Zukalova , M. , Exnar , I. , Lorenzen , V. , Nesper , R. and Grätzel , M. 2004 . Lithium storage in nanostructured TiO2 made by hydrothermal growth . Chem. Mater. , 16 : 477 – 485 .
  • Li , J. , Tang , Z. and Zhang , Z. 2005 . Layered hydrogen titanate nanowires with novel lithium intercalation properties . Chem. Mater. , 17 : 5848 – 5855 .
  • Li , J. , Tang , Z. and Zhang , Z. 2005 . Controllable formation and electrochemical properties of one-dimensional nanostructured spinel Li4Ti5O12 . Electrochem. Commun. , 7 : 894 – 899 .
  • Armstrong , A. R. , Armstrong , G. , Canales , J. and Bruce , P. G. 2005 . Lithium-ion intercalation into TiO2-B nanowires . Adv. Mater. , 17 : 862 – 865 .
  • Gao , X. , Zhu , H. , Pan , G. , Ye , S. , Lan , Y. , Wu , F. and Song , D. 2004 . Preparation and electrochemical characterization of anatase nanorods for lithium-Inserting electrode material . J. Phys. Chem. B , 108 : 2868 – 2872 .
  • Uchida , S. , Chiba , R. , Tomiha , M. , Masaki , N. and Shirai , M. 2002 . Application of titania nanotubes to a dye-sensitized solar cell . Electrochemistry , 70 : 418 – 420 .
  • Ohsaki , Y. , Masaki , N. , Kitamura , T. , Wada , Y. , Okamoto , T. , Sekino , T. , Niiharab , K. and Yanagida , S. 2005 . Dye-sensitized TiO2 nanotube solar cells: fabrication and electronic characterization . Phys. Chem. Chem. Phys. , 7 : 4157 – 4163 .
  • Idakiev , V. , Yuan , Z. Y. , Tabakova , T. and Su , B. L. 2005 . Titanium oxide nanotubes as supports of nano-sized gold catalysts for low temperature water-gas shift reaction . Appl. Catal. A , 281 : 149 – 155 .
  • Bavykin , D. V. , Lapkin , A. A. , Plucinski , P. K. , Torrente-Murciano , L. , Friedrich , J. M. and Walsh , F. C. 2006 . Deposition of Pt, Pd, Ru and Au on the surfaces of titanate nanotubes . Top. Catal. , 39 : 151 – 160 .
  • Xu , J. , Lu , M. , Guo , X. and Li , H. 2005 . Zinc ions surface-doped titanium dioxide nanotubes and its photocatalysis activity for degradation of methyl orange in water . J. Mol. Catal. A: Chem. , 226 : 123 – 127 .
  • Han , X. , Kuang , Q. , Jin , M. , Xie , Z. and Zheng , L. 2009 . Synthesis of titania nanosheets with a high percentage of exposed (001) facets and related photocatalytic properties . J. Am. Chem. Soc. , 131 : 3152 – 3153 .
  • Liu , G. , Yang , H. G. , Wang , X. , Cheng , L. , Pan , J. , Lu , G. Q. and Cheng , H. M. 2009 . Visible light responsive nitrogen doped anatase TiO2 sheets with dominant {001} facets derived from TiN . J. Am. Chem. Soc. , 131 : 12868 – 12869 .
  • Amano , F. , Prieto-Mahaney , O. , Terada , Y. , Yasumoto , T. , Shibayama , T. and Ohtani , B. 2009 . Decahedral single-crystalline particles of anatase titanium(IV) oxide with high photocatalytic activity . Chem. Mater. , 21 : 2601 – 2603 .
  • Bavykin , D. V. , Milsom , E. V. , Marken , F. , Kim , D. H. , Marsha , D. H. , Riley , D. J. , Walsh , F. C. , El-Abiary , K. H. and Lapkin , A. A. 2005 . A novel cation-binding TiO2 nanotube substrate for electro- and bioelectro-catalysis . Electrochem. Commun. , 7 : 1050 – 1058 .
