1,702
Views
62
CrossRef citations to date
0
Altmetric
Original Articles

Carbon Nanostructures in Lithium Ion Batteries: Past, Present, and Future

&
Pages 128-166 | Published online: 10 Apr 2013

REFERENCES

  • Jacobson , M. Z. 2009 . Review of solutions to global warming, air pollution, and energy security . Energy Environ. Sci. , 2 : 148
  • Committee on Advanced Materials for Our Energy Future . Advanced Materials For Our Energy Future . TMS Energy. , [Online] May 31, 2010. [Cited: January 23, 2012.] http://energy.tms.org/docs/pdfs/Advanced_Materials_For_Our_Energy_Future.pdf
  • Energy materials blue ribbon panel . Linking transformational materials and processing for an energy-efficient and low-carbon economy: Creating the vision and accelerating realization . TMS Energy. , [Online] September 6, 2010. [Cited: Jnauary 23, 2012.] http://energy.tms.org/docs/pdfs/VisionReport2010.pdf
  • Tarascon , J.-M. and Armand , M. 2001 . Issues and challenges facing rechargeable lithium batteries . Nature , 414 : 359
  • Armand , M. and Tarascon , J.-M. 2008 . Building better batteries . Nature , 451 : 652
  • King , M. Advanced rechargeable battery market: Emerging technologies and trends worldwide . Nanotechnology Now. , [Online] August 3, 2009. [Cited: January 21, 2012.] http://www.nanotech-now.com/news.cgi?story_id=34106
  • Cho , C. Koreans firms set to lead rechargeable battery market . The Korea Hearald. , [Online] July 26, 2010. [Cited: January 21, 2012.] http://www.koreaherald.com/business/Detail.jsp?newsMLId= 20100726000900
  • Lee , S. W. , Gallant , B. M. , Byon , H. R. , Hammond , P. T. and Shao-Horn , Y. 2011 . Nanostructured carbon-based electrodes: brdging the gap between thin-film lithium-ion batteries and electrochemical capacitors . Ener. Environ. Sci. , 4 : 1972
  • Rosenberg , M. and Garcia , E. Known lithium deposits can cover electric car boom . Reuters. , [Online] February 11, 2010. [Cited: April 11, 2012.] http://www.reuters.com/article/2010/02/11/us-lithium-latam-idUSTRE61A5AY20100211
  • Lahiri , I. , Das , S. , Kang , C. and Choi , W. 2011 . Application of carbon nanostructures—energy to electronics . JOM , 63 : 70
  • Scrosati , B. and Garche , J. 2010 . Lithium batteries: Status, prospects and future . J. Power Sour. , 195 : 2419
  • Scrosati , B. 2000 . Recent advances in lithium ion battery materials . Electrochimica Acta , 45 : 2461
  • Wakihara , M. 2001 . Recent advances in lithium ion batteries . Mater. Sci. Eng. R , R33 : 109
  • Panero , S. , Scrosati , B. , Wachtler , M. and Croce , F. 2004 . Nanotechnology for the progress of lithium batteries R&D . J. Power Sour. , 129 : 90
  • Stura , E. and Nicolini , C. 2006 . New nanomaterials for light weight lithium batteries . Anal. Chimica Acta , 568 : 57
  • Jiang , C. , Hosono , E. and Zhou , H. 2006 . Nanomaterials for Li-ion batteries . Nano Today , 1 : 28
  • Ohzuku , T. and Brodd , R. J. 2007 . An overview of positive-electrode materials for advanced lithium-ion batteries . J. Power Sour. , 174 : 449
  • Fergus , J. W. 2010 . Recent developments in cathode materials for lithium ion batteries . J. Power Sour. , 195 : 939
  • Song , H.-K. , Lee , K. T. , Kim , M. G. , Nazar , L. F. and Cho , J. 2010 . Recent progress in nanostructured cathode materials for lithium secondary batteries . Adv. Funct. Mater. , 20 : 3818
  • Arico , A. S. , Bruce , P. , Scrosati , B. , Tarascon , J.-M. and Schalkwijk , W. V. 2005 . Nanostructured materials for advanced energy conversion and storage devices . Nat. Mater. , 4 : 366
  • Kinoshita , K. and Zaghib , K. 2002 . Negative electrodes for Li-ion batteries . J. Power Sour. , 110 : 416
  • Tirado , J. L. 2003 . Inorganic materials for the negative electrode of lithium-ion batteries: state-of-the-art and future prospects . Mater. Sci. Eng. R , 40 : 103
  • Flandrois , S. and Simon , B. 1999 . Carbon materials for lithium-ion rechargeable batteries . Carbon , 37 : 165
  • Endo , M. , Kim , C. , Nishimura , K. , Fujino , T. and Miyashita , K. 2000 . Recent development of carbon materials for Li ion batteries . Carbon , 38 : 183
  • Kashkhedikar , N. A. and Maier , J. 2009 . Lithium storage in carbon nanostructures . Adv. Mater. , 21 : 2664
  • Ikeda , H. , Saito , T. and Tamura , H. 1975 . Proc. Manganese Dioxide Symp. Vol. 1 , Edited by: Kozawa , A and Brodd , R. H. Cleveland , OH : IC Sample Office .
