542
Views
33
CrossRef citations to date
0
Altmetric
Reviews

Predicting Powder-Polymer Mixture Properties for PIM Design

, , , &
Pages 197-214 | Received 09 Jan 2013, Accepted 23 May 2013, Published online: 28 Mar 2014

REFERENCES

  • R.M. German and S.J. Park, Mathematical Relations in Particulate Materials Processing: Ceramics, Powder Metals, Cermets, Carbides, Hard Materials, and Minerals, John Wiley & Sons, Hoboken, NJ (2008).
  • G.W. Brassell and K.B. Wischmann, Mechanical and thermal expansion properties of a participate filled polymer, J. Mater. Sci. 9(2), 307–314 (1974).
  • C.P. Wong and R.S. Bollampally, Thermal conductivity, elastic modulus, and coefficient of thermal expansion of polymer composites filled with ceramic particles for electronic packaging, J. Appl. Polymer Sci. 74(14), 3396–3403 (1999).
  • S. McGee and R.L. McGullough, Combining rules for predicting the thermoelastic properties of particulate filled polymers, polymers, polyblends, and foams, Polymer Composit. 2(4), 149–161 (1981).
  • J. Chen, J.-G. Mi, and K.-Y. Chan, Comparison of different mixing rules for prediction of density and residual internal energy of binary and ternary Lennard–Jones mixtures, Fluid Phase Equilibria, 178(1–2), 97–95 (2001).
  • Y.P. Mamunya, Electrical and thermal conductivity of polymers filled with metal powders, Eur. Polymer J. 38(9), 1887 (2002).
  • D.W. Sundstrom and Y.-D. Lee, Thermal conductivity of polymers filled with particulate solids, J. Appl. Polymer Sci. 16(12), 3159–3167 (1972).
  • A. Boudenne, L. Ibos, M. Fois, E. Gehin, and J.-C. Majeste, Thermophysical properties of polypropylene/aluminum composites, J. Polymer Sci. Part B Plymer Phys., 42(4), 722–732 (2004).
  • M.J. Edirisinghe and J.R. G. Evans, Review: Fabrication of engineering ceramics by injection moulding. I. Materials selection, Int. J. High Technol. Ceram. 2(1), 1–31 (1986).
  • L.E. Nielsen, Predicting the Properties of Mixtures: Mixture Rules in Science and Engineering, M. Dekker, New York, NY (1978).
  • S. Rajesh, K.P. Murali, H. Jantunen, and R. Ratheesh, The effect of filler on the temperature coefficient of the relative permittivity of PTFE/ceramic composites, Phys. B Conden. Matt. 406(22), 4312–4316 (2011).
  • A. Christensen and S. Graham, Thermal effects in packaging high power light emitting diode arrays, Appl. Therm. Eng. 29(2–3), 364–371 (3009).
  • B. Weidenfeller, M. Höfer, and F.R. Schilling, Thermal conductivity, thermal diffusivity, and specific heat capacity of particle filled polypropylene, Composit. Part A Appl. Sci. Manufact. 35(4), 423–429 (2004).
  • K. Sanada, Y. Tada, and Y. Shindo, Thermal conductivity of polymer composites with close-packed structure of nano and micro fillers, Composit. Part A Appl. Sci. Manufact. 40(6–7), 734–730 (2009).
  • T. Zhang, J.R. G. Evans, and K.K. Dutta, Thermal properties of ceramic injection moulding suspensions in the liquid and solid states, J. Eur. Ceram. Soc. 5(5),303–309 (1989).
  • D.T. Jamieson and G. Cartwright, Properties of Binary Liquid Mixtures: Heat Capacity, National Engineering Laboratory, Glasgow, UK (1978).
  • T.J. Wooster, S. Abrol, J.M. Hey, and D.R. MacFarlane, Thermal, mechanical, and conductivity properties of cyanate ester composites, Composit. Part A Appl. Sci. Manufact. 35(1), 75–82 (2004).
  • C.L. Hsieh and W.H. Tuan, Elastic properties of ceramic–metal particulate composites, Mater. Sci. Eng. A 393(1–2), 133–139 (2005).
  • G.-W. Lee, M. Park, J. Kim, J.I. Lee, and H.G. Yoon, Enhanced thermal conductivity of polymer composites filled with hybrid filler, Composit. Part A Appl. Sci. Manufact. 37(5), 727–734 (2006).
  • S.J. Feltham, B. Yates, and R.J. Martin, The thermal expansion of particulate-reinforced composites, J. Mater. Sci. 17(8), 2309–2323 (1982).
  • I. Balać, M. Milovančević, C. Tang, P.S. Uskoković, and D.P. Uskoković, Estimation of elastic properties of a particulate polymer composite using a face-centered cubic FE model, Mater. Lett. 58(19), 2437–2441 (2004).
  • W. Wu, K. Sadeghipour, K. Boberick, and G. Baran, Predictive modeling of elastic properties of particulate-reinforced composites, Mater. Sci. Eng. A 332(1–2), 362–370 (2002).
