683
Views
6
CrossRef citations to date
0
Altmetric
Original Articles

Tin Dioxide Nanowires: Evolution and Perspective of the Doped and Nondoped Systems

&
Pages 91-127 | Published online: 10 Apr 2013

REFERENCES

  • Kilic , C. and Zunger , A. 2002 . Origins of coexistence of conductivity and transparency in SnO2 . Phys. Rev. Lett. , 88 : 095501
  • Lewis , B. G. and Paine , D. C. 2000 . Applications and processing of transparent conducting oxides . MRS Bull , 25 : 22
  • Hartnagel , H. L. , Dewar , A. L. , Jain , A. K. and Jagdish , C. 1995 . Semiconducting Transparent Thin Films , Bristol : IOP Publishing .
  • Zheng , M. J. , Ma , L. , Xu , W. L. , Ding , G. Q. and Shen , W. Z. 2005 . Preparation and structural characterization of nanocrystalline SnO2 powders . Appl. Phys. A-Mater. , 81 : 721
  • Rakhshani , A. E. , Makdisi , Y. and Ramazaniyan , H. 1998 . Electronic and optical properties of fluorine-doped tin oxide films . J. Appl. Phys , 83 : 1049
  • Idota , Y. , Kubota , T. , Matsufuji , A. , Maekawa , Y. and Miyasaka , T. 1997 . Tin-based amorphous oxide: A high-capacity lithium-ion-storage material . Science , 276 : 1395
  • Dhage , S. R. and Ravi , V. 2003 . Influence of various donors on non-linear I-V characteristics of tin dioxide ceramics . Appl. Phys. Lett. , 83 : 4539
  • Dominguez , J. E. , Fu , L. and Pan , X. Q. 2002 . Effect of crystal defects on the electrical properties in tin dioxide thin films . Appl. Phys. Lett. , 81 : 5168
  • Forleo , A. , Capone , S. , Epifani , M. , Siciliano , P. and Rella , R. 2004 . Role of osmium on the electrical transport mechanism of polycrystalline tin oxide thin films . Appl. Phys. Lett. , 84 : 744
  • Morales , A. M. and Lieber , C. M. 1998 . A Laser ablation method for the synthesis of crystalline semiconductor nanowires . Science , 279 : 208
  • Pan , Z. W. , Dai , Z. R. and Wang , Z. L. 2001 . Nanobelts of Semiconducting Oxides . Science , 291 : 1947
  • Alivisatos , A. P. 1996 . Semiconductor clusters, nanocrystals, and quantum dots . Science , 271 : 933
  • Yakobson , B. I. and Smalley , R. E. 1997 . Fullerene nanotubes: C1,000,000 and beyond . Amer. Sci. , 85 : 324
  • Lin , Y.-H. , Kuo , C.-C. , Wu , J.-M. , Chen , U.-S. , Chang , Y.-S. and Shih , H. C. 2008 . Characterization and cathodoluminescence of beak-like SnO2 nanorods . Jpn. J. Appl. Phys. , 47 : 8141
  • Zhang , D. F. , Sun , L. D. , Yin , J. L. and Yan , C. H. 2003 . Low-temperature fabrication of highly crystalline SnO2 nanorods . Adv. Mater , 15 : 1022
  • Gao , T. and Wang , T. 2004 . Sonochemical synthesis of SnO2 nanobelt/CdS nanoparticle core/shell . Chem. Commun. , 22 : 2558
  • Madou , M. J. and Morrison , S. R. 1989 . Chemical Sensing with Solid State Devices , San Diego : Academic Press .
  • Mandelis , A. and Christofides , C. 1993 . Chemistry and Technology of Solid State Gas Sensor Devices , New York : Wiley .
  • Kolmakov , A. , Klenov , D. O. , Lilach , Y. , Stemmer , S. and Moskovits , M. 2005 . Enhanced gas sensing by individual SnO2 nanowires and nanobelts functionalized with Pd catalyst particles . Nano Lett , 5 : 667
  • Law , M. , Kind , H. , Kim , F. , Messer , B. and Yang , P. 2002 . Photochemical sensing of NO2 with SnO2 nanoribbon nanosensors at room temperature . Angew. Chem. , 41 : 2405
  • Ma , Y. J. , Zhou , F. , Li , L. and Zhang , Z. 2004 . Low-temperature transport properties of individual SnO2 nanowires . Solid State Commun , 130 : 313
  • Leite , E. R. , Weber , I. T. , Longo , E. and Varela , J. A. 2000 . A new method tocontrol particles size and particles size distribution of SnO2 nanoparticles for gas sensor applications . Adv. Mater. , 12 : 966
  • Jian , J. K. , Chen , X. L. , Wang , W. J. , Dai , L. and Xu , Y. P. 2003 . Growth and morphologies of large-scale nanowires, nanobelts and nanodendrites . Appl. Phys. A , 76 : 291
  • Ferrere , S. , Zaban , A. and Gsegg , B. A. 1997 . Dye Sensitization of nanocrystalline tin oxide by perylene derivatives . J. Phys. Chem. , 101 : 4490 B,
  • Hu , J , Bando , Y. , Liu , Q. and Golberg , D. 2003 . Laser-Ablation growth and optical properties of wide and long single-crystal SnO2 ribbons . Adv. Funct. Mater. , 13 : 493
  • Huang , J. , Matsunaga , N. , Shimanoe , K. , Yamazoe , N. and Kunitake , T. 2005 . Nanotubular SnO2 Templated by cellulose fibers: Synthesis and gas sensing . Chem. Mater. , 17 : 3513
  • Duan , J. , Yang , S. , Liu , H. , Gong , J. , Huang , H. , Zhao , X. , Zhang , R. and Du , Y. 2005 . Single crystal SnO2 zigzag nanobelts . J. Amer. Chem. Soc. , 127 : 6180
  • Cheng , B. , Russe , J. M. , Shi , W. , Zhang , L. and Samulski , E. T. 2004 . Large-scale, solution-phase growth of single-crystalline SnO2 nanorods . J. Amer. Chem. Soc , 126 : 5972
  • Vayssieres , L. and Graetzel , M. 2004 . Highly Ordered SnO2 nanorod arrays from controlled aqueous growth . Angew. Chem. , 43 : 3666
  • Cheng , G. , Wang , J. , Liu , X. and Huang , K. 2006 . Self-assembly synthesis of single-crystalline tin oxide nanostructures by a poly(acrylic acid)-assisted solvothermal process . J. Phys. Chem. , 110 : 16208 B,
  • Wang , Y. , Jiang , X. and Xia , Y. 2003 . A solution-phase, precursor route to polycrystalline SnO2 nanowires that can be used for gas sensing under ambient conditions . J. Amer. Chem. Soc. , 125 : 16176
  • Li , D. and Xia , Y. 2004 . Electrospinning of nanofibers: Reinventing the wheel? . Adv. Mater. , 16 : 1151
  • Sberveglieri , G. , Baratto , C. , Comini , E. , Faglia , G. , Ferroni , M. , Ponzoni , A. and Vomiero , A. 2007 . Synthesis and characterization of semiconducting nanowires for gas sensing . Sens. Actuators B , 121 : 208
  • Chen , Y. Q. , Cui , X. F. , Zhang , K. , Pan , D. Y. , Zhang , S. Y. , Wang , B. and Hou , J. G. 2003 . Bulk-quantity synthesis and self-catalytic VLS growth of SnO2nanowires by lower-temperature evaporation . Chem. Phys. Lett. , 369 : 16
  • Li , M. , Lu , Q. , Nuli , Y. and Qian , X. 2007 . Core-shell and hollow microspheres composed of tin oxide nanocrystals as anode materials for lithium-ion batteries . Electrochem. Solid-State Lett. , 10 : K33
  • Cheong , K. H. , Yi , D. K. , Lee , J.-G. , Park , J.-M. , Kim , M. J. , Edel , J. B. and Ko , C. 2008 . Gold nanoparticles for one step DNA extraction and real-time PCR of pathogens in a single chamber . Lab Chip , 8 : 810 – 813 .
