4,233
Views
116
CrossRef citations to date
0
Altmetric
Reviews

Nanoscale Transition Metal Dichalcogenides: Structures, Properties, and Applications

, , , &

REFERENCES

  • A.K. Geim and K.S. Novoselov, The rise of graphene, Nat. Mater. 6, 183 (2007).
  • H. Liu, Y. Liu, and D. Zhua, Chemical doping of graphene, J. Mater. Chem. 21, 3335 (2011).
  • I. Zanella, S. Guerini, S.B. Fagan, J.M. Filho, and A.G. S. Filho, Chemical doping-induced gap opening and spin polarization in graphene, Phys. Rev. B 77, 073404 (2008).
  • J. Bai, X. Zhong, S. Jiang, Y. Huang, and X. Duan, Graphene nanomesh, Nat. Nanotechnol. 5, 190 (2010).
  • M. Kim, N.S. Safron, E. Han, M.S. Arnold, and P. Gopalan, Fabrication and characterization of large-area, semiconducting nanoperforated graphene materials, Nano. Lett. 10, 1125 (2010).
  • X. Liu, Z. Zhang, and W. Guo, Universal rule on chirality-dependent bandgaps in graphene antidot lattices, Small, 9, 1405 (2013).
  • T.G. Pedersen, C. Flindt, J. Pedersen, N.A. Mortensen, A.P. Jauho, and K. Pedersen, Graphene antidot lattices: designed defects and spin qubits, Phys. Rev. Lett. 100, 136804 (2008).
  • M.Y. Han, B. Ozyilmaz, Y. Zhang, and P. Kim, Energy band-gap engineering of graphene nanoribbons, Phys. Rev. Lett. 98, 206805 (2007).
  • Y. Son, M.L. Cohen, and S.G. Louie, Energy gaps in graphene nanoribbons, Phys. Rev. Lett. 97, 216803 (2006).
  • A. Pakdel, C. Zhi, Y. Bando, and D. Golberg, Low-dimensional boron nitride nanomaterials, Mater. Today 15, 256 (2012).
  • M. Xu, T. Liang, M. Shi, and H. Chen, Graphene-like two-dimensional materials, Chem. Rev. 113, 3766 (2013).
  • R. Tenne, Inorganic nanotubes and fullerene-like nanoparticles, Nat. Nanotechnol. 1, 103 (2006).
  • R. Tenne and C.N. R. Rao, Inorganic nanotubes, Phil. Trans. R. Soc. Lond. A 362, 2099 (2004).
  • D. Golberg, Y. Bando, Y. Huang, T. Terao, M. Mitome, C.C. Tang, and C.Y. Zhi, Boron nitride nanotubes and nanosheets, ACS Nano. 4, 2979 (2010).
  • A. Kara, H. Enriquez, A.P. Seitsonen, L.C. Lew-Yan-Voon, S. Vizzini, B. Aufray, and H. Oughaddou, A review on silicene—new candidate for electronics, Surf. Sci. Rep. 67, 1 (2012).
  • H. Okamoto, Y. Sugiyama, and H. Nakano, Synthesis and modification of silicon nanosheets and other silicon nanomaterials, Chem. Eur. J. 17, 9864 (2011).
  • P.D. Padova, P. Perfetti, B. Olivieri, C. Quaresima, C. Ottaviani, and G.L. Lay, 1D graphene-like silicon systems: silicene nano-ribbons, J. Phys. Condens. Mater. 24, 223001 (2012).
  • R. Mas-Ballest, C. Gomez-Navarro, J. Gomez-Herrero, and F. Zamora, 2D materials: to graphene and beyond, Nanoscale 3, 20 (2011).
  • S.Z. Butler, S.M. Hollen, L. Cao, Y. Cui, J.A. Gupta, H.R. Gutierrez, T.F. Heinz, S.S. Hong, and J. Huang, Progress, challenges, and opportunities in two-dimensional materials beyond graphene, ACS Nano 7, 2898 (2013).
  • C. Ataca, H. Sahin, and S. Ciraci, Stable, Single-Layer MX2 transition-metal oxides and dichalcogenides in a honeycomb-like structure, J. Phys. Chem. C 116, 8983 (2012).
  • W.X. Chen, L. Ma, H. Li, Y.F. Zheng, and Z.D. Xu, Ionic liquid -assisted hydrothermal synthesis of MoS2 microspheres, Mater. Lett. 62, 797 (2008).
  • K. Novoselov, D. Jiang, F. Schedin, T.J. Booth, V.V. Khotkevich, S.V. Morozov, and A.K. Geim, Two dimensional atomic crystals, Proc. Nat. Acad. Sci. U.S.A. 102, 10451 (2005).
  • A. Castellanos-Gomez, M. Barkelid, A.M. Goossens, V.E. Calado, H.S. J. van der