  • Will , F. G. 1975 . Hermetically sealed secondary battery with lanthanum nickel anode . U.S. Patent 3874958 ,
  • Murphy , D. W. , DiSalvo , F. J. , Carides , J. N. and Waszczak , J. V. 1978 . Topochemical reactions of rutile related structures with lithium . Mat. Res. Bull. , 13 : 1395
  • Lazzari , M. and Scrosati , B. 1980 . A cyclable lithium organic electrolyte cell based on two intercalation electrodes . J. Electrochem. Soc. , 127 : 773
  • Bruce , P. G. , Scrosati , B. and Tarascon , J.-M. 2008 . Nanomaterials for rechargeable lithium batteries . Angew. Chem. Int. Ed. , 47 : 2930
  • Brousse , T. , Defives , D. , Pasquereau , L. , Lee , S. M. , Herterich , U. and Schleich , D. M. 1997 . Metal oxide anodes for Li-ion batteries . Ionics , 3 : 332
  • Larcher , D. , Beattie , S. , Morcrette , M. , Edstrom , K. , Jumas , J. C. and Tarascon , J.-M. 2007 . Recent findings and prospects in the field of pure metals as negative electrodes for Li-ion batteries . J. Mater. Chem. , 17 : 3759
  • Winter , M. , Besenhard , J. O. , Spahr , M. E. and Novak , P. 1998 . Insertion electrode materials for rechargeable lithium batteries . Adv. Mater. , 10 : 725
  • Chan , C. K. , Peng , H. , Liu , G. , McIlwrath , K. , Zhang , X. F. , Huggins , R. A. and Cui , Y. 2008 . High-performance lithium battery anodes using silicon nanowires . Nat. Nanotechol. , 3 : 32
  • Chan , C. K. , Zhang , X. F. and Cui , Y. 2008 . High capacity Li ion battery anodes using Ge nanowires . Nano Lett. , 8 : 307
  • Lee , K. T. and Cho , J. 2011 . Roles of nanosize in lithium reactive nanomaterials for lithium ion batteries . Nano Today , 6 : 28
  • Wang , Y. , Li , H. , He , P. , Hosono , E. and Zhou , H. 2010 . Nano active materials for lithium-ion batteries . Nanoscale , 2 : 1294
  • Arico , A. S. , Bruce , P. , Scrosati , B. , Tarascon , J.-M. and Van Schalkwijc , W. 2005 . Nanostructured materials for advanced energy conversion and storage devices . Nat. Mater. , 4 : 366
  • Jiao , F. and Bruce , P. G. 2007 . Mesoporous crystalline β-MnO2—a reversible positive electrode for rechargeable lithium batteries . Adv. Mater. , 19 : 657
  • Balaya , P. , Bhattacharyya , A. J. , Jamnik , J. , Zhukovskii , Y. F. , Kotomin , E. A. and Maier , J. 2006 . Nano-ionics in the context of lithium batteries . J. Power Sour. , 159 : 171
  • Maier , J. 2005 . Nanoionics: ion transport and electrochemical storage in confined systems . Nat. Mater. , 4 : 805
  • Meethong , N. , Huang , H. -Y. S. , Carter , W. C. and Chiang , Y.-M. 2007 . Size-dependent lithium miscibility gap in nanoscale Li1−xFePO4 . Electrochem. Soild-State Lett. , 10 : A134
  • Kobayashi , G. , Nishimura , S.-I. , Park , M.-S. , Kanno , R. , Yashima , M. , Ida , T. and Yamada , A. 2009 . Isolation of solid solution phases in size-controlled LixFePO4 at room temperature . Adv. Func. Mater. , 19 : 395
  • Dresselhaus , M. S. , Dresselhaus , G. and Eklund , P. C. 1996 . Science of Fullerenes and Carbon Nanotubes , San Diego : Academic Press .
  • Loufty , R. O. and Katagiri , S. 2002 . “ Fullerene materials for lithium-ion battery applications ” . In Perspectives in Fullerene Nanotechnology, Part VII , Edited by: Osawa , E. Vol. 357 , Dordrecht , , The Netherlands : Kluwer Academic Publishers .
  • Kawabe , S.-I. , Kawai , T. , Sugimoto , R.-I. , Yagasaki , E. and Yoshino , K. 1997 . Electrochemical properties of fullerene derivative polymers as electrode materials . Jap. J. Appl. Phys. Part 2 Lett. , 36 : L1055
  • Arie , A. A. and Lee , J. K. 2009 . Fullerene film as a coating material for silicon thick film anodes for lithium ion batteries . Mater. Sci. Technol. Conf. Exhib. , 1 : 294
  • Arie , A. A. and Lee , J. K. 2010 . A study of Li-ion diffusion kinetics in the fullerene-coated Si anodes of Lithium ion batteries . Phys. Scr. , T139 : 014013
  • Arie , A. A. and Lee , J. K. 2010 . Electrochemical properties of fullerene coated silicon thick film for anode material of lithium secondary batteries . ECS Trans. , 25 : 111
  • Arie , A. A. , Vovk , O. M. , Song , J. O. , Cho , B. W. and Lee , J. K. 2009 . Carbon film covering originated from fullerene C60 on the surface of lithium metal anode for lithium secondary batteries . J. Electroceram. , 23 : 248
  • Arie , A. A. , Chang , W. and Lee , J. K. 2010 . Effect of fullerene coating on silicon thin film anodes for lithium rechargeable batteries . J. Solid State Electrochem. , 14 : 51
  • Arie , A. A. , Vovk , O. M. and Lee , J. K. 2010 . sputtering, Surface-coated silicon anodes with amorphous carbon film prepared by fullerene C60 . J. Electrochem. Soc. , 157 : A660
  • Maurin , G. , Bousquet , Ch. , Henn , F. , Bernier , P. , Almairac , R. and Simon , B. 1999 . Electrochemical intercalation of lithium into multiwall carbon nanotubes . Chem. Phys. Lett. , 312 : 14
  • Beguin , F. , Metenier , K. , Pellenq , R. , Bonnamy , S. and Frackowiak , E. 2000 . Lithium insertion in carbon nanotubes . Mol. Cryst. Liq. Cryst. , 340 : 547
  • Yang , Z.-H. and Wu , H.-Q. 2001 . Electrochemical intercalation of lithium into raw carbon nanotubes . Mater. Chem. Phys. , 71 : 7
  • Frackowiak , E. and Beguin , F. 2002 . Electrochemical storage of energy in carbon nanotunes and nanostructured carbons . Carbon , 40 : 1775
  • Shin , H.-C. , Liu , M. , Sadanadan , B. and Rao , A. M. 2002 . Electrochemical insertion of lithium into multi-walled carbon nanotubes prepared by catalytic decomposition . J. Power Sour. , 112 : 216
  • Chen , W. X. , Lee , J. Y. and Liu , Z. 2002 . Electrochemical Lithiation and de-lithiation of carbon nanotube-Sn2Sb nanocomposites . Electrochem. Comm. , 4 : 260
  • Chen , W. X. , Lee , J. Y. and Liu , Z. 2003 . The nanocomposites of carbon nanotube with Sb and SnSb0.5 as Li-ion battery anodes . Carbon , 41 : 959
  • Guo , Z. P. , Zhao , Z. W. , Liu , H. K. and Dou , S. X. 2005 . Electrochemical lithiation and de-lithiation of MWNT-Sn/SnNi nanocomposites . Carbon , 43 : 1392
  • Park , M. S. , Needham , S. A. , Wang , G.-X. , Kang , Y.-M. , Park , J.-S. , Dou , S.-X. and Liu , H.-K. 2007 . Nanostructured SnSb/carbon nanotube composites synthesized by reductive precipitation for lithium-ion batteries . Chem. Mater. , 19 : 2406
  • NuLi , Y. , Yang , J. and Jiang , M. 2008 . Synthesis and characterization of Sb/CNT and Bi/CNT composites as anode materials for lithium-ion batteries . Mater. Lett. , 62 : 2092
  • Zhang , Y. , Zhang , X. G. , Zhang , H. L. , Zhao , Z. G. , Li , F. , Liu , C. and Cheng , H. M. 2006 . Composite anode material of silicon/graphite/carbon nanotubes for Li-ion batteries . Electrochimica Acta , 51 : 4994
  • Eom , J. Y. , Park , J. W. , Kwon , H. S. and Rajendran , S. 2006 . Electrochemical insertion of lithium into multiwalled carbon nanotube/silicon composites produced by ball milling . J. Electrochem. Soc. , 153 : A1678
  • Shu , J. , Li , H. , Yang , R. , Shi , Y. and Huang , X. 2006 . Cage-like carbon nanotubes/Si composite as anode material for lithium ion batteries . Electrochem. Commun. , 8 : 51
  • Wang , W. and Kumta , P. N. 2007 . Reversible high capacity nanocomposite anodes of Si/C/SWNTs for rechargeable Li-ion batteries . J. Power Sour. , 172 : 650 – 658 .