  • Yi , D. K. , Seo , E.-M. and Kim , D.-Y. 2002 . Fabrication of a mesoscale wire: Sintering of a polymer colloid arrayed inside a one-dimensional groove pattern . Langmuir , 18 : 5321
  • Luo , S. H. , Wan , Q. , Liu , W. L. , Zhang , M. , Di , Z. F. , Wang , S. Y. , Song , Z. T. , Lin , C. L. and Dai , J. Y. 2004 . Vacuum electron field emission from SnO2 nanowhiskers synthesized by thermal evaporation . Nanotechnology , 15 : 1424
  • Wan , Q. , Lin , C. L. , Yu , X. B. and Wang , T. H. 2004 . Room-temperature hydrogen storage characteristics of ZnO nanowires . Appl. Phys. Lett. , 84 : 124
  • Wu , Z. and Yang , P. 2001 . Direct observation of vapor-liquid-solid nanowire growth . J. Amer. Chem. Soc. , 123 : 3165
  • Wang , Z. L. 2008 . Oxide nanobelts and nanowires-growth, properties and applications . J. Nanosci. Nanotechnol. , 8 : 27
  • Wang , N. , Cai , Y. and Zhang , R. Q. 2008 . Growth of nanowires . Mater. Sci. Eng. R , 60 : 1
  • Qu , D. M. , Yan , P. X. , Chang , J. B. , Yan , D. , Liu , J. Z. , Yue , G. H. , Zhuo , R. F. and Feng , H. T. 2007 . Nanowires and nanowire-nanosheet junction of SnO2 nanostructures . Mater. Lett. , 61 : 2255
  • Gudiksen , M. S. and Lieber , C. M. 2000 . Diameter-selective synthesis of semiconductor nanowires . J. Amer. Chem. Soc. , 122 : 8801
  • Huang , M. H. , Wu , Y. , Feick , H. , Tran , H. N. , Weber , E. and Yang , P. 2001 . Catalytic growth of zinc oxide nanowires by vapor transport . Adv. Mater. , 13 : 113
  • Simpkins , B. S. , Pehrsson , P. E. , Taheri , M. L. and Stroud , R. M. 2007 . Diameter control of gallium nitride nanowires . J. Appl.Phys. , 101 : 094305
  • Bogart , T. E. , Dey , S. , Lew , K. -K. , Mohney , S. E. and Redwing , J. M. 2005 . Diameter-controlled synthesis of silicon nanowires using nanoporous alumina membraces . Adv. Mater. , 17 : 114
  • Li , C. , Zhang , D. , Han , S. , Liu , X. , Tang , T. and Zhou , C. 2003 . Diameter-controlled growth of single-crystalline In2O3 nanowires and their electronic properties . Adv. Mater. , 15 : 143
  • Hochbaum , A. I. , Fan , R. , He , R. and Yang , P. 2005 . Controlled growth of Si nanowire arrays for device integration . Nano Lett. , 5 : 457
  • Xia , Y. and Whitesides , G. M. 1998 . Soft lithography . Angew.Chem., Int. Ed. , 37 : 550
  • Cao , T. , Xu , Q. , Winkleman , A. and Whitesides , G. M. 2005 . Fabrication of thin, metallic film along the sidewalls of a topographically in charge printing . Small , 1 : 1191
  • Biancardo , S. B. N. , Pranov , H. J. and Larsen , N. B. 2008 . Protein in-mold patterning . Adv. Mater. , 20 : 1825
  • Ko , H. C. , Stoykovich , M. P. , Song , J. , Malyarchuk , V. , Choi , W. M. , Yu , C.-J. , Geddes , J. B. III , Xiao , J. , Wang , S. , Huang , Y. and Rogers , J. A. 2008 . A hemispherical electronic eye camera based on compressible silicon optoelectronics . Nature , 454 : 748
  • Kuznetsov , V. A. , Kuzmina , I. P. and Sylvestrova , I. M. 1984 . Hydrothermal growth of AIIBVI semiconductors . Bull. Mater. Sci. , 6 : 177
  • Verges , M. A. , Mifsud , A. and Serna , C. J. 1990 . Formation of rod-like zinc oxide microcrystals in homogeneous solutions . J. Chem. Soc., Faraday Trans. , 86 : 959
  • Dai , L. , Chen , X. L. , Jian , J. K. , He , M. , Zhou , T. and Hu , B. Q. 2002 . Fabrication and characterization of In2O3 nanowires . Appl. Phys. A: Mater. Sci. Process. , 75 : 687
  • Zhang , J. , Liu , Z. G. , Lin , C. K. and Lin , J. 2005 . A simple method to synthesize β-GaO nanorods and their photoluminescence properties . J. Cryst. Growth , 280 : 99
  • Zheng , D. S. , Sun , S. X. and Fan , W. L. 2005 . One-step preparation of single-crystalline β-MnO2 nanotubes . J. Phys. Chem. B , 109 : 16439
  • Zhu , D. L. , Zhu , H. and Zhang , Y. H. 2003 . Microstructure and magnetization of single-crystal perovskite manganites nanowires prepared by hydrothermal method . J. Cryst. Growth , 249 : 172
  • Nasr , C. , Hotchandani , S. , Kim , W. Y. , Schmehl , R. H. and Kamat , P. V. 1997 . Photoelectrochemistry of composite semiconductor thin films. Photosensitization of SnO2/CdS coupled nanocrystallites with a ruthenium polypyridyl complex . J. Phys. Chem. B , 101 : 7480
