536
Views
20
CrossRef citations to date
0
Altmetric
Reviews

Combined Infrared Thermal Imaging and Laser Heating for the Study of Materials Thermophysical and Processing Properties at High Temperatures

, &
Pages 175-196 | Received 10 Oct 2012, Accepted 20 Mar 2013, Published online: 28 Mar 2014

REFERENCES

  • J.D. Majumdar and I. Manna, Laser material processing, Int. Mater. Rev., 56, 341 (2011).
  • M. Balkanski, Fundamentals of Laser Annealing, Springler-Verlag, New York, (1984).
  • A.C. Tam, W.P. Leung, W. Zapka, and W. Ziemlich, Laser-cleaning techniques for removal of surface particulates, J. Appl. Phys., 71, 3515 (1992).
  • J.J. Gonzalez, C. Liu, S.B. Wen, X. Mao, and R.E. Russo, Glass particles produced by laser ablation for ICP-MS measurements, Talanta, 73, 577 (2007).
  • B. Fernandez, F. Claverie, C. Pecheyran, and O.F. X. Donard, Direct analysis of solid samples by fs-LA-ICP-MS, Trac-Trend. Anal. Chem., 26, 951 (2007).
  • S.G. Park and K.K. Murray, Infrared laser ablation sample transfer for MALDI imaging, Anal. Chem., 84, 3240 (2012).
  • J.F. McGilp, A review of optical second-harmonic and sum-frequency generation at surfaces and interfaces, J. Phys. D Appl. Phys., 29, 1812 (1996).
  • S.M. Huang, M.H. Hong, B.S. Luk’yanchuk, Y.W. Zheng, W.D. Song, Y.F. Lu, and T.C. Chong, Pulsed laser-assisted surface structuring with optical near-field enhanced effects, J. Appl. Phys., 92, 2495 (2002).
  • T.Q. Qiu and C.L. Tien, Short-pulse laser-heating on metals, Int. J. Heat Mass Transf., 35, 719 (1992).
  • M.D. Perry, B.C. Stuart, P.S. Banks, M.D. Feit, V. Yanovsky, and A.M. Rubenchik, Ultrashort-pulse laser machining of dielectric materials, J. Appl. Phys., 85, 6803 (1999).
  • Y.L. Yao, H.Q. Chen, and W.W. Zhang, Time scale effects in laser material removal: A review, Int. J. Adv. Manuf. Tech., 26, 598 (2005).
  • I.S. Anisimov and A.V. Khojhlov, Instabilities in Laser-Matter Interaction, CRC, Boca Raton, Florida (1995).
  • A. Mermillod-Blondin, C. Mauclair, A. Rosenfeld, J. Bonse, I.V. Hertel, E. Audouard, and R. Stoian, Size correction in ultrafast laser processing of fused silica by temporal pulse shaping, Appl. Phys. Lett., 93, (2008).
  • M. Spyridaki, E. Koudoumas, P. Tzanetakis, C. Fotakis, R. Stoian, A. Rosenfeld, and I.V. Hertel, Temporal pulse manipulation and ion generation in ultrafast laser ablation of silicon, Appl. Phys. Lett., 83, 1474 (2003).
  • S.V. Ushakov and A. Navrotsky, Experimental approaches to the thermodynamics of ceramics above 1500 degrees C, J. Amer. Ceram. Soc., 95, 1463 (2012).
  • G.R. Gathers, Dynamic methods for investigating thermo-physical properties of matter at very high-temperatures and pressures, Rep. Prog. Phys., 49, 341 (1986).
  • S.T. Yang, M.J. Matthews, S. Elhadj, D. Cooke, G.M. Guss, V.G. Draggoo, and P.J. Wegner, Comparing the use of mid-infrared versus far-infrared lasers for mitigating damage growth on fused silica, Appl. Opt., 49, 2606 (2010).
  • S.T. Yang, M.J. Matthews, S. Elhadj, V.G. Draggoo, and S.E. Bisson, Thermal transport in CO2 laser irradiated fused silica: In situ measurements and analysis, J. Appl. Phys., 106, 103106 (2009).