  • Chew , S. Y. , Ng , S. H. , Wang , J. , Novak , P. , Krumeich , F. , Chou , S. L. , Chen , J. and Liu , H. K. 2009 . Flexible free-standing carbon nanotube films for model lithium-ion batteries . Carbon , 47 : 2976 – 2983 .
  • Cui , L.-F. , Ruffo , R. , Chan , C. K. , Peng , H. and Cui , Y. 2009 . Crystalline-amorphous core-shell silicon nanowires for high capacity and high current battery electrodes . Nano Lett. , 9 : 491 – 495 .
  • Song , T. , Xia , J. , Lee , J.-H. , Lee , D. H. , Kwon , M.-S. , Choi , J.-M. , Wu , J. , Doo , S. K. , Chang , H. , Park , W. I. , Zang , D. S. , Kim , H. , Huang , Y. , Hwang , K.-C. , Rogers , J. A. and Paik , U. 2010 . Arrays of sealed silicon nanotubes as anodes for lithium ion batteries . Nano Lett. , 10 : 1710 – 1716 .
  • Cui , L.-F. , Hu , L. , Choi , J. W. and Cui , Y. 2010 . Light-weight free-standing carbon nanotube-silicon films for anodes of lithium ion batteries . ACS Nano , 4 : 3671 – 3678 .
  • Rong , J. , Masarapu , C. , Ni , J. , Zhang , Z. and Wei , B. 2010 . Tandem structure of porous silicon film on single-walled carbon nanotube macrofilms for lithium-ion battery applications . ACS Nano , 4 : 4683 – 4690 .
  • Martin , C. , Crosnier , O. , Retoux , R. , Belanger , D. , Schleich , D. M. and Brousse , T. 2011 . Chemical coupling of carbon nanotubes and silicon nanoparticles for improved negavtive electrode performance in lithium-ion batteries . Adv. Funct. Mater. , 21 : 3524 – 3530 .
  • Wang , W. and Kumta , P. N. 2010 . Nanostructured hybrid silicon/carbon nanotube heterostructures: Reversible high-capacity lithium-ion anodes . ACS Nano , 4 : 2233 – 2241 .
  • Chan , C. K. , Patel , R. N. , O’Connell , M. J. , Korgel , B. A. and Cui , Y. 2010 . Solution-graon silicon nanowires for lithium-ion battery anodes . ACS Nano , 4 : 1443 – 1450 .
  • Trevey , J. E. , Rason , K. W. , Stoldt , C. R. and Lee , S.-H. 2010 . Improved performance of all-solid-state lithium-ion batteries using nanosilicon active material with multiwalled-carbon-nanotubes as a conductive additive . Electrochem. Solid-State Lett. , 13 : A154
  • Lahiri , I. 2010 . Prospects of oxide materials in Li-ion batteries . Am. Ceram. Soc. Bull. , 89 : 17
  • Fan , J. , Wang , T. , Yu , C. , Tu , B. , Jiang , Z. and Zhao , D. 2004 . “ Ordered, nanostructured tin-based pxides/carbon composite as the negative-electrode material for lithium-ion batteries ” . In Adv. Mater. Vol. 16 , 1432
  • Fu , Y. , Ma , R. , Shu , Y. , Cao , Z. and Ma , X. 2009 . Preparation and characetrization of SnO2/carbon nanotube composite for lithium ion battery applications . Mater. Lett. , 63 : 1946
  • Du , G. , Zhong , C. , Zhang , P. , Guo , Z. , Chen , Z and Liu , H. 2010 . Tin dioxide/carbon nanotube composites with high uniform SnO2 loading as anode materials for lithium ion batteries . Electrochimica Acta , 55 : 2582
  • Zhang , H.-X. , Feng , C. , Zhai , Y.-C. , Jiang , K.-L. , Li , Q.-Q. and Fan , S.-S. 2009 . Cross-stacked carbon nanotube sheets uniformly loaded with SnO2 nanoparticles: A novel binder-free and high-capacity anode material for lithium-ion batteries . Adv. Mater. , 21 : 2299
  • Wu , M.-S. , Chiang , P.-C. J. , Lee , J.-T. and Lin , J.-C. 2005 . Synthesis of manganese oxide electrodes with interconnected nanowire structure as an anode material for rechargeable lithium ion batteries . J. Phys. Chem. B , 109 : 23279
  • Li , H. , Balaya , P. and Maier , J. 2004 . Li-storage via heterogeneous reaction in selected binary metal fluorides and oxides . J. Electrochem. Soc. , 151 : A1878
  • Xia , H. , Lai , M. O. and Lu , L. 2010 . Nanoflaky MnO2/carbon nanotube nanocomposites as anode materials for lithium-ion batteries . J. Mater. Chem. , 20 : 6896
  • Guo , J. , Liu , Q. , Wang , C. and Zachariah , M. R. 2012 . Interdispersed amorphous MnOx-carbon nanocomposites with superior electrochemical performance as lithium- storage material . Adv. Func. Mater. , 22 : 803
  • Zheng , S.-F. , Hu , J.-S. , Zhong , L.-S. , Song , W.-G. , Wan , L.-J. and Guo , Y.-G. 2008 . Introducing dual functional CNT networks into CuO nanomicrospheres toward superior electrode materials for lithium-ion batteries . Chem. Mater. , 20 : 3617
  • Venkatachalam , S. , Zhu , H. , Masarapu , C. , Hung , K. , Liu , Z. , Suenaga , K. and Wei , B. 2009 . In-situ formation of sandwiched structures of nanotube.CuxOy/Cu composites for lithium battery applications . ACS Nano , 3 : 2177
  • Li , C. , Sun , N. , Ni , J. , Wang , J. , Chu , H. , Zhou , H. , Li , M. and Li , Y. 2008 . Controllable preparation and properties of composite materials based on ceria nanoparticles and carbon nanotubes . J. Solid State Chem. , 181 : 2620