  • Davis , S. S. 1997 . Biomedical applications of nanotechnology-implications for drug targeting and gene therapy . Trends Biotechnol , 15 : 217
  • Xia , Y. , Yang , P. , Sun , Y. , Wu , Y. , Mayers , B. , Gates , B. , Yin , Y. , Kim , F. and Yan , H. 2003 . One-dimensional nanostructures: Synthesis, characterization, and applications . Adv. Mater. , 15 : 353
  • Wu , H. , Lin , D. and Pan , W. 2006 . Fabrication, assembly, and electrical characterization of CuO nanofibers . Appl. Phys. Lett. , 89 : 133125
  • Thavasi , V. , Singh , G. and Ramakrishna , S. 2008 . Electrospun nanofibers in energy and environmental applications . Energ. Environ. Sci. , 1 : 205
  • Lu , X. , Wang , C. and Wei , Y. 2009 . One-dimensional composite nanomaterials: Synthesis by electrospinning and their applications . Small , 5 : 2349
  • Liu , L. , Guo , C. , Li , S. , Wang , L. , Dong , Q. and Li , W. 2010 . Improved H2 sensing properties of Co-doped SnO2 nanofibers . Sens. Actuators B , 150 : 806
  • Liu , L. , Guo , C. , Li , S. , Wang , L. , Dong , Q. and Li , W. 2008 . Fabrication and ethanol-sensing properties of micro gas sensor based on electrospun SnO2 nanofibers . Sens. Actuators B , 132 : 67
  • Zhang , Y. , He , X. , Li , J. , Miao , Z. and Huang , F. 2010 . Enhancement of hydrogen monitoring properties based on Pd–SnO2 composite nanofibers . Sens. Actuators B , 147 : 111 – 115 .
  • Zhang , H. , Li , Z. , Liu , L. , Xu , X. , Wang , Z. , Wang , W. , Zheng , W. , Dong , B. and Wang , C. 2009 . Synthesis and toluene sensing properties of SnO2 nanofibers, Original Research Article . Sens. Actuators B , 137 : 471
  • Qi , Q. , Zhang , T. , Liu , L. and Zheng , X. 2009 . Improved ethanol sensing properties of Cu-doped SnO2 nanofibers . Mater. Lett. , 63 : 2041
  • Liu , L. , Zhang , T. , Wang , L. , Li , S. , Le-on-Brito , N. , Melendez , A. , Ramos , I. , Pinto , N. J. and Santiago-Aviles , J. J. 2007 . Electrical properties of electrospun Sb-doped tin oxide nanofibers . J. Phys. Conf. Ser. , 61 : 683
  • Wang , Z. and Liu , L. 2009 . Synthesis and ethanol sensing properties of Fe-doped SnO2 nanofibers . Mater. Lett , 63 : 917
  • Zheng , M. , Li , G. , Zhang , X. , Huang , S. , Lei , Y. and Zhang , L. 2001 . Fabrication and structural characterization of large-scale uniform SnO2 nanowire array embedded in anodic alumina membrane . Chem. Mater. , 13 : 3859
  • Dai , Z. R. , Gole , J. L. , Stout , J. D. and Wang , Z. L. 2002 . Tin oxide nanowires, nanoribbons, and nanotubes . J. Phys. Chem. B , 106 : 1274
  • Kolmakov , A. , Zhang , Y. , Cheng , G. and Moskovits , M. 2003 . Detection of CO and O2 using tin oxide nanowire sensors . Adv. Mater , 15 : 997
  • Favier , F. , Walter , E. , Zach , M. , Benter , T. and Penner , R. 2001 . Hydrogen Sensors and switches from electrodeposited palladium mesowire arrays . Science , 293 : 2227
  • Ramgir , N. R. , Mulla , I. S. and Vijayamohanan , K. P. 2004 . Shape Selective synthesis of unusual nanobipyramids, cubes, and nanowires of RuO2: SnO2 . J. Phys. Chem. B , 108 : 14815
  • Nguyen , P. , Ng , H. T. , Kong , J. , Cassell , A. M. , Quinn , R. , Li , J. , Han , J. , Mcneil , M. and Meyappan , M. 2003 . Epitaxial directional growth of Indium-doped tin oxide nanowire arrays . Nano Lett. , 3 : 925
  • Niranjan , R. S. , Sainkar , S. R. , Vijayamohanan , K. and Mulla , I. S. 2002 . Ruthenium: tin oxide thin films as a highly selective hydrocarbon . Sens. Actuators B , 82 : 82
  • Niranjan , R. S. and Mulla , I. S. 2003 . Spin coated tin oxide: a highly sensitive hydrocarbon sensor . Mater. Sci. Eng. B , 103 : 103
  • Wang , B. , Yang , Y. H. , Wang , C. X. and Yang , G. W. 2005 . Nanostructures and self-catalyzed growth of SnO2, B. . J. Appl. Phys. , 98 : 073520
  • Wang , Z. L. , Kong , X. Y. and Zuo , J. M. 2003 . Induced Growth of asymmetric nanocantilever arrays on polar surfaces . Phys. Rev. Lett. , 91 : 185502
  • Huang , J. , Lu , A. , Zhao , B. and Wan , Q. 2007 . Branched growth of degenerately Sb-doped SnO2 nanowires . Appl. Phys. Lett. , 91 : 073102