  • W. Tian and W.K. S. Chiu, Radiation modeling of stationary fused silica rods and fibers heated by CO2 laser irradiation, Numer. Heat Tr. a-Appl., 46, 115 (2004).
  • J.E. Sinko and C.R. Phipps, Modeling CO2 laser ablation impulse of polymers in vapor and plasma regimes, Appl. Phys. Lett., 95, 131105 (2009).
  • J. Colvin, A. Shestakov, J. Stolken, and R. Vignes, The role of radiation transport in the thermal response of semitransparent materials to localized laser heating, J. Appl. Phys., 109, (2011).
  • S.C. Chen and C.P. Grigoropoulos, Noncontact nanosecond-time-resolution temperature measurement in excimer laser heating of Ni-p disk substrates, Appl. Phys. Lett., 71, 3191 (1997).
  • D. Otte, H. Kleinschmidt, and O. Bostanjoglo, Space and time resolved temperature measurements in laser pulse-produced metal melts, Rev. Sci. Instrum., 68, 2534 (1997).
  • Z.M. Zhang, Surface Temperature Measurement using Optical Techniques, Begell House, Redding, Connecticut (2000).
  • J.B. Cui, K. Amtmann, J. Ristein, and L. Ley, Noncontact temperature measurements of diamond by Raman scattering spectroscopy, J. Appl. Phys., 83, 7929 (1998).
  • D.R. T. Zahn, Probing surfaces and interfaces with optical techniques, Surf. Rev. Lett., 1, 421 (1994).
  • M. Boivineau and G. Pottlacher, Thermophysical properties of metals at very high temperatures obtained by dynamic heating techniques: Recent advances, Int. J. Mater. Prod. Tec., 26, 217 (2006).
  • T.P. Salikhov, V.V. Kan, and C. Ronchi, Radiative properties of uranium dioxide near its melting point, Int. J. Thermophys., 20, 1163 (1999).
  • A. Rogalski, J. Antoszewski, and L. Faraone, Third-generation infrared photodetector arrays, J. Appl. Phys., 105, 091101 (2009).
  • R. Gardon, The emissivity of transparent materials, J. Amer. Ceram. Soc., 39, 278 (1956).
  • S. Elhadj, M.J. Matthews, S.T. Yang, and D.J. Cooke, Evaporation kinetics of laser heated silica in reactive and inert gases based on near-equilibrium dynamics, Opt. Express, 20, 1575 (2012).
  • A. Rogalski, Infrared detectors: An overview, Infrared Phys. Technol., 43, 187 (2002).
  • C.Z. Tan and J. Arndt, Temperature dependence of refractive index of glassy sio2 in the infrared wavelength range, J. Phys. Chem. Solids, 61, 1315 (2000).
  • T. Toyoda and M. Yabe, The temperature-dependence of the refractive-indexes of fused-silica and crystal quartz, J. Phys. D Appl. Phys., 16, L97 (1983).
  • E.C. Beder, C.D. Bass, and W.L. Shacklef, Transmissivity and absorption of fused quartz between 0.22 μ and 3.5 μ from room temperature to 1500 degrees c, Appl. Opt., 10, 2263 (1971).
  • A.D. McLachlan and F.P. Meyer, Temperature-dependence of the extinction coefficient of fused-silica for CO2-laser wavelengths, Appl. Opt., 26, 1728 (1987).
  • G.M. Guss, I.L. Bass, V.G. Draggoo, R. Hackel, M. Lancaster, and P. Mak, Mitigation of growth of laser initiated surface damage in fused silica using a 4.6 μm wavelength laser, SPIE conference proceedings: Laser-Induced Damage in Optical Materials, Boulder, Colorado, 6403, 64030M (2006).
  • D. Basak, U.R. Kattner, J.L. McClure, D. Josell, and A. Cezairliyan, Application of laser polarimetry to the measurement of specific heat capacity and enthalpy of the alloy 53Nb-47Ti (mass%) in the temperature range 1600 to 2000 K by a millisecond-resolution pulse heating technique, Int. J. Thermophys., 21, 913 (2000).
  • D.W. Goodwin, Cooled photoconductive detectors using Indium Antimonide, J. Sci. Instrum., 34, 367 (1957).