  • Gao , Q. , Yang , L. , Lu , X. , Mao , J. , Zhang , Y. , Wu , Y. and Tang , Y. 2010 . Synthesis, characterization and lithium-storage performance of MoO2/carbon hybrid nanowires . J. Mater. Chem. , 20 : 2807
  • Ding , S. , Chen , J. S. and (David) Lou , X. W. 2011 . One-dimensional hierarchial structures composed of novel metal oxide nanosheets on a carbon nanotube backbon and their lithium-storage properties . Adv. Func. Mater. , 21 : 4120
  • Sivakkumar , S. R. and Kim , D.-W. 2007 . Polyaniline/carbon nanotube composite cathode for rechargeable lithium polyer batteries assembled with gel polymer electrolyte . J. Electrochem. Soc. , 154 : A134
  • Hyder , Md. N. , Lee , S. W. , Cebeci , F. C. , Schmidt , D. J. , Shao-Horn , Y. and Hammond , P. T. 2011 . Layer-by-layer assembled polyaniline nanofiber/multiwall carbon nanotube thin film electrodes for high-power and high-energy storage applications . ACS Nano , 5 : 8552
  • Goyal , A. , Reddy , A. L. M. and Ajayan , P. M. 2011 . Flexible carbon nanotube-Cu2O hybrid electrodes for Li-ion batteries . Small , 7 : 1709
  • Li , X. , Gittleson , F. , Carmo , M. , Sekol , R. C. and Taylor , A. D. 2012 . Scalable fabrication of multifunctional freestanding carbon nanotube/polymer composite thin films for energy conversion . ACS Nano , 6 : 1347
  • Pushparaj , V. L. , Shaijumon , M. M. , Kumar , A. , Murugesan , S. , Ci , L. , Vajtai , R. , Lindhardt , R. J. , Nalamasu , O. and Ajayan , P. M. 2007 . Flexible energy storage devices based on nanocomposite paper . Proc. Natl. Acad. Sci. Amer. , 104 : 13574
  • Zhang , S. S. and Jow , T. R. 2002 . Study of poly(acrylonitrile-methyl methacrylate) as binder for graphite anode and LiMn2O4 cathode of Li-ion batteries . J. Power Sour. , 109 : 422
  • Guerfi , A. , Kaneko , M. , Petitclerc , M. , Mori , M. and Zaghib , K. 2007 . LiFePO4 water-soluble binder electrode for Li-ion batteries . J. Power Sour. , 163 : 1047
  • Zhang , S. S. , Xu , K. and Jow , T. R. 2004 . Evaluation on a water-based binder for the graphite anode of Li-ion batteries . J. Power Sour. , 138 : 226
  • Roth , E. P. , Doughty , D. H. and Franklin , J. 2004 . DSC Investigation of exothermic reactions occurring at elevated temperatures in lithium-ion anodes containing PVDF-based binders . J. Power Sour. , 134 : 222
  • Lahiri , I. , Lahiri , D. , Jin , S. , Agarwal , A. and Choi , W. 2011 . Carbon nanotubes: How strong is their bond with the substrate? . ACS Nano , 5 : 780
  • Lahiri , I. , Seelaboyina , R. , Hwang , J. Y. , Banerjee , R. and Choi , W. 2010 . Enhanced field emission from multi-walled carbon nanotubes grown on pure copper substrate . Carbon , 48 : 1531
  • Lahiri , I. , Oh , S.-W. , Hwang , J. Y. , Cho , S. , Sun , Y.-K. , Banerjee , R. and Choi , W. 2010 . High capacity and excellent stability of lithium ion battery using interface-controlled binder-free multiwall carbon nanotubes grown on copper . ACS Nano , 4 : 3440
  • Lahiri , I. , Oh , S.-M. , Hwang , J. Y. , Kang , C. , Jeon , H. , Banerjee , R. , Sun , Y.-K. and Choi , W. 2011 . Ultrathin alumina coated carbon nanotubes as negative electrodes for high capacity and safe Li-ion battery . J. Mater. Chem. , 21 : 13621
  • Chen , J. , Liu , Y. , Minett , A. I. , Lynam , C. , Wang , J. and Wallace , G. G. 2007 . Flexible, aligned carbon nanotube/conducting polymer electrodes for a lithium-ion battery . Chem. Mater. , 19 : 3595
  • Masarapu , C. , Subramanian , V. , Zhu , H. and Wei , B. Long-cycle electrochemical behavior of multiwall carbon nanotubes synthesized on stainless steel in Li ion batteries . Adv. Func. Mater. , 19 1008 (2009).
  • Welna , D. T. , Qu , L. , Taylor , B. E. , Dai , L. and Durstock , M. F. 2011 . Vertically aligned carbon nanotube electrodes for lithium-ion batteries . J. Power Sour. , 196 : 1455
  • DiLeo , R. A. , Castiglia , A. , Ganter , M. J. , Rogers , R. E. , Cress , C. D. , Raffaelle , R. P. and Landi , B. J. 2010 . Enhanced capacity and rate capability of carnon nanotube based anodes with titanium contacts for lithium ion batteries . ACS Nano , 4 : 6121
  • Zhang , H. , Cao , G. , Wang , Z. , Yang , Y. , Shi , Z. and Gu , Z. 2010 . Carbon nanotube array anodes for ligh-rate Li-ion batteries . Electrochimica Acta , 55 : 2873
  • Lee , S. W. , Yabuuchi , N. , Gallant , B. M. , Chen , S. , Kim , B.-S. , Hammond , P. T. and Shao-Horn , Y. 2010 . High-power lithium batteries from functionalized carbon-nanotube electrodes . Nat. Nanotech. , 5 : 531
  • Landi , B. J. , Ganter , M. J. , Schauerman , C. M. , Cress , C. D. and Raffaelle , R. P. 2008 . Lithium ion capacity of single wall carbon nanotube paper electrodes . J. Phys. Chem. C , 112 : 7509
  • Zhou , J. , Song , H. , Fu , B. , Wu , B. and Chen , X. 2010 . Synthesis and high-rate capability of quadrangular carbon nanotubes with one open end as anode materials for lithium-ion batteries . J. Mater. Chem. , 20 : 2794