  • Mathur , S. and Barth , S. 2007 . Molecule-based chemical vapor growth of aligned SnO2 nanowires and branched SnO2/V2O5 heterostructures . Small , 3 : 2070
  • Beltran , A. , Andres , J. , Longo , E. and Leite , E. R. 2003 . Thermodynamic argument about SnO2 nanowire growth . Appl. Phys. Lett. , 83 : 635
  • Li , H. , Ma , H. , Zeng , Y. , Pan , A. , Zhang , Q. , Yu , H. , Wang , T. , Wang , Y. and Zou , B. 2010 . Hierarchical SnO2 nanostructures: Linear assembly of nanorods on the nanowire backbones . J. Phys. Chem. C , 114 : 1844
  • Park , M. S. , Wang , G. X. , Kang , Y. M. , Wexler , D. , Dou , S. X. and Liu , H. K. 2007 . Preparation and electrochemical properties of SnO2 nanowires for application in lithium-ion batteries . Angew. Chem., Int. Ed. , 46 : 750
  • Zhao , N. H. , Wang , G. J. , Huang , Y. , Wang , B. , Yao , B. D. and Wu , Y. P. 2008 . Preparation of nanowire arrays of amorphous carbon nanotube-coated single crystal SnO2 . Chem. Mater. , 20 : 2612
  • Liu , Y. and Liu , M. L. 2005 . Growth of aligned square-shaped SnO2 tube arrays . Adv. Funct. Mater. , 15 : 57
  • Liu , Y. , Dong , J. and Liu , M. L. 2004 . Well-Aligned “Nano-box-beams” of SnO2 . Adv. Mater. , 16 : 353
  • Crowley , T. A. , Ziegler , K. J. , Lyons , D. M. , Erts , D. , Olin , H. , Morris , M. A. and Holmes , J. D. 2003 . Synthesis of metal and metal oxide nanowire and nanotube arrays within a mesoporous silica template . Chem. Mater. , 15 : 3518
  • Rabin , O. , Herz , P. R. , Lin , Y. M. , Akinwande , A. I. , Cronin , S. B. and Dresselhaus , M. S. 2003 . formation of thick porous anodic alumina films and nanowire arrays on silicon wafers and glass . Adv.Funct. Mater. , 13 : 631
  • Shi , L. , Xu , Y. and Li , Q. 2010 . Controlled fabrication of SnO2 arrays of well-aligned nanotubes and nanowires . Nanoscale , 2 : 2104
  • Shirato , N. , Strader , J. , Kumar , A. , Vincent , A. , Zhang , P. , Karakoti , A. , Nacchimuthu , P. , Cho , H.-J. , Seal , S. and Kalyanaraman , R. 2011 . Thickness dependent self-limiting 1-D tin oxide nanowire arrays by nanosecond pulsed laser irradiation . Nanoscale , 3 : 1090
  • Huang , Z. -Z. 2007 . Synthesis and characterization of in-doped SnO2 (ITO) nanowires . Sol. St. Phen , 121–123 : 209
  • Han , Y. , Wu , X. , Ma , Y. , Gong , L. , Qu , F. and Fan , H. 2011 . Porous SnO2 nanowire bundles for photocatalyst and Li ion battery applications . Cryst. Eng. Commun , 13 : 3506
  • Li , Y. , Yang , X. Y. , Rooke , J. , Tendeloo , G. V. and Su , B. L. 2010 . Ultralong Cu(OH)2 and CuO nanowire bundles: PEG200-directed crystal growth for enhanced photocatalytic performance . J. Colloid Interf. Sci. , 348 : 303
  • Xu , M. W. , Zhao , M. S. , Wang , F. , Guan , W. , Yang , S. and Song , X. P. 2010 . Facile synthesis and electrochemical properties of porous SnO2micro-tubes as anode material for lithium-ion battery . Mater. Lett. , 64 : 921
  • Zhao , N. H. , Yang , L. C. , Zhang , P. , Wang , G. J. , Wang , B. , Yao , B. D. and Wu , Y. P. 2010 . Polycrystalline SnO2 nanowires coated with amorphous carbon nanotube as anode material for lithium ion batteries . Mater. Lett. , 64 : 972
  • Yin , Y.-X. , Jiang , L.-Y. , Wan , L.-J. , Li , C.-J. and Guo , Y.-G. 2011 . Polyethylene glycol-directed SnO2 nanowires for enhanced gas-sensing properties . Nanoscale , 3 : 1802
  • Ramgir , N. S. , Mulla , I. S. and Vijayamohanan , K. P. 2005 . A room temperature nitric oxide sensor actualized from Ru-doped SnO2 nanowires . Sens. Actuators B , 107 : 708
  • Wan , Q. and Wang , T. H. 2005 . Single-crystalline Sb-doped SnO2 nanowires: synthesis and gas sensor application . Chem. Commun. , 30 : 3841
  • Scott , J. F. 1970 . Raman spectrum of SnO2 . J. Chem. Phys. , 53 : 852
  • Yang , M.-R. , Chua , S.-Y. and Chang , R.-C. 2007 . Synthesis and study of the SnO2 nanowires growth . Sens. Actuators B , 122 : 269
  • Sysoev , V. V. , Goschnick , J. , Schneider , T. , Strelcov , E. and Kolmakov , A. 2007 . A gradient microarray electronic nose based on percolating SnO2 nanowire sensing elements . Nano Lett. , 7 : 3182