  • A.B. Metzner, Rheology of suspensions in polymeric liquids, J. Rheol. 29(6), 739–775 (1985).
  • C.W. Macosko, Rheology: Principles, Measurements, and Applications, VCH, New York, NY (1994).
  • X.Z. Shi, M. Huang, Z.F. Zhao, and C.Y. Shen, Nonlinear fitting technology of 7-parameter cross-wlf viscosity model, Adv. Mater. Res. 189–193, 2103–2106 (2011).
  • V.P. Onbattuvelli, The effects of nanoparticle addition on the processing, structure and properties of SiC and AlN, Thesis/dissertation, (2010).
  • T. Zhang and J.R. G. Evans, Predicting the viscosity of ceramic injection moulding suspensions, J. Eur. Ceram. Soc. 5(3), 165–172 (1989).
  • T.D. Fornes and D.R. Paul, Modeling properties of nylon 6/clay nanocomposites using composite theories, Polymer 44(17), 4993–5013 (2003).
  • R. Arefinia and A. Shojaei, On the viscosity of composite suspensions of aluminum and ammonium perchlorate particles dispersed in hydroxyl terminated polybutadiene-New empirical model, J. Colloid Interf. Sci. 299(2), 962–971 (2006).
  • H.H. Chiang, C.A. Hieber, and K.K. Wang, A unified simulation of the filling and postfilling stages in injection molding. Part I: Formulation, Polymer Eng. Sci. 31(2), 116–124 (1991).
  • K.H. Kate, V.P. Onbattuvelli, R.K. Enneti, S.W. Lee, S.-J. Park, and S.V. Atre, Measurements of powder–polymer mixture properties and their use in powder injection molding simulations for aluminum nitride, JOM 64(9), 1048–1058 (2012).
  • S.J. Park, S. Ahn, T.G. Kang, S.T. Chung, Y.S. Kwon, S.H. Chung, S.G. Kim, S. Kim, S.V. Atre, S. Lee, and R.M. German, A review of computer simulations in powder injection molding, Int. J. Powder Metallurgy 46(3), 37–46 (2010).
  • R. Urval, S. Lee, S.V. Atre, S.-J. Park, and R.M. German, Optimisation of process conditions in powder injection moulding of microsystem components using robust design method Part 2 – Secondary design parameters, Powder Metallurgy 53(1), 71–81 (2010).
  • S. Ahn, S.J. Park, S. Lee, S.V. Atre, and R.M. German, Effect of powders and binders on material properties and molding parameters in iron and stainless steel powder injection molding process, Powder Technol. 193(2), 162–169 (2009).
  • S.V. Atre, S.-J. Park, R. Zauner, and R.M. German, Process simulation of powder injection moulding: identification of significant parameters during mould filling phase, Powder Metallurgy 50(1), 76–85 (2007).
  • R. Urval, S. Lee, S.V. Atre, S.-J. Park, and R.M. German, Optimisation of process conditions in powder injection moulding of microsystem components using a robust design method: part I. primary design parameters, Powder Metallurgy 51(2), 133–142 (2008).
  • R.M. German, Powder injection molding: design and applications. Innovative Material Solutions, State College, PA (2003).
  • Y. Xu, D.D. Chung, and C. Mroz, Thermally conducting aluminum nitride polymer-matrix composites, Composit. Part A Appl. Sci. Manufact. 32(12), 1749–1757 (2001).
  • L.M. McGrath, R.S. Parnas, S.H. King, J.L. Schroeder, D.A. Fischer, and J.L. Lenhart, Investigation of the thermal, mechanical, and fracture properties of alumina–epoxy composites, Polymer 49(4), 999–1014 (2008).
  • G. Subodh, M.V. Manjusha, J. Philip, and M.T. Sebastian, Thermal properties of polytetrafluoroethylene/Sr2Ce2Ti5O16 polymer/ceramic composites, J. Appl. Polymer Sci. 108(3), 1716–1721 (2008).
  • M.A. Osman and A. Atallah, Interparticle and particle–matrix interactions in polyethylene reinforcement and viscoelasticity, Polymer 46(22), 9476–9488 (2005).
  • R.K. Goyal, A.N. Tiwari, U.P. Mulik, and Y.S. Negi, Novel high performance Al2O3/poly(ether ether ketone) nanocomposites for electronics applications, Composit. Sci. Technol. 67(9), 1802–1812 (2007).
  • H. Ishida and S. Rimdusit, Heat capacity measurement of boron nitride-filled polybenzoxazine: The composite structure-insensitive property, J. Therm. Anal. Calorimetry 58(3), 497–507 (1999).
  • W. Zhou, C. Wang, Q. An, and H. Qu, Thermal properties of heat conductive silicone 7 rubber filled with hybrid fillers, J. Composit. Mater. 42(2), 173–187 (2008).
  • B. Mutnuri, Thermal Conductivity Characterization of Composite Materials, West Virginia University, Morgantown, West Virginia (2006).