  • Yoo , E. J. , Kim , J. , Hosono , E. , Zhoi , H.-S. , Kudo , T. and Honma , I. 2008 . Large reversible Li storage of graphene nanosheet families for use in rechargeable lithium ion batteries . Nano Lett. , 8 : 2277
  • Bhardwaj , T. , Antic , A. , Pavan , B. , Barone , V. and Fahlman , B. D. 2010 . Enhanced electrochemical lithium strorage by graphene nanoribbons . J. Amer. Chem. Soc. , 132 : 12556
  • Reddy , A. L. M. , Srivastava , A. , Gowda , S. R. , Gullapalli , H. , Dubey , M. and Ajayan , P. M. 2010 . Synthesis of nitrogen-doped graphene films for lithium battery application . ACS Nano , 4 : 6337
  • Wang , H. , Zhang , C. , Liu , Z. , Wang , L. , Han , P. , Xu , H. , Zhang , K. , Dong , S. , Yao , J. and Cui , G. 2011 . Nitrogen-doped graphene nanosheets with excellent lithium storage properties . J. Mater. Chem. , 21 : 5430
  • Wu , Z.-S. , Ren , W. , Xu , L. , Li , F. and Cheng , H.-M. 2011 . Doped graphene sheets as anode materials with superhigh rate and large capacity for lithium ion batteries . ACS Nano , 5 : 5463
  • Li , Y. F. , Zhou , Z. and Wang , L. B. 2008 . CN(x) nanotubes with pyridinelike structures: p-type semiconductors and Li storage materials . J. Chem. Phys. , 129 : 104703
  • Tang , L. , Wang , Y. , Li , Y. , Feng , H. , Liu , J. and Li , J. 2009 . Preparation, structure, and electrochemical properties of reduced graphene sheet films . Adv. Func. Mater. , 19 : 1
  • Yin , S. , Zhang , Y. , Kong , J. , Zou , C. , Li , C. M. , Lu , X. , Ma , J. , Boey , F. Y. C. and Chen , X. 2011 . Assembly of graphene sheets into hierarchial structures for high-performance energy storage . ACS Nano , 5 : 3831
  • Zhao , X. , Hayner , C. M. , Kung , M. C. and Kung , H. H. 2011 . Flexible holey graphene paper electrodes with enhanced rate capability for energy storage applications . ACS Nano , 5 : 8739
  • Pollak , E. , Geng , B. , Jeon , K.-J. , Lucas , I. T. , Richardson , T. J. , Wang , F. and Kostecki , R. 2010 . The intercalation of Li+ with single-layer and few-layer graphene . Nano Lett. , 10 : 3386
  • Valota , A. T. , Kinloch , I. A. , Novoselov , K. S. , Casiraghi , C. , Eckmann , A. , Hill , E. W. and Dryfe , R. A. W. 2011 . Electrochemical behavior of monolayer and bilayer graphene . ACS Nano , 5 : 8809
  • Uthaisar , C. and Barone , V. 2010 . Edge effects on the characteristics of Li diffusion in graphene . Nano Lett. , 10 : 2838
  • Kubota , Y. , Ozawa , N. , Nakanishi , H. and Kasai , H. 2010 . Quantum states and diffusion of lithium atom motion on a graphene . J. Phys. Soc. Japan , 79 : 014601
  • Paek , S.-M. , Yoo , E.-J. and Honma , I. 2009 . Enhanced cyclic performance and lithium storage capacity of SnO2/graphene nanoporous electrodes with three-dimensionally delaminated flexible structure . Nano Lett. , 9 : 72
  • Zhang , L.-S. , Jiang , L.-Y. , Yan , H.-J. , Wang , W. D. , Wang , W. , Song , W.-G. , Guo , Y.-G. and Wan , L-J. 2010 . Mono dispersed SnO2 nanoparticles on both sides of single layer graphene sheets as anode materials in Li-ion batteries . J. Mater. Chem. , 20 : 5462
  • Wang , D. , Kou , R. , Choi , D. , Yang , Z. , Nie , Z. , Li , J. , Saraf , L. V. , Hu , D. , Zhang , J. , Graff , G. L. , Liu , J. , Pope , M. A. and Aksay , I. A. 2010 . Ternary self-assembly of ordered metal oxide-graphene nanocomposites for electrochemical energy storage . ACS Nano , 4 : 1587
  • Li , X. , Meeng , X. , Liu , J. , Geng , D. , Zhang , Y. , Banis , M. N. , Li , Y. , Yang , J. , Li , R. , Sun , X. , Cai , M. and Verbrugge , M. W. 2012 . Tin oxide with controlled morphology and crystallinity by atomic layer deposition onto graphene nanosheets for enhanced lithium storage . Adv. Func. Mater. , 22 : 1647
  • Xu , C. , Wang , X. , Yang , L. and Wu , Y. 2009 . Fabrication of a graphene-cuprous oxide composite . J. Solid State Chem. , 182 : 2486
  • Wang , B. , Wu , X.-L. , Shu , C.-Y. , Guo , U.-G. and Wang , C.-R. 2010 . Synthesis of CuO/graphene nanocomposite as a high-performance anode material for lithium-ion batteries . J. Mater. Chem. , 20 : 10661
  • Lu , L. Q. and Wang , Y. 2011 . Sheet-like and fusiform CuO nanostructures grown on graphene by rapid microwave heating for high Li-ion storage capacities . J. Mater. Chem. , 21 : 17916
  • Ji , L. , Tan , Z. , Kuykendall , T. R. , Aloni , S. , Xun , S. , Lin , E. , Battaglia , V. and Zhang , Y. 2011 . Fe3O4 nanoparticle-intergrated graphene sheets for high-performance half and full lithium ion cells . Phys. Chem. Chem. Phys. , 13 : 7139
  • Su , J. , Cao , M. , Ren , L. and Hu , C. 2011 . Fe3O4-graphene nanocomposites with improved lithium storage and magnetism properties . J. Phys. Chem. C , 115 : 14469