  • Yang , A. , Tao , X. , Wang , R. , Lee , S. and Surya , C. 2007 . Room temperature gas sensing properties of SnO2/multiwall-carbon-nanotube composite nanofibers . Appl. Phys. Lett. , 91 : 133110
  • Cheng , G. , Wu , K. , Zhao , P. , Cheng , Y. , He , X. and Huang , K. 2007 . Solvothermal controlled growth of Zn-doped SnO2 . J. Cryst. Growth , 309 : 53
  • Li , Z. , Lia , X. , Zhang , X. and Qian , Y. 2006 . Hydrothermal synthesis and characterization of novel flower-like zinc-doped SnO2 nanocrystals . J. Cryst. Growth , 291 : 258
  • Xue , X. Y. , Chen , Y. J. , Wang , Y. G. and Wang , T. H. 2005 . Synthesis and ethanol sensing properties of ZnSnO3 nanowires . Appl. Phys. Lett. , 87 : 233101
  • Comini , E. , Faglia , G. , Sberveglieri , G. , Pan , Z. and Wang , Z. L. 2002 . Stable and highly sensitive gas sensors based on semiconducting nanobelts . Appl. Phys. Lett. , 81 : 1869
  • Comini , E. , Faglia , G. , Sberveglieri , G. , Calestani , D. , Zanotti , L. and Zha , M. 2005 . Tin oxide nanobelts electrical and sensing properties . Sens. Actuators B , 111–112 : 2
  • Jinkawa , T. , Sakai , G. , Tamaki , J. , Miura , N. and Yamazoe , N. 2000 . Relationship between ethanol gas sensitivity and surface catalytic property of tin oxide sensors modified with acidic or basic oxides . J. Mol. Catal. A Chem , 155 : 193
  • Stambolova , I. , Konstantinov , K. , Vassilev , S. , Peshev , P. and Tsacheva , T. S. 2000 . Lanthanum doped SnO2 and ZnO thin films sensitive to ethanol and humidity . Mater. Chem. Phys. , 63 : 104
  • van Hieu , N. , Kim , H. R. , Ju , B. K. and Lee , J. H. 2008 . Enhanced performance of SnO2 nanowires ethanol sensor by functionalizing with La2O3.(SnO2) . Sens. Actuators, B , 133 : 228
  • Wan , Q. , Huang , J. , Xie , Z. , Wang , T. , Dattoli , E. N. and Lu , W. 2008 . Branched SnO2 nanowires on metallic nanowire backbones for ethanol sensors application . Appl. Phys. Lett. , 92 : 102101
  • Kim , H. W. , Shim , S. H. , Lee , J. W. , Park , J. Y. and Kim , S. S. 2008 . Bi2Sn2O7 nanoparticles attached to SnO2 nanowires and used as catalysts . Chem. Phys. Lett. , 456 : 193
  • Arbiola , J. , Cominic , E. , Faglia , G. , Sberveglieric , G. and Morante , J. R. 2008 . Orthorhombic Pbcn SnO2 nanowires for gas sensing applications . J. Cryst. Growth , 310 : 253
  • Chen , Z. , Lai , J. K. L. and Shek , C.-H. 2006 . Structural and optical properties of single crystalline columbite tin oxide film . Appl. Phys. Lett. , 89 : 231902
  • Haines , J. and Leger , J. M. 1997 . X-ray diffraction study of the phase transitions and structural evolution of tin dioxide at high pressure: Relationships between structure types and implications for other rutile-type dioxides . Phys. Rev. B , 55 : 11144
  • Sangaletti , L. , Depero , L. E. , Dieguez , A. , Marca , G. , Morante , J. R. , Romano-Rodriguez , A. and Sberveglieri , G. 1997 . Microstructure and morphology of tin dioxide multilayer thin film gas sensors . Sens. Actuators B , 44 : 268
  • Shek , C. H. , Lai , J. K. L. , Lin , G. M. , Zheng , Y. F. and Liu , W. H. 1997 . Nanomicrostructure, chemical stability and abnormal transformation in ultrafine particles of oxidized tin . J. Phys. Chem. Sol. , 58 : 13
  • Gole , J. L. , Burda , C. , Wang , Z. L. and White , M. 2005 . Unusual properties and reactivity at the nanoscale . J. Phys. Chem. Sol. , 66 : 546
  • Koeck , A. , Tischner , A. , Maier , T. , Kast , M. , Edtmaier , C. , Gspan , C. and Kothleitner , G. 2009 . Atmospheric pressure fabrication of SnO2-nanowires for highly sensitive CO and CH4 detection . Sens. Actuators B , 138 : 160
  • Shen , Y. , Yamazaki , T. , Liu , Z. , Meng , D. , Kikuta , T. , Nakatani , N. , Saito , M. and Mori , M. 2009 . Microstructure and H2 gas sensing properties of nondoped and Pd-doped SnO2 nanowires . Sens. Actuators, B , 135 : 524
  • Sharma , S. , Sunkara , M. K. , Miranda , R. , Lian , G. and Dickey , E. C. 2001 . Microstructure and H2 gas sensing properties of nondoped and Pd-doped SnO2 nanowires . Mater. Res. Soc. Symp. Proc. , 676 : Y1. – 6.1 .