  • A.V. Murthy, B.K. Tsai, and R.D. Saunders, Radiative calibration of heat-flux sensors at NIST: Facilities and techniques, J. Res. Natl. Inst. Stan., 105, 293 (2000).
  • O. Rozenbaum, D.D. Meneses, Y. Auger, S. Chermanne, and P. Echegut, A spectroscopic method to measure the spectral emissivity of semi-transparent materials up to high temperature, Rev. Sci. Instrum., 70, 4020 (1999).
  • A.W. Jackson and A.C. Gossard, Thermal imaging of wafer temperature in MBE using a digital camera, J. Cryst. Growth, 301, 105 (2007).
  • R. Gardon, A review of radiant heat transfer in glass, J. Amer. Ceram. Soc., 44, 305 (1961).
  • K.H. Lee and R. Viskanta, Two-dimensional combined conduction and radiation heat transfer: Comparison of the discrete ordinates method and the diffusion approximation methods, Numer. Heat Tr. a-Appl., 39, 205 (2001).
  • D. Mann, R.E. Field, and R. Viskanta, Determination of specific-heat and true thermal-conductivity of glass from dynamic temperature data, Warme Stoffubertrag., 27, 225 (1992).
  • J.R. Howell, R. Siegel, and P.M. Menguc, Thermal Radiation Heat Transfer, Taylor & Francis, London, UK (2010)
  • R. Viskanta, E.E. Anderson, and F.I.P. H. a. J.P. H. Thomas, Heat Transfer in Semitransparent Solids, Elsevier, New York (1975).
  • A.I. Shestakov, R.M. Vignes, and J.S. Stolken, Derivation and solution of multifrequency radiation diffusion equations for homogeneous refractive lossy media, J. Comput. Phys., 230, 984 (2011).
  • V. Alexiades and D. Autrique, Enthalpy model for heating, melting, and vaporization in laser ablation, Eighth Mississippi State Conference on Differential Equations and Computational Simulations, Starkville, MS, USA; Electron. J. Diff. Eqns., 19, 1 (2010).
  • R.E. Harrington, Application of theory of heat conduction to absorption of blackbody radiation, J. Appl. Phys., 38, 3266 (1967).
  • R.E. Harrington, Thermal conduction near a metal surface exposed to blackbody radiation, J. Appl. Phys., 39, 3699 (1968).
  • R. Kitamura, L. Pilon, and M. Jonasz, Optical constants of silica glass from extreme ultraviolet to far infrared at near room temperature, Appl. Opt., 46, 8118 (2007).
  • P. Bouchut, D. Decruppe, and L. Delrive, Fused silica thermal conductivity dispersion at high temperature, J. Appl. Phys., 96, 3221 (2004).
  • A.P. Mackwood and R.C. Crafer, Thermal modelling of laser welding and related processes: A literature review, Opt. Laser. Technol., 37, 99 (2005).
  • L. Kubicar, V. Vretenar, and U. Hammerschmidt, Thermophysical parameters of optical glass BK7 measured by the pulse transient method, Int. J. Thermophys., 26, 507 (2005).
  • L. Kubicar, V. Vretenar, V. Stofanik, and V. Bohac, Hot-ball method for measuring thermal conductivity, Int. J. Thermophys., 31, 1904 (2010).
  • H.S. Carslaw and J.C. Jaeger,Conduction of Heat in Solids, Oxford University Press, Great Clarendon, UK, (2000)
  • S. Elhadj, M.J. Matthews, S.T. Yang, D.J. Cooke, J.S. Stolken, R.M. Vignes, V.G. Draggoo, and S.E. Bisson, Determination of the intrinsic temperature dependent thermal conductivity from analysis of surface temperature of laser irradiated materials, Appl. Phys. Lett., 96, 071110 (2010).
  • M. Lax, Temperature rise induced by a laser-beam, J. Appl. Phys., 48, 3919 (1977).
  • M. Lax, Temperature rise induced by a laser-beam .2. Non-linear case, Appl. Phys. Lett., 33, 786 (1978).