  • Strelcov , E. , Lilach , Y. and Kolmakov , A. 2009 . Gas sensor based on metal−Insulator transition in VO2 nanowire thermistor . Nano. Lett. , 9 : 2322 – 2326 .
  • Anan , S. , Wen , X. G. and Yang , S. H. 2005 . Room temperature growth of CuO nanorod arrays on copper and their application as a cathode in dye-sensitized solar cells . Mater. Chem. Phys. , 93 : 35 – 40 .
  • Bedja , I. , Kamat , P. V. , Hua , X. , Lappin , A. G. and Hotchandani , S. 1997 . Photosensitization of nanocrystalline ZnO films by bis(2,2′-bipyridine)(2,2′-bipyridine-4,4′-dicarboxylic acid)ruthenium(II) . Langmuir , 13 : 2398 – 2403 .
  • Keis , K. , Bauer , C. , Boschloo , G. , Hagfeldt , A. , Westermark , K. , Rensmo , H. and Siegbahn , H. 2002 . Nanostructured ZnO electrodes for dye-sensitized solar cell applications . J. Photochem. Photobiol. A , 148 : 57 – 64 .
  • Keis , K. , Magnusson , E. , Lindstrom , H. , Lindquist , S. E. and Hagfeldt , A. 2002 . A 5% efficient photoelectrochemical solar cell based on nanostructured ZnO electrodes . Sol. Energy Mater. Sol. Cells , 73 : 51 – 58 .
  • Keis , K. , Vayssieres , L. , Rensmo , H. , Lindquist , S. E. and Hagfeldt , A. 2001 . Photoelectrochemical properties of nano- to microstructured ZnO electrodes . J. Electrochem. Soc. , 148 : A149 – A155 .
  • Olson , D. C. , Piris , J. , Collins , R. T. , Shaheen , S. E. and Ginley , D. S. 2006 . Hybrid photovoltaic devices of polymer and ZnO nanofiber composites . Thin Solid Films , 496 : 26 – 29 .
  • Ravirajan , P. , Peiro , A. M. , Nazeeruddin , M. K. , Graetzel , M. , Bradley , D. D. C. , Durrant , J. R. and Nelson , J. 2006 . Hybrid polymer/zinc oxide photovoltaic devices with vertically oriented ZnO nanorods and an amphiphilic molecular interface layer . J. Phys. Chem. B , 110 : 7635 – 7639 .
  • Armstrong , G. , Armstrong , A. R. , Canales , J. and Bruce , P. G. 2005 . Nanotubes with the TiO2-B structure . Chem. Commun. , : 2454 – 2456 .
  • Wang , P. , Zakeeruddin , S. M. , Comte , P. , Charyet , R. , Humphry-Baker , R. and Grätzel , M. 2003 . Enhance the performance of dye-sensitized solar cells by co-grafting amphiphilic sensitizer and hexadecylmalonic acid on TiO2 nanocrystals . J. Phys. Chem. B , 107 : 14336 – 14341 .
  • Meng , Q. B. , Takahashi , K. , Zhang , X. T. , Sutanto , I. , Rao , T. N. , Sato , O. , Fujishima , A. , Watanabe , H. , Nakamori , T. and Uragami , M. 2003 . Fabrication of an efficient solid-state dye-sensitized solar cell . Langmuir , 19 : 3572 – 3574 .
  • Chen , Y. , Patel , S. , Ye , Y. , Shaw , S. T. and Guo , L. 1998 . Field emission from aligned high-density graphitic nanofibers . Appl. Phys. Lett. , 73 : 2119 – 2121 .
  • Fan , Z. Y. , Wang , D. W. , Chang , P. C. , Tseng , W. Y. and Lu , J. G. 2004 . ZnO nanowire field-effect transistor and oxygen sensing property . Appl. Phys. Lett. , 85 : 5923 – 5925 .