  • Dobrokhotov , V. , Mcllroy , D. N. , Norton , M. G. and Abuzir , A. 2006 . Principles and mechanism of gas sensing by GaN nanowires functionalized with gold nanoparticles . J. Appl. Phys. , 99 : 104302
  • Cabot , A. , Dieguez , A. , Romano-Rodriguez , A. , Morante , J. and Barsan , R. N. 2001 . Influence of the catalytic introduction procedure on the nano-SnO2 gas sensor performances: Where and how stay the catalytic atoms? . Sens. Actuators B , 79 : 98
  • Mathur , S. , Barth , S. , Shen , H. , Pyun , J. C. and Werner , U. 2005 . Size-dependent photoconductance in SnO2 nanowires . Small , 1 : 713
  • Mathur , S. , Ganesan , R. , Grobelsek , I. , Shen , H. , Ruegamer , T. and Barth , S. 2007 . Plasma-assisted modulation of morphology and composition in tin oxide nanostructures for sensing applications . Adv. Eng. Mater , 9 : 658
  • Pan , J. , Ganesan , R. , Shen , H. and Mathur , S. 2010 . Plasma-modified SnO2 nanowires for enhanced gas sensing . J. Phys. Chem. C , 114 : 8245
  • Sun , J. , Liu , H. , Jiang , J. , Lu , A. and Wan , Q. 2010 . Low-voltage transparent SnO2nanowire transistors gated by microporous SiO2 solid-electrolyte with improved polarization response . J. Mater. Chem. , 20 : 8010
  • Sun , J. , Wan , Q. , Xu , A. and Jiang , J. 2009 . Low-voltage electric-double-layer paper transistors gated by microporous SiO2 processed at room temperature . Appl. Phys. Lett. , 95 : 222108
  • Jiang , J. , Wan , Q. , Sun , J. and Lu , A. 2009 . Ultra-low-voltage transparent electric-double-layer thin-film transistors processed at room temperature . Appl. Phys. Lett. , 95 : 152114
  • Sena , S. , Kanitkarb , P. , Sharmac , A. , Muthea , K. P. , Rathod , A. , Deshpande , S. K. , Kaura , M. , Aiyerb , R. C. , Guptaa , S. K. and Yakhmia , J. V. 2010 . Growth of SnO2/W18O49 nanowire hierarchical heterostructure and their application as chemical sensor . Sens. Actuators B , 147 : 453
  • Dattoli , E. N. , Wan , Q. , Guo , W. , Chen , Y. , Pan , X. and Lu , W. 2007 . Fully transparent thin-film transistor devices based on SnO2 nanowires . Nano Lett. , 7 : 2463
  • Ju , S. , Chen , P. , Zhou , C. , Ha , Y.-G. , Facchetti , A. , Marks , T. J. , Kim , S. K. , Mohammadi , S. and Janes , D. B. 2008 . 1/f noise of SnO2 nanowire transistors . Appl. Phys. Lett. , 92 : 243120
  • Liu , Z. , Zhang , D. , Han , S. , Li , C. , Tang , T. , Jin , W. , Liu , X. , Lei , B. and Zhou , C. 2003 . Laser ablation synthesis and electron transport studies of tin oxide nanowires . Adv. Mater. , 15 : 1754
  • Kang , S. J. , Kocabas , C. , Ozel , T. , Shim , M. , Pimparkar , N. , Alam , M. A. , Rotkin , S. V. and Rogers , J. A. 2007 . High-performance electronics using dense, perfectly aligned arrays of single-walled carbon nanotubes . Nat. Nanotechnol. , 2 : 230
  • Kim , D. , Kim , Y.-K. , Park , S. C. , Ha , J. S. , Huh , J. , Na , J. and Kim , G.-T. 2009 . Photoconductance of aligned SnO2 nanowire field effect transistors . Appl. Phys. Lett. , 95 : 043107
  • Sun , J. , Tang , Q. , Lu , A. , Jiang , X. and Wan , Q. 2009 . Individual SnO2 nanowire transistors fabricated by the gold microwire mask method . Nanotechnology , 20 : 255202
  • Park , H. H. , Kang , P. S. , Kim , G. T. and Ha , J. S. 2010 . Effect of gate dielectrics on the device performance of SnO2 nanowire field effect transistors . Appl. Phys. Lett. , 96 : 102908
  • Hong , S. , Kim , D. , Kim , G.-T. and Ha , J. S. 2011 . Effect of humidity and thermal curing of polymer gate dielectrics on the electrical hysteresis of SnO2 nanowire field effect transistors . Appl. Phys. Lett. , 98 : 102906
  • Mubeen , S. and Moskovits , M. 2011 . Gate-tunable surface processes on a single-nanowire field-effect transistor . Adv. Mater. , 23 : 2306
  • Chen , X. H. and Moskovits , M. 2007 . Observing catalysis through the agency of the participating electrons: Surface-chemistry-induced current changes in a tin oxide nanowire decorated with silver . Nano Lett. , 7 : 807
  • Kalinin , S. V. , Shin , J. , Jesse , S. , Geohegan , D. , Baddorf , A. P. , Lilach , Y. , Moskovits , M. and Kolmakov , A. 2005 . Electronic transport imaging in a multiwire SnO2 chemical field-effect transistor device . J. Appl. Phys. , 98 : 044503
  • Vomiero , A. , Ferroni , M. , Comini , E. , Faglia , G. and Sberveglieri , G. 2007 . Preparation of radial and longitudinal nanosized heterostructures of In2O3 and SnO2 . Nano Lett. , 7 : 3553
  • Mathur , S. , Barth , S. , Werner , U. , Hernandez-Ramirez , F. and Romano-Rodriguez , A. 2008 . Chemical vapor growth of one-dimensional magnetite nanostructures . Adv. Mater. , 20 : 1550
  • Mathur , S. , Barth , S. , Shen , H. , Pyun , J. C. and Werner , U. 2005 . Size-dependent photoconductance in SnO2 nanowires . Small , 1 : 713
  • Klamchuen , A. , Yanagida , T. , Nagashima , K. , Seki , S. , Oka , K. , Taniguchi , M. and Kawai , T. 2009 . Crucial role of doping dynamics on transport properties of Sb-doped SnO2 nanowires . Appl. Phys. Lett. , 95 : 053105
  • Lin , C.-H. , Chen , R.-S. , Chen , T.-T. , Chen , H.-Y. , Chen , Y.-F. , Chen , K.-H. and Chen , L.-C. 2008 . High photocurrent gain in SnO2 nanowires . Appl. Phys. Lett. , 93 : 112115