  • D.C. Moreira, L.A. Sphaier, J.M. L. Reis, and L.C. S. Nunes, Experimental investigation of heat conduction in polyester–Al2O3 and polyester–CuO nanocomposites, Exper. Thermal Fluid Sci. 35(7), 1458–1462 (2011).
  • E. Logakis, C. Pandis, P. Pissis, J. Pionteck, and P. Pötschke, Highly conducting poly(methyl methacrylate)/carbon nanotubes composites: Investigation on their thermal, dynamic-mechanical, electrical and dielectric properties, Composit. Sci. Technol., 71(6), 854–862 (2011).
  • T.K. Dey and M. Tripathi, Thermal properties of silicon powder filled high-density polyethylene composites, Thermochimica Acta 502(1–2), 35–42 (2010).
  • K.C. Yung, B.L. Zhu, T.M. Yue, and C.S. Xie, Preparation and properties of hollow glass microsphere-filled epoxy-matrix composites, Composit. Sci. Technol. 69(2), 260–264 (2009).
  • S. Elomari, R. Boukhili, and D.J. Lloyd, Thermal expansion studies of prestrained Al2O3/Al metal matrix composite, Acta Materialia 44(5), 1873–1882 (1996).
  • C.L. Hsieh and W.H. Tuan, Thermal expansion behavior of a model ceramic–metal composite, Mater. Sci. Eng. A 460–461(3), 453–458 (2007).
  • P. Badrinarayanan and M.R. Kessler, Zirconium tungstate/cyanate ester nanocomposites with tailored thermal expansivity, Composit. Sci. Technol. 71(11), 1385–1391 (2011).
  • S. Tognana, W. Salgueiro, A. Somoza, J.A. Pomarico, and H.F. Ranea-Sandoval, Influence of the filler content on the thermal expansion behavior of an epoxy matrix particulate composite, Mater. Sci. Eng. B 157(1–3), 26–31 (2009).
  • P.J. Yoon, T.D. Fornes, and D.R. Paul, Thermal expansion behavior of nylon 6 nanocomposites, Polymer 43(25), 6727–6741 (2002).
  • K. PourAkbar Saffar, A.R. Arshi, N. JamilPour, A.R. Najafi, G. Rouhi, and L. Sudak, A cross-linking model for estimating Young's modulus of artificial bone tissue grown on carbon nanotube scaffold, J. Biomed. Mater. Res. Part A 94A(2), 594–602 (2010).
  • J.Z. Liang, Viscoelastic properties and characterization of inorganic particulate-filled polymer composites, J. Appl. Polymer Sci. 114(6), 3955–3960 (2009).
  • J. Spanoudakis and R.J. Young, Crack propagation in a glass particle-filled epoxy resin Part 1. Effect of particle volume fraction and size, J. Mater. Sci. 19, 473–486 (1984).
  • S. Mishra, S.H. Sonawane, and R.P. Singh, Studies on characterization of nano CaCO3 prepared by the in situ deposition technique and its application in PP-nano CaCO3 composites, J. Polymer Sci. Part B Polymer Phys. 43(1), 107–113 (2005).
  • Z.K. Zhu, Y. Yang, J. Yin, and Z.N. Qi, Preparation and properties of organosoluble polyimide/silica hybrid materials by sol–gel process, J. Appl. Polymer Sci. 73(14), 2977–2984 (1999).
  • M. Wang, C. Berry, M. Braden, and W. Bonfield, Young's and shear moduli of ceramic particle filled polyethylene, J. Mater Sci. Mater. Med. 9(11), 621–624 (1998).
  • E. Reynaud, T. Jouen, C. Gauthier, G. Vigier, and J. Varlet, Nanofillers in polymeric matrix: a study on silica reinforced PA6, Polymer 42(21), 8759–8768 (2001).
  • M. Abu-Abdeen, Static and dynamic mechanical properties of poly(vinyl chloride) loaded with aluminum oxide nanopowder, Mater. Des. 33(3), 523–528.
  • H.S. Jaggi, Y. Kumar, B.K. Satapathy, A.R. Ray, and A. Patnaik, Analytical interpretations of structural and mechanical response of high density polyethylene/hydroxyapatite bio-composites, Mater. Des. 36(3), 757–766 (2012).
  • S. Areerat, Y. Hayata, R. Katsumoto, T. Kegasawa, H. Egami, and M. Ohshima, Solubility of carbon dioxide in polyethylene/titanium dioxide composite under high pressure and temperature,J. Appl. Polymer Sci. 86(2), 282–288 (2002).
  • G. Dlubek, U. De, J. Pionteck, N.Y. Arutyunov, M. Edelmann, and R. Krause-Rehberg, Temperature dependence of free volume in pure and silica-filled poly(dimethyl siloxane) from positron lifetime and PvT experiments, Macromolec. Chem. Phys. 206(8), 827–840 (2005).
  • V.L. Carrubba, M. Bulters, and W. Zoetelief, Dependence of coefficient of volumetric thermal expansion (CVTE) of glass fiber reinforced (GFR) polymers on the glass fiber content, Polymer Bull. 59(6), 813–824 (2008).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.