  • Zhu , X. , Zhu , Y. , Murali , S. , Stoller , M. D. and Ruoff , R. S. 2011 . Nanostructured reduced graphene oxide/Fe2O3 composite as a high-performance anode material for lithium ion batteries . ACS Nano , 5 : 3333
  • Zhou , J. , Song , H. , Ma , L. and Chen , X. 2011 . Magnetite/graphene nanosheet composites: interfacial interaction and its impact on the durable high-rate performance in lihtium-ion batteries . RSC Adv. , 1 : 782
  • Wang , D. , Choi , D. , Li , J. , Yang , Z. , Nie , Z. , Kou , R. , Hu , D. , Wang , C. , Saraf , L. V. , Zhang , J. , Aksay , I. A. and Liu , J. 2009 . Self-assembled TiO2-graphene hybrid nanostructures for enhanced Li-ion insertion . ACS Nano , 3 : 907
  • Rui , X. , Zhu , J. , Sim , D. , Xu , C. , Zeng , Y. , Hng , H. H. , Lim , T. M. and Yan , Q. 2011 . Reduced graphene oxide supported highly porous v2O5 spheres as a high-power cathode material for lithium ion batteries . Nanoscale , 3 : 4752
  • Wang , H. , Cui , L.-F. , Yang , Y. , Casalongue , H. S. , Robinson , J. T. , Liang , Y. , Cui , Y. and Dai , H. 2010 . Mn3O4 -graphene hybrid as a high-capacity anode material for lithium ion batteries . J. Amer. Chem. Soc. , 132 : 13978
  • Chen , S. Q. and Wang , Y. 2010 . Microwave-assisted synthesis of a Co3O4-graphene sheet-on-sheet nanocomposite as a superior anode material for Li-ion batteries . J. Mater. Chem. , 20 : 9735
  • Wu , Z.-S. , Ren , W. , Wen , L. , Gao , L. , Zhao , J. , Chen , Z. , Zhou , G. , Li , F. and Cheng , H.-M. 2010 . Graphene anchored with Co3O4 nanoparticles as anode of lithium ion batteries with enhanced reversible capacity and cyclic performance . ACS Nano , 4 : 3187
  • Shen , L. , Yuan , C. , Luo , H. , Zhang , X. , Yang , S. and Lu , X. 2011 . In situ synthesis of high-loading Li4Ti5O12-graphene hybrid nanostructures for high rate lithium ion batteries . Nanoscale , 3 : 572
  • Wu , Z.-S. , Zhou , G. , Yin , L-C. , Ren , W. , Li , F. and Cheng , H.-M. 2012 . Grapehene/metal oxide composite electrode materials for energy storage . Nano Ener. , 1 : 107
  • Xiao , J. , Wang , X. , Yang , X.-Q. , Xun , S. , Liu , G. , Koech , P. K. , Liu , J. and Lemmon , J. P. 2011 . Electrically induced high capacity displacement reaction of PEO/MoS2/graphene nanocomposites with lithium . Adv. Func. Mater. , 21 : 2840
  • Chang , K. , Chen , W. , Ma , L. , Li , H. , Li , H. , Huang , F. , Xu , Z. , Zhang , Q. and Lee , J.-Y. 2011 . Graphene-like MoS2/amorphous carbon composites with high capacity and excellent stability as anode materials for lithium ion batteries . J. Mater. Chem. , 21 : 6251
  • Cao , Y. , Li , X. , Aksay , I. A. , Lemmon , J. , Nie , Z. , Yang , Z. and Liu , J. 2011 . Sandwich-type functionalized graphene sheet-sulfur nanocomposite for rechargeable lithium batteries . Phys. Chem. Chem. Phys. , 13 : 7660
  • Su , F.-Y. , You , C. , He , Y.-B. , Lv , W. , Cui , W. , Jin , F. , Li , B. , Yang , Q.-H. and Kang , F. 2010 . Flexible and planar graphene conductive additives for lithium-ion batteries . J. Mater. Chem. , 20 : 9644
  • Honda , K. , Yoshimura , M. , Kawakita , K. , Fujishima , A. , Sakamoto , Y. , Yasui , K. , Nishio , N. and Masuda , H. 2004 . Electrochemical characterization of carbon nanotube/nanohoneycomb diamond composite electrodes for a hybrid anode of Li-ion battery and super capacitor . J. Electrochem. Soc. , 151 : A532
  • Zhang , J. , Hu , Y.-S. , Tessonnier , J.-P. , Weinberg , G. , Maier , J. , Schlogl , R. and Su , D. S. CNFs@ CNTs: superior carbon for electrochemical energy storage . Adv. Mater. , 20 1450 – 1455 .
  • Chen , J. , Wang , J. Z. , Minett , A. I. , Liu , Y. , Lynam , C. , Liu , H. and Wallace , G. G. 2009 . Carbon nanotube network modified carbon fibre paper for Li-ion batteries . Ener. Environ. Sci. , 2 : 393
  • Guo , B. , Wang , X. , Fulvio , P. F. , Chi , M. , Mahurin , S. M. , Sun , X.-G. and Dai , S. 2011 . Soft-templated mesoporous carbon-carbon nanotube composites for high performance lithium-ion batteries . Adv. Mater. , 23 : 4661
  • Li , S. , Luo , Y. , Lv , W. , Yu , W. , Wu , S. , Hou , P. , Yang , Q. , Meng , Q. , Liu , C. and Cheng , H.-M. 2011 . Vertically aligned carbon nanotubes grown on graphene paper as electrodes in lithium-ion batteries and dye-sensitized solar cells . Adv. Energy Mater. , 1 : 486
  • Chen , S. , Chen , P. and Wang , Y. 2011 . Carbon nanotubes grown in situ on graphene nanosheets as superior anodes for Li-ion batteries . Nanoscale , 3 : 4323
  • Fan , Z.-J. , Yan , J. , Wei , T. , Ning , G.-Q. , Zhi , L.-J. , Liu , J.-C. , Cao , D.-X. , Wang , G.-L. and Wei , F. Nanographene-constructed carbon nanofibers grown on graphene sheets by chemical vapor deposition: high-performance anode materials for lithium ion batteries . ACS Nano , 5 2787 (2011).