  • Li , Q. H. , Gao , T. , Wang , Y. G. and Wang , T. H. 2005 . Absorption and desorption of oxygen probed from ZnO nanowire films by photocurrent measurements . Appl. Phys. Lett. , 86 : 123117
  • Wang , Y. , Ramos , I. and Santiago-Aviles , J. J. 2007 . Optical band gap and photoconductance of electrospun tin oxide nanofiber . J. Appl. Phys. , 102 : 093517
  • Nam , C. -Y. , Jaroenapibal , P. , Tham , D. , Luzzi , D. E. , Evoy , S. and Fischer , J. E. 2006 . Diameter-dependent electromechanical properties of GaN nanowires . Nano Lett. , 6 : 153
  • Lee , S. H. , Jo , G. , Park , W. , Lee , S. , Kim , Y.-S. , Cho , B. K. , Lee , T. and Kim , W. B. 2010 . Diameter-Engineered SnO2 Nanowires over contact-printed gold nanodots using size- controlled carbon nanopost array stamps . ACS Nano , 4 : 1829
  • Lee , J.-S. , Sim , S.-K. , Min , B. , Cho , K. , Kim , S. W. and Kim , S. 2004 . Structural and optoelectronic properties of SnO2 nanowires synthesized from ball-milled SnO2 powders . J. Cryst. Growth , 267 : 145
  • Melnick , D. A. 1957 . Zinc oxide photoconduction, an oxygen adsorption process . J. Chem. Phys. , 26 : 1136
  • Keezer , R. 1961 . Effect of chemisorbed oxygen on photovoltaic and photoconductive process in rutile . J. Appl. Phys. , 35 : 1866
  • Zhou , J. X. , Zhang , M. S. , Hong , J. M. and Yin , Z. 2006 . Raman spectroscopic and photoluminescence study of single-crystalline SnO2 nanowires . Solid State Commun , 138 : 242
  • Luo , S. , Chu , P. K. , Liu , W. , Zhang , M. and Lin , C. 2006 . Origin of low-temperature photoluminescence from SnO2 nanowires fabricated by thermal evaporation and annealed in different ambients . Appl. Phys. Lett. , 88 : 183112
  • Li , L. , Zong , F. , Cui , X. , Ma , H. , Wu , X. , Zhang , Q. , Wang , Y. , Yang , F. and Zhao , J. 2007 . Structure and field emission properties of SnO2 nanowires . Mater. Lett. , 61 : 4152
  • Frederick , C. K. , Wong , K. W. , Tang , Z. H. , Zhang , Z. F. , Bello , I. and Lee , S. T. 1999 . Electron field emission from silicon nanowires . Appl. Phys. Lett. , 75 : 1700
  • Zhou , J. , Xu , N.-S. , Deng , S.-Z. , Chen , J. , She , J.-C. and Wang , Z.-L. 2003 . Large-area nanowire arrays of molybdenum and molybdenum oxides: Synthesis and field emission properties . Adv. Mater. , 15 : 1835
  • Bonard , J-M. , Dean , K. A. , Coll , B. F. and Klinke , C. 2002 . Field emission of individual carbon nanotubes in the scanning electron microscope . Phys. Rev. Lett. , 89 : 197602
  • Zhu , Y. W. , Zhang , H. Z. , Sun , X. C. , Feng , S. Q. , Xu , J. , Zhao , Q. , Xiang , B. , Wang , R. M. and Yu , D. P. 2003 . Efficient field emission from ZnO nanoneedle arrays . Appl. Phys. Lett. , 83 : 144
  • Chen , Y. J. , Li , Q. H. , Liang , Y. X. , Wang , T. H. , Zhao , Q. and Yu , D. P. 2004 . Field emission from long SnO2 nanobelt arrays . Appl. Phys. Lett. , 85 : 5682
  • Batzill , M. and Diebold , U. 2005 . The surface and materials science of tin oxide . Prog. Surf. Sci. , 79 : 47
  • Prades , J. D. , Arbiol , J. , Cirera , A. , Morante , J. R. , Avella , M. , Zanotti , L. , Comini , E. , Faglia , G. and Sberveglieri , G. 2007 . Defect study of SnO2 nanostructures by cathodoluminescence analysis: Application to nanowires . Sens. Actuators B , 126 : 6
  • Crabtree , D. F. 1974 . Cathodoluminescence of tin oxide doped with europium . J. Phys. D , 7 : L17
  • Crabtree , D. F. 1974 . Cathodoluminescence of tin oxide doped with terbium . J. Phys. D , 7 : L22
  • Maestre , D. , Cremades , A. and Piqueras , J. 2004 . Cathodoluminescence of defects in sintered tin oxide . J. Appl. Phys. , 95 : 3027
  • Maestre , D. , Cremades , A. and Piqueras , J. 2005 . Growth and luminescence properties of micro- and nanotubes in sintered tin oxide . J. Appl. Phys. , 97 : 044316
  • Wu , J-M and Kuo , C-H . 2009 . Ultraviolet photodetectors made from SnO2 nanowires . Thin Solid Films , 517 : 3870
  • Liua , R. , Chen , Y. , Wang , F. , Cao , L. , Pana , A. , Yang , G. , Wanga , T. and Zou , B. 2007 . Stimulated emission from trapped excitons in SnO2 nanowires . Physica E , 39 : 223
  • Cao , L. , Zou , B. S. , Li , Ch. R. , Zhang , Z. B. , Xie , S. Sh. and Yang , G. Zh. 2004 . Laser emission of low-threshold excitation from ZnO nanowires . Europhys. Lett , 68 : 740
  • Kayanuma , Y. 1988 . Quantum-size effects of interacting electrons and holes in semiconductor microcrystals with spherical shape . Phys. Rev. B. , 38 : 9797
  • Huang , M. H. , Mao , S. , Feick , H. , Yan , H. Q. , Wu , Y. Y. , Kind , H. , Weber , E. , Russo , R. and Yang , P. D. 2001 . Room-temperature ultraviolet nanowire nanolasers . Science , 292 : 1897
  • Cheng , C. , Liu , B. , Yang , H. , Zhou , W. , Sun , L. , Chen , R. , Yu , S. F. , Zhang , J. , Gong , H. , Sun , H. and Fan , H. J. 2009 . Hierarchical assembly of ZnO nanostructures on SnO2 backbone nanowires: Low-temperature hydrothermal preparation and optical properties . ACS Nano , 3 : 3069
  • Zhou , W. C. , Liu , R. B. , Wan , Q. , Zhang , Q. L. , Pan , A. L. , Guo , L. and Zou , B. S. 2009 . Bound exciton and optical properties of SnO2 one-dimensional nanostructures . J. Phys.Chem. C. , 113 : 1719
  • Yang , H. Y. , Yu , S. F. , Lau , S. P. , Tsang , S. H. , Xing , G. Z. and Wu , T. 2009 . Ultraviolet coherent random lasing in randomly assembled SnO2 nanowires . Appl. Phys. Lett. , 94 : 241121