  • H.L. Schick, A thermodynamic analysis of the high-temperature vaporization properties of silica, Chem. Rev., 60, 331 (1960).
  • H.T. Smyth, H.S. Skogen, and W.B. Harsell, Thermal capacity of vitreous silica, J. Am. Ceram. Soc., 36, 327 (1953).
  • G.A. Kobzev and V.A. Petrov, Behavior of thermal-radiation properties of oxide ceramics under subsecond laser-heating, Int. J. Thermophys., 14, 371 (1993).
  • S.R. Franklin and R.K. Thareja, Simplified model to account for dependence of ablation parameters on temperature and phase of the ablated material, Appl. Surf. Sci., 222, 293 (2004).
  • H. Charnock, Experimental and theoretical comparison of radiation conductivity predicted by steady-state theory with that effective under periodic temperature conditions, J. Amer. Ceram. Soc., 44, 313 (1961).
  • W.D. Kingery, Heat-conductivity processes in glass, J. Amer. Ceram. Soc., 44, 302 (1961).
  • W.D. Kingery, Temperature dependence of conductivity for single-phase ceramics, J. Amer. Ceram. Soc., 38, 251 (1955).
  • R.E. Field and R. Viskanta, Measurement and prediction of the dynamic temperature distributions in soda lime glass plates, J. Am. Ceram. Soc., 73, 2047 (1990).
  • R. Bruckner, Properties and structure of vitreous silica. I J. Non-Cryst. Solids, 5, 123 (1970).
  • W. Dai, X. Xiang, Y. Jiang, H.J. Wang, X.B. Li, X.D. Yuan, W.G. Zheng, H.B. Lv, and X.T. Zu, Surface evolution and laser damage resistance of CO2 laser irradiated area of fused silica, Opt. Laser Eng., 49, 273 (2011).
  • S. Elhadj, M.J. Matthews, G.M. Guss, and I.L. Bass, Laser-based dynamic evaporation and surface shaping of fused silica with assist gases: A path to rimless laser machining, Appl. Phys. B Lasers O., 113, 307–315 (2013).
  • M.D. Feit, M.J. Matthews, T.F. Soules, J.S. Stolken, R.M. Vignes, S.T. Yang, and J.D. Cooke, Densification and residual stress induced by co(2) laser-based mitigation of sio(2) surfaces, Laser-Induced Damage Opt. Mater., 7842, 78420O (2010).
  • C.M. Liu, Y. Jiang, C.S. Luo, X.Y. Shi, W. Ren, X. Xiang, H.J. Wang, S.B. He, X.D. Yuan, H.B. Lv, W.G. Zheng, and X.T. Zu, The structure evolution of fused silica induced by CO2 laser irradiation, Chin. Phys. Lett., 29, (2012).
  • J.J. Adams, M. Bolourchi, J.D. Bude, G.M. Guss, M.J. Matthews, and M.C. Nostrand, Results of applying a non-evaporative mitigation technique to laser-initiated surface damage on fused-silica, SPIE Conference Proceedings: Laser-Induced Damage in Optical Materials, Boulder, CO, 7842, 784223 (2010).
  • M.J. Matthews, R.M. Vignes, D. Cooke, S.T. Yang, and J.S. Stolken, Analysis of microstructural relaxation phenomena in laser-modified fused silica using confocal raman microscopy, Opt. Lett., 35, 1311 (2010).
  • R.M. Vignes, T.F. Soules, J.S. Stolken, R.R. Settgast, S. Elhadj, and M.J. Matthews, Thermomechanical modeling of laser-induced structural relaxation and deformation of glass: Volume changes in fused silica at high temperatures, J. Amer. Ceram. Soc., 96, 137 (2013).
  • M. Tomozawa, A. Koike, and S.R. Ryu, Exponential structural relaxation of a high purity silica glass, J. Non-Cryst. Solids, 354, 4685 (2008).
  • O.S. Narayanaswamy, A model of structural relaxation in glass, J. Amer. Ceram. Soc., 54, 491 (1971).
  • N. Shen, M.J. Matthews, S. Elhadj, P. Miller, A. Nelson, and J. Hamilton, Correlating optical damage threshold with intrinsic defect populations in fused silica as a function of heat treatment temperature, Appl. Phys. D-Appl. Phys. (Accepted) (2013).