  • Wang , K. , Li , Z. , Wang , Y. , Liu , H. , Chen , J. , Holmes , J. and Zhou , H. 2010 . Carbon nanocages with nanographene shell for high-rate lithium-ion batteries . J. Mater. Chem. , 20 : 9748
  • Zhou , Y. and Wang , Y. 2011 . Sn@CNT nanostructures rooted in graphene with high and fast Li-storage capacities . ACS Nano , 5 : 8108
  • Jang , S.-M. , Miyawaki , J. , Tsuji , M. , Mochida , I. and Yoon , S.-H. 2009 . The preparation of a novel Si-CNF composite as an effective anodic material for lithium-ion batteries . Carbon , 47 : 3383
  • Cui , L.-F. , Yang , Y. , Hsu , C.-M. and Cui , Y. 2009 . Carbon−silicon core−shell nanowires as high capacity electrode for lithium ion batteries . Nano Lett. , 9 : 3370
  • Huang , R. , Fan , X. , Shen , W. and Zhu , J. 2009 . Carbon-based silicon nanowires array films for high-performance lithium-ion battery anodes . Appl. Phys. Lett. , 95 : 133119
  • Xu , Y.-H. , Yin , G. P. , Ma , Y. L. , Zuo , P. J. and Cheng , X. Q. 2010 . Nanosized core/shell silicon@carbon anode material for lihtium ion batteries with polyvinylidene fluoride as carbon source . J. Mater. Chem. , 20 : 3216
  • Hu , Y.-S. , Demir-Cakan , R. , Titrici , M.-M. , Muller , J.-O. , Schlogl , R. , Antonietti , M. and Maier , J. 1645 . Superior storage of a Si@SiOx/C nanocomposite as anode material for lithium-ion batteries . Angew. Chem. Int. Ed. , 47 2008
  • Hwang , T. H. , Lee , Y. M. , Kong , B.-S. , Seo , J.-S. and Choi , J. W. 2012 . Electrospun core-shell fibers for robust silicon nanoparticle-based lithium ion battery anodes . Nano Lett. , 12 : 802
  • Wu , H. , Zheng , G. , Liu , N. , Carney , T. J. , Yang , Y. and Cui , Y. 2012 . Engineering empty space between Si nanoparticles for lithium-ion battery anodes . Nano Lett. , 12 : 904
  • Yao , Y. , Huo , K. , Hu , L. , Liu , N. , Cha , J. J. , McDowell , M. T. , Chu , P. K. and Cui , Y. 2011 . Highly conductive, mechanically robust and electrochemically active TiC/C nanofiber scaffold for high-performance silicon anode batteries . ACS Nano , 5 : 8346
  • Wang , Y. , Zeng , H. C. and Lee , J. Y. 2006 . Highly reversible lithium storage in porous SnO2 nanotubes with coaxially grown carbon nanotube overlayers . Adv. Mater. , 18 : 645
  • Chen , G. , Wang , Z. and Xia , D. 2008 . One-pot synthesis of carbon nanotube@SnO2-Au coaxial nanocable for lithium-ion batteries with high rate capability . Chem. Mater. , 20 : 6951
  • Chen , L. B. , Yin , X. M. , Mei , L. , Li , C. C. , Lei , D. N. , Zhang , M. , Li , Q. H. , Xu , Z. , Xu , C. M. and Wang , T. H. 2012 . Mesoporous SnO2@carbon core-shell nanostructures with superior electrochemical performance for lithium ion batteries . Nanotechnology , 23 : 035402
  • Luo , B. , Wang , B. , Liang , M. , Ning , J. , Li , X. and Zhi , L. 2012 . Reduced graphene oxide-mediated growth of uniform tin-core/carbon-sheath coaxial nanocables with enhanced lithium ion storage properties . Adv. Mater. , 24 : 1405
  • Wu , P. , Du , N. , Zhang , H. , Yu , J. , Qi , Y. and Yang , D. 2011 . Carbon-coated SnO2 nanotubes: template-engaged synthesis and their application in lithium-ion batteries . Nanoscale , 3 : 746
  • Reddy , A. L. M. , Shaijumon , M. M. , Gowda , S. R. and Ajayan , P. M. Coaxial MnO2/carbon nanotube array electrodes for high-performance lithium batteries . Nano Lett. , 9 1002 (2009).
  • Cao , F.-F. , Guo , Y.-G. , Zheng , S.-F. , Wu , X.-L. , Jiang , L.-Y. , Bi , R.-R. , Wan , L.-J. and Maier , J. 1908 . Symbiotic coaxial nanocables: facile synthesis and an efficient and elegant morphological solution to the lithium storage problem . Chem. Mater. , 22 (2010).
  • Ji , H.-X. , Wu , X.-L. , Fan , L.-Z. , Krien , C. , Fiering , I. , Guo , Y.-G. , Mei , Y. and Schmidt , O. G. 2010 . Self-wound composite nanomembranes as electrode materials for lithium ion batteries . Adv. Mater. , 22 : 4591
  • Armand , M. and Touzain , P. 1977 . Graphite intercalation compounds as cathode materials . Mater. Sci. Eng. , 31 : 319
  • Lee , H.-H. , Wan , C.-C. and Wang , Y.-Y. 2003 . Identity and thermodynamics of lithium intercalated in graphite . J. Power Sour. , 114 : 285
  • Viswanathan , V. V. , Choi , D. , Wang , D. , Xu , W. , Towne , S. , Williford , R. E. , Zhang , J.-G. , Liu , J. and Yang , Z. 2010 . Effect of entropy change in lithium intercalation in cathodes and anodes on Li-ion battery thermal management . J. Power Sour. , 195 : 3720
  • Kambe , N. , Dresselhaus , M. S. , Dresselhaus , G. , Basu , S. , McGhie , A. R. and Fischer , J. E. 1979 . Intercalate ordering in first stage graphite-lithium . Mater. Sci. Eng. , 40 : 1
  • Zanini , M. , Basu , S. and Fischer , J. E. 1978 . Alternate synthesis and reflectivity spectrum of stage 1 lithium—graphite intercalation compound . Carbon , 16 : 211
  • Kim , S. S. , Kadoma , Y. , Ikuta , H. , Uchimoto , Y. and Wakihara , M. 2001 . Electrochemical performance of natural graphite by surface modification using aluminum . Electrochem. Solid-State Lett. , 4 : 109 , A
  • Kottegoda , I. R. M. , Kadoma , Y. , Ikuta , H. , Uchimoto , Y. and Wakihara , M. High-rate-capable lithium-ion battery based on surface-modified natural graphite anode and substituted spinel cathode for hybrid electric vehicles . J. Electrochem. Soc. , 152 1595 , A (2005).