  • Fan , Z. Y. , Wen , X. G. , Yang , S. H. and Lu , J. G. 2005 . Controlled p- and n-type doping of Fe2O3 nanobelt field effect transistors . Appl. Phys. Lett. , 87 : 013113
  • Zhang , D. , Li , C. , Han , S. , Liu , X. , Tang , T. , Jin , W. and Zhou , C. 2003 . Electronic transport studies of single-crystalline In2O3 nanowires . Appl. Phys. Lett. , 82 : 112 – 114 .
  • Liu , Z. Q. , Zhang , D. H. , Han , S. , Li , C. , Tang , T. , Jin , W. , Liu , X. L. , Lei , B. and Zhou , C. W. 2003 . Laser ablation synthesis and electron transport studies of tin oxide nanowires . Adv. Mater. , 15 : 1754 – 1757 .
  • Chang , P. C. , Fan , Z. Y. , Tseng , W. Y. , Rajagopal , A. and Lu , J. G. 2005 . Beta-Ga2O3 nanowires: synthesis, characterization, and p-channel field-effect transistor . Appl. Phys. Lett. , 87 : 222102
  • Muster , J. , Kim , G. T. , Krstic , V. , Park , J. G. , Park , Y. W. , Roth , S. and Burghard , M. 2000 . Electrical transport through individual vanadium pentoxide nanowires . Adv. Mater. , 12 : 420 – 424 .
  • Liu , X. , Li , C. , Han , S. , Han , J. and Zhou , C. W. 2003 . Synthesis and electronic transport studies of CdO nanoneedles . Appl. Phys. Lett. , 82 : 1950 – 1952 .
  • Chen , J. , Deng , S. Z. , Xu , N. S. , Wang , S. , Wen , X. , Yang , S. and Yang , C. 2002 . Field emission from crystalline copper sulphide nanowire arrays . Appl. Phys. Lett. , 80 : 3620 – 3622 .
  • Wadhawan , A. , Stallcup , R. E. II and Perez , J. M. 2001 . Effects of Cs deposition on the field-emission properties of single-walled carbon-nanotube bundles . Appl. Phys. Lett. , 78 : 108 – 110 .
  • Wadhawan , A. , Stallcup , R. E. II , Stephens , K. F. II , Perez , J. M. and Akwani , I. A. 2001 . Effects of O-2, Ar, and H-2 gases on the field-emission properties of single-walled and multiwalled carbon nanotubes . Appl. Phys. Lett. , 79 : 1867 – 1869 .
  • Liao , L. , Li , J. C. , Wang , D. F. , Liu , C. , Liu , C. S. , Fu , Q. and Fan , L. X. 2005 . Field emission property improvement of ZnO nanowires coated with amorphous carbon and carbon nitride films . Nanotechnology , 16 : 985 – 989 .
  • Lin , H. H. , Wang , C. Y. , Shih , H. C. , Chen , J. M. and Hsieh , C. T. 2004 . Characterizing well-ordered CuO nanofibrils synthesized through gas-solid reactions . J. Appl. Phys. , 95 : 5889 – 5895 .
  • Zhu , Y. W. , Yu , T. , Cheong , F. C. , Xu , X. J. , Lim , C. T. , Tan , V. B. C. , Thong , J. T. L. and Sow , C. H. 2005 . Large-scale synthesis and field emission properties of vertically oriented CuO nanowire films . Nanotechnology , 16 : 88 – 92 .
  • Chen , J. , Deng , S. Z. , Xu , N. S. , Zhang , W. X. , Wen , X. G. and Yang , S. H. 2003 . Temperature dependence of field emission from cupric oxide nanobelt films . Appl. Phys. Lett. , 83 : 746 – 748 .
  • Hsieha , C. T. , Chen , J. M. , Lin , H. H. and Shih , H. C. 2003 . Field emission from various CuO nanostructures . Appl. Phys. Lett. , 83 : 3383 – 3385 .
  • Tang , Q. , Li , T. , Chen , X. H. , Yu , D. P. and Qian , Y. T. 2005 . Efficient field emission from well-oriented Cu2O film . Solid State Commun. , 134 : 229 – 231 .