  • Yang , H. Y. , Yu , S. F. , Liang , H. K. , Mote , Rakesh G. , Cheng , C. W. , Fan , H. J. , Sun , T. and Hng , H. H. 2009 . High-temperature lasing characteristics of randomly assembled SnO2 backbone nanowires coated with ZnO nanofins . J. Appl. Phys , 106 : 123105
  • Hu , J. , Chen , Z. , Zou , R. and Sun , Y. 2010 . New nanowire heterostructures: SnO2 nanowires epitaxial growth on Si bicrystalline nanowires . Cryst. Eng. Comm. , 12 : 89
  • Lei , M. , Hu , Q. R. , Wang , S. L. and H , W. 2010 . Tang, Structural and optical properties of Al-doped SnO2 nanowires . Mater. Lett. , 64 : 19
  • Li , P. G. , Lei , M. , Tang , W. H. , Guo , X. and Wang , X. 2009 . Facile route to straight SnO2 nanowires and their optical properties . J. Alloys. Compd. , 477 : 515
  • Gao , T. and Wang , T. H. 2008 . Vapor phase growth and optical properties of single-crystalline SnO2 nanobelts . Mater. Res. Bull. , 43 : 836
  • Cheng , B. C. , Xiao , Y. H. , Wu , G. S. and Zhang , L. D. 2004 . Controlled Growth and properties of one-dimensional ZnO nanostructures with Ce as activator/dopant . Adv. Funct. Mater. , 14 : 913
  • Bae , S. Y. , Seo , H. W. and Park , J. 2004 . Vertically aligned sulfur-doped ZnO nanowires via chemical vapor deposition . J. Phys. Chem. B , 108 : 5206
  • Ying , Z. , Wan , Q. , Cao , H. , Song , Z. T. and Feng , S. L. 2005 . Characterization of SnO2 nanowires as an anode material for Li-ion batteries . Appl. Phys. Lett. , 87 : 113108
  • Chen , J. , Xu , L. N. , Li , W. Y. and Gou , X. L. 2005 . α-Fe2O3 Nanotubes in gas sensor and lithium-ion battery applications . Adv. Mater. , 17 : 582
  • sides , c. r. and martin , c. r. 2005 . nanostructured electrodes and the low-temperature performance of Li-ion batteries . Adv. Mater. , 17 : 125
  • Zhou , Y. K. , Cao , L. , Zhang , F. B. , He , B. L. and Li , H. L. 2003 . Lithium Insertion into TiO2 nanotube prepared by the hydrothermal process . J. Electrochem. Soc. , 150 : A1246
  • Zhong , D. Y. , Zhang , G. Y. , Liu , S. , Wang , E. G. , Wang , Q. , Li , H. and Huang , X. J. 2001 . Lithium storage in polymerized carbon nanotube bells . Appl. Phys. Lett. , 79 : 3500
  • Kim , D.-W. , Hwang , I.-S. , Kwon , S. J. , Kang , H.-Y. , Park , K.-S. , Choi , Y.-J. , Choi , K.-J. and Park , J.-G. 2007 . Highly conductive coaxial SnO2-In2O3 heterostructured nanowires for Li ion battery electrodes . Nano Lett , 7 : 3041
  • Kim , H. and Cho , J. 2008 . Hard templating synthesis of mesoporous and nanowire SnO2 lithium battery anode materials . J. Mater. Chem , 18 : 771
  • Ko , Y-D , Kang , J-G , Park , J-G , Lee , S and Kim , D-W . 2009 . Self-supported SnO2 nanowire electrodes for high-power lithium-ion batteries . Nanotechnology , 20 : 455701
  • Zhang , L. Q. , Liu , X. H. , Liu , Y. , Huang , S. , Zhu , T. , Gui , L. , Mao , S. X. , Ye , Z. Z. , Wang , C. M. , Sullivan , J. P. and Huang , J. Y. 2011 . Controlling the Lithiation-induced strain and charging rate in nanowire electrodes by coating . ACSNano , 5 : 4800
  • Hendry , E. , Koeberg , M. , O’Regan , B. and Bonn , M. 2006 . Local field effects on electron transport in nanostructured TiO2 revealed by terahertz spectroscopy . Nano Lett. , 6 : 755 Space before “Revealed”. Coma was italic
  • Gubbala , S. , Chakrapani , V. , Kumar , V. and Sunkara , M. K. 2008 . Band-edge engineered hybrid structures for dye-sensitized solar cells based on SnO2 nanowires . Adv. Funct. Mater. , 18 : 2411
  • Gubbala , S. , Russell , H. B. , Shah , H. , Deb , B. , Jasinski , J. , Rypkema , H. and Sunkara , M. K. 2009 . Surface properties of SnO2 nanowires for enhanced performance with dye-sensitized solar cells . Ener. Environ. Sci. , 2 : 1302
  • Kopidakis , N. , Benkstein , K. D. , van de Lagemaat , J. and Frank , A. J. 2003 . Transport-limited recombination of photocarriers in dye-sensitized nanocrystalline TiO2 solar cells . J. Phys. Chem. B , 107 : 11307
  • Galoppini , E. , Rochford , J. , Chen , H. , Saraf , G. , Lu , Y. , Hagfeldt , A. and Boschloo , G. 2006 . Fast electron transport in metal organic vapor deposition grown dye-sensitized ZnO nanorod solar cells . J. Phys. Chem. B , 110 : 16159
  • Hwang , I.-S. , Choi , J.-K. , Woo , H.-S. , Kim , S.-J. , Jung , S.-Y. , Seong , T.-Y. , Kim , I.-D. and Lee , J.-H. 2011 . Facile control of C2H5OH sensing characteristics by decorating discrete Ag nanoclusters on SnO2 nanowire networks . ACS Appl. Mater. , 3 : 3140 Interf
  • Liu , J. , Hu , Y. , Gu , F. , Ma , J. and Li , C. 2011 . Tin oxide nanowires synthesized via flat flame deposition: structures and formation mechanism . Ind. Eng. Chem. Res. , 50 : 5584
  • Shinde , D. R. , Chavan , P. G. , Sen , S. , Joag , D. S. , More , M. A. , Gadkari , S. C. and Gupta , S. K. 2011 . Enhanced field-emission from SnO2:WO2.72 nanowire heterostructures . ACS Appl. Mater. , 3 : 4730 Interfaces
  • Kim , H. , Choi , H. , Choi , S.-Y. and Ju , S. 2011 . Aligned circular-type nanowire transistors grown on multilayer grapheme film . J. Phys. Chem. C , 115 : 22163
  • Shin , G. , Bae , M. Y. , Lee , H. J. , Hong , S. K. , Yoon , C. H. and Zi , G. 2011 . SnO2 nanowire logic devices on deformable nonplanar substrate . ACS Nano , 5 : 10009

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.