  • Kottegoda , I. R. M. , Kadoma , Y. , Ikuta , H. , Uchimoto , Y. and Wakihara , M. 2002 . Enhancement of rate capability in graphite anode by surface modification with zirconia . Electrochem. Soild-State Lett. , 5 : A275
  • Jung , Y. S. , Cavanagh , A. S. , Riley , L. A. , Kang , S.-H. , Dillon , A. C. , Groner , M. D. , George , S. M. and Lee , S.-H. 2010 . Ultrathin direct atomic layer deposition on composite electrodes for highly durable and safe Li-ion batteries . Adv. Mater. , 22 : 2172
  • Park , M.-S. , Kim , J.-H. , Jo , Y.-N. , Oh , S.-H. , Kim , H. and Kim , Y.-J. 2011 . Incorporation of phosphorus into the surface of natural graphite anode for lithium ion batteries . J. Mater. Chem. , 21 : 17960
  • Yang , J. , Wang , B. F. , Wang , K. , Liu , Y. , Xie , J. Y. and Wen , Z. S. 2003 . Si/C composites for high capacity lithium storage materials . Electrochem. Solid-State Lett. , 6 : A154
  • Kim , Il-seok , Blomgren , G. E. and Kumta , P. N. 2004 . Sn/C composite anodes for Li-ion batteries . Electrochem. Solid-State Lett. , 7 : A44
  • Stangl , C. , Kren , H. , Uhlig , F. and Koller , S. 2011 . High capacity graphite–silicon composite anode material for lithium-ion batteries . B. Fuchsbichler, J. Power Sour. , 196 : 2889
  • Lee , Y. H. , Pan , K. C. , Lin , Y. Y. , Subramanian , V. , Prem Kumar , T. and Fey , G. T. K. 2003 . Graphite with fullerene and filamentous carbon structures formed from iron melt as a lithium-intercalating anode . Mater. Lett. , 57 : 1113
  • Ng , S.-H. , Wang , J. , Wexler , D. , Konstantinov , K. , Guo , Z.-P. and Liu , H.-K. 2006 . Highly reversible lithium storage in spheroidal carbon-coated silicon nanocomposites as anodes for lithium-ion batteries . Angew. Chem. Int. Ed. , 45 : 6896
  • Yang , S. , Feng , X. , Zhi , L. , Cao , Q. , Maier , J. and Mullen , K. 2010 . Nanographene-constructed hollow carbon sphere and their favorable electroactivity with respect to lithium storage . Adv. Mater. , 22 : 838
  • Zhou , H. , Zhu , S. , Hibino , M. , Honma , I. and Ichihara , M. 2003 . Lithium storage in ordered mesoporous carbon (CMK-3) with high reversible specific energy capacity and good cycling performance . Adv. Mater. , 15 : 2107
  • Hu , Y.-S. , Adelhelm , P. , Smarsly , B. M. , Hore , S. , Antonietti , M. and Maier , J. 2007 . Synthesis of hierarchially porous carbon monoliths with highly ordered micerostructure and their application in rechargeable lihtium batteries with high-rate capability . Adv. Func. Mater. , 17 : 1873
  • Kaskhedikar , N. A. , Cui , G. , Maier , J. , Fedorov , V. , Makotchenko , V. and Simon , A. 2011 . Superfine expanded graphite with large capacity for lithium storage . Z. Anorg. Allg. Chem. , 637 : 523
  • Fang , B. , Kim , M.-S. , Kim , J. H. , Lim , S. and Yu , J.-S. 2010 . Ordered multimodal porous carbon with hierarchial nanostructure for high Li storage capacity and good performance . J. Mater. Chem. , 20 : 10253
  • Korenblit , Y. , Rose , M. , Kockrick , E. , Borchardt , L. , Kvit , A. , Kaskel , S. and Yushin , G. 2010 . High-rate electrochemical capacitors based on ordered mesoporous silicon carbide-derived carbon . ACS Nano , 4 : 1337
  • Liang , Y. , Schwab , M. G. , Zhi , L. , Mugnaioli , E. , Kolb , U. , Feng , X. and Mullen , K. 2010 . Direct access to metal or metal oxide nanicrystals integrated with one-dimensional nanoporous carbons for electrochemical energy storage . J. Amer. Chem. Soc. , 132 : 15030
  • Yu , Y. , Gu , L. , Wang , C. , Dhanabalan , A. , van Aken , P. A. and Maier , J. 2009 . Encapsulation of Sn@carbon nanoparticles in bamboo-like hollow carbon nanofibers as an anode material in lithium-based batteries . Angew. Chem. Int. Ed. , 48 : 6485
  • Yu , Y. , Gu , L. , Zhu , C. , van Aken , P. A. and Maier , J. 2009 . Tin nanoparticles encapsulated in porous multichannel carbon microtubes: preparation by single-nozzle electrospinning and application as anode material for high-performance Li-based batteries . J. Amer. Chem. Soc. , 131 : 15984
  • Magasinki , A. , Dixon , P. , Hertzberg , B. , Kvit , A. , Ayala , J. and Yushin , G. 2010 . High-performance lithium-ion anodes using a hierarchial bottom-up approach . Nature Mater. , 9 : 353
  • Guo , J. , Chen , X. and Wang , C. 2010 . Carbon scaffold structured silicon anodes for lithium-ion batteries . J. Mater. Chem. , 20 : 5035
  • Chou , S.-L. , Wang , J.-Z. , Wexler , D. , Konstantinov , K. , Zhong , C. , Liu , H.-K. and Dou , S.-X. High-surface-area aplha-Fe2O3/carbon nanocomposite: one-step synthesis and its highly reversible and enhanced high-rate lithium storage properties . J. Mater. Chem. , 20 2092 (2010).
  • Oh , S. W. , Myung , S.-T. , Oh , S.-M. , Oh , K. H. , Amine , K. , Scrosati , B. and Sun , Y.-K. 2010 . Double carbon coating of LiFePO4 as high rate electrode for rechargeable lithium batteries . Adv. Mater. , 22 : 4842
  • Wang , G. , Liu , H. , Liu , J. , Qiao , S. , Lu , G. M. , Munroe , P. and Ahn , H. 2010 . Mesoporous LiFePO4/C nanocomposite cathode materials for jigh power lithium ion batteries with superior performance . Adv. Mater. , 22 : 4944
  • Uno , Y. , Tachimori , K. , Tsujikawa , T. and Hirai , T. 2010 . Effect of carbon coating on electrochemical properties of LiCoO2/nanocarbon composites . ECS Trans. , 25 : 121
  • Zhao , L. , Hu , Y.-S. , Li , H. , Wang , Z. and Chen , L. 2011 . Porous Li4Ti5O12 coated with N-doped carbon from ionic liquids for Li-ion batteries . Adv. Mater. , 23 : 1385
  • Kang , E. , Jung , Y. S. , Kim , G.-H. , Chun , J. , Wiesner , U. , Dillon , A. C. , Kim , J. K. and Lee , J. 2011 . Highly improved rate capability for a lithium-ion battery nano-Li4Ti3O12 negative electrode via carbon-based mesorporous uniform pores with a simple self-assembly method . Adv. Func. Mater. , 21 : 4349
  • Gogotsi , Y. and Simon , P. 2011 . True performance metrics in electrochemical energy storage . Science , 334 : 917
  • Krishnan , R. , Lu , T.-M. and Koratkar , N. 2011 . Functionally strain-graded nanoscoops for high power Li-ion battery anodes . Nano Lett. , 11 : 377
  • Evanoff , K. , Khan , J. , Balandin , A. A. , Magasinski , A. , Ready , W. J. , Fuller , T. F. and Yushin , G. 2012 . Towards ultrathick battery electrodes: aligned carbon nanotube-enabled architecture . Adv. Mater. , 24 : 533
  • Arie , Arenst Andreas and Lee , Joong Kee . 2012 . “ Structural Characteristics of Phosphorus-Doped C60 Thin Film Prepared by Radio Frequency-Plasma Assisted Thermal Evaporation Technique ” . 1658 – 1661 . Journal of Nanoscience and Nanotechnology 12

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.