  • R.N. Raman, M.J. Matthews, J.J. Adams, and S.G. Demos, Monitoring annealing via CO2 laser heating of defect populations on fused silica surfaces using photoluminescence microscopy, Opt. Express, 18, 15207 (2010).
  • R.N. Raman, S. Elhadj, T. A. Laurence, and M.J. Matthews, The role of electronic defects and brittle microstructure in laser-driven material failure, Acta Materialia, . (submitted) (2013).
  • A.E. Chmel, Cumulative effect in laser-induced damage of optical glasses: A review, Glass Phys. Chem., 26, 49 (2000).
  • C.W. Carr, J.D. Bude, and P. DeMange, Laser-supported solid-state absorption fronts in silica, Phys. Rev. B, 82, 184304 (2010).
  • L. Li and T.D. Bennett, Incandescence measurement during CO2 laser texturing of silicate glass, J, Heat Trans-T ASME, 123, 376 (2001).
  • Y. Shin, Y. Kim, S. Park, B. Jung, J. Lee, and J.S. Nelson, Pit and rim formation during laser marking of acrylonitrile butadiene styrene plastic, J. Laser Appl., 17, 243 (2005).
  • B. Adams, A. Mayur, A. Hunter, and R. Ramanujam, Pyrometry for laser annealing, Proc. of the 13th IEEE International Conference on Advanced Thermal Processing of Semiconductors - RTP 105 (2005).
  • H. Kakiuchida, K. Saito, and A.J. Ikushima, Refractive index, density and polarizability of silica glass with various fictive temperatures, Jpn. J. Appl. Phys. 2, 43, L743 (2004).
  • K.M. Davis, K. Miura, N. Sugimoto, and K. Hirao, Writing waveguides in glass with a femtosecond laser, Opt. Lett., 21, 1729 (1996).
  • A. Marcinkevicius, S. Juodkazis, M. Watanabe, M. Miwa, S. Matsuo, H. Misawa, and J. Nishii, Femtosecond laser-assisted three-dimensional microfabrication in silica, Opt. Lett., 26, 277 (2001).
  • V. Semak and A. Matsunawa, The role of recoil pressure in energy balance during laser materials processing, J. Phys. D Appl. Phys., 30, 2541 (1997).
  • V.V. Semak, B. Damkroger, and S. Kempka, Temporal evolution of the temperature field in the beam interaction zone during laser material processing, J. Phys. D Appl. Phys., 32, 1819 (1999).
  • N.M. B. Bulgakova, A. V. Pulsed laser ablation of solids: Transition from normal vaporization to phase explosion, Appl. Phys. A-Matter., 73, 199 (2001).
  • W.W. Mullins, Flattening of a nearly plane solid surface due to capillarity, J. Appl. Phys., 30, 77 (1959).
  • V. Zandian, J.S. Florry, and D. Taylor, Viscosity of fused-silica with different hydroxyl contents, Brit. Ceram. Trans. J., 90, 59 (1991).
  • L. Robin, P. Combis, P. Cormont, L. Gallais, and D. Hebert, Infrared thermometry and interferential microscopy for analysis of crater formation at the surface of fused silica under CO2 laser irradiation, J. Appl. Phys., 111, 063106 (2012).
  • Y.D. Kim and W.S. Kim, A numerical analysis of heat and fluid flow with a deformable curved free surface in a laser melting process, Int. J. Heat Fluid Fl., 29, 1481
  • T.D. Bennett, D.J. Krajnovich, C.P. Grigoropoulos, P. Baumgart, and A.C. Tam, Marangoni mechanism in pulsed laser texturing of magnetic disk substrates, J. Heat Trans-T ASME, 119, 589 (1997).
  • K. Osawa, H. Inoue, A. Masuno, K. Katayama, Y.J. Zhang, F. Utsuno, Y. Sugahara, K. Koya, A. Fujinoki, H. Tawarayama, and H. Kawazoe, Smoothing of surface of silica glass by heat treatment in wet atmosphere, J. Appl. Phys., 109, (2011).