  • Wu , G. T. , Wang , C. S. , Zhang , X. B. , Yang , H. S. , Qi , Z. F. and Li , W. Z. 1998 . Lithium insertion into CuO/carbon nanotubes . J. Power Sources , 75 : 175 – 179 .
  • Marchand , R. , Brohan , L. and Tournoux , M. 1980 . TiO2(B) a new form of titanium dioxide and the potassium octatitanate K2Ti8O17 . Mater. Res. Bull. , 15 : 1129 – 1133 .
  • Patrissi , C. J. and Martin , C. R. 1999 . Sol-gel-based template synthesis and Li-insertion rate performance of nanostructured vanadium pentoxide . J. Electrochem. Soc. , 146 : 3176 – 3180 .
  • Takahashi , K. , Limmer , S. J. , Wang , Y. and Cao , G. Z. 2004 . Synthesis and electrochemical properties of single-crystal V2O5 nanorod arrays by template-based electrodeposition . J. Phys. Chem. B , 108 : 9795 – 9800 .
  • Wang , Y. , Takahashi , K. , Shang , H. M. and Cao , G. Z. 2005 . Synthesis and electrochemical properties of vanadium pentoxide nanotube arrays . J. Phys. Chem. B , 109 : 3085 – 3088 .
  • Takahashi , K. , Wang , Y. , Lee , K. and Cao , G. 2006 . Fabrication and Li+-intercalation properties of V2O5-TiO2 composite nanorod arrays . Appl. Phys. A Mater. Sci. Process , 82 : 27 – 31 .
  • Wang , Y. and Gao , G. Z. 2006 . Synthesis and enhanced intercalation properties of nanostructured vanadium oxides . Chem. Mater. , 18 : 2787 – 2804 .
  • Reddy , C. V. S. , Walker , S. A. Jr. , Wicker , Q. L. Sr. , Williams , E. H. and Kalluru , R. R. 2009 . Synthesis of VO2 (B) nanorods for Li battery application . Curr. Appl. Phys. , 9 : 1195 – 1198 .
  • Glushenkov , A. M. , Stukachev , V. I. , Hassan , M. F. , Kuvshinov , G. G. , Liu , H. K. and Chen , Y. 2008 . A novel approach for real mass transformation from V2O5 particles to nanorods . Cryst. Growth Des. , 8 : 3661 – 3665 .
  • Tsai , M. C. , Chang , J. C. , Sheu , H. S. , Chiu , H. T. and Lee , C. Y. 2009 . Lithium ion intercalation performance of porous laminal titanium dioxides synthesized by sol-gel process . Chem. Mater. , 21 : 499 – 505 .
  • Zheng , T. , McKinnon , W. R. and Dahn , J. R. 1996 . Hysteresis during lithium insertion in hydrogen-containing carbons . J. Electrochem. Soc. , 143 : 2137 – 2145 .
  • Kasuga , T. 2006 . Formation of titanium oxide nanotubes using chemical treatments and their characteristic properties . Thin Solid Films , 496 : 141 – 145 .
  • Oh , S. , Finones , R. , Daraio , C. , Chen , L. and Jin , S. 2005 . Growth of nano-scale hydroxyapatite using chemically treated titanium oxide nanotubes . Biomaterials , 26 : 4938 – 4943 .
  • Oh , S. and Jin , S. 2006 . Titanium oxide nanotubes with controlled morphology for enhanced bone growth . Mater. Sci. Eng. C , 26 : 1301 – 1306 .
  • Sasaki , K. , Asanuma , K. , Johkura , K. , Kasuga , T. , Okouchi , Y. , Ogiwara , N. , Kubota , S. , Teng , R. , Cui , L. and Zhao , X. 2006 . Ultrastructural analysis of TiO2 nanotubes with photodecomposition of water into O2 and H2 implanted in the nude mouse . Ann. Anat. - Anat. Anzeiger , 188 : 137 – 142 .
  • Jeng , J. , Lin , C. H. and Shiea , J. 2005 . Electrospray from nanostructured tungsten oxide surfaces with ultralow sample volume . Anal. Chem. , 77 : 8170 – 8173 .

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.