  • T.D. Bennett, D.J. Krajnovich, and L. Li, Thermophysical modeling of bump formation during CO2 laser texturing of silicate glasses, J. Appl. Phys., 85, 153 (1999).
  • S.C. Chen, D.G. Cahill, and C.P. Grigoropoulos, Melting and surface deformation in pulsed laser surface micromodification of ni-p disks, J. Heat Trans-T ASME, 122, 107 (2000).
  • E. Mendez, K.M. Nowak, H.J. Baker, F.J. Villarreal, and D.R. Hall, Localized CO2 laser damage repair of fused silica optics, Appl. Opt., 45, 5358 (2006).
  • K.M. Nowak, H.J. Baker, and D.R. Hall, Efficient laser polishing of silica micro-optic components, Appl. Opt., 45, 162 (2006).
  • P. Hrma, W.T. Han, and A.R. Cooper, Thermal healing of cracks in glass, J. Non-Cryst. Solids, 102, 88 (1988).
  • F.Y. Genin, A. Salleo, T.V. Pistor, and L.L. Chase, Role of light intensification by cracks in optical breakdown on surfaces, J. Opt. Soc. Amer. A, 18, 2607 (2001).
  • R.H. Doremus, Viscosity of silica, J. Appl. Phys., 92, 7619 (2002).
  • B.N. Chichkov, C. Momma, S. Nolte, F. vonAlvensleben, and A. Tunnermann, Femtosecond, picosecond and nanosecond laser ablation of solids, Appl. Phys. A-Matter., 63, 109 (1996).
  • E.G. Gamaly, The physics of ultra-short laser interaction with solids at non-relativistic intensities, Phys. Rep., 508, 91 (2011).
  • H.Y. Sohn, The influence of chemical equilibrium on fluid-solid reaction rates and the falsification of activation energy, Metall. Mater. Trans. B, 35, 121 (2004).
  • S. Elhadj, S.R. Qiu, A.M. Monterrosa, and C.J. Stolz, Heating dynamics of CO2-laser irradiated silica particles with evaporative shrinking: Measurements and modeling, J. Appl. Phys., 111, (2012).
  • S.R. Franklin and R.K. Thareja, Dependence of ablation parameters on the temperature and phase of ablated material, J. Appl. Phys., 93, 5763 (2003).
  • V.K. Sysoev, V.I. Masychev, B.P. Papchenko, S.Y. Rusanov, A.A. Yakovlev, and N.P. Glukhoedov, High-rate ir laser evaporation of silica glass, Inorg. Mater., 39, 532 (2003).
  • C. Duty, D. Jean, and W.J. Lackey, Laser chemical vapour deposition: Materials, modelling, and process control, Int. Mater. Rev., 46, 271 (2001).
  • I.P. Herman, Laser-assisted deposition of thin-films from gas-phase and surface-adsorbed molecules, Chem. Rev., 89, 1323 (1989).
  • H.M. Christen and G. Eres, Recent advances in pulsed-laser deposition of complex oxides, J. Phys-Condens. Mat., 20, (2008).
  • I.A. Shareef, G.W. Rubloff, and W.N. Bill, Role of gas phase reactions in subatmospheric chemical-vapor deposition ozone/teos processes for oxide deposition, J. Vac. Sci. Technol. B, 14, 772 (1996).
  • C.G. Dupuy and J.E. Hurst, High spatial-resolution infrared-emission thermal measurement of laser-induced chemical vapor-deposition, Rev. Sci. Instrum., 63, 3763 (1992).
  • K. Kwok and W.K. S. Chiu, Investigation of open-air laser-induced chemical vapor deposition of carbon on moving optical fibers, Opt. Eng., 44, (2005).
  • J.S. Han and K.F. Jensen, Combined experimental and modeling studies of laser-assisted chemical-vapor-deposition of copper from copper(i)-hexafluoroacetylacetonate trimethylvinylsilane, J. Appl. Phys., 75, 2240 (1994).
  • D. Bauerle, B. Luk’yanchuk, and K. Piglmayer, On the reaction kinetics in laser-induced pyrolytic chemical processing, Appl. Phys. A-Matter., 50, 385 (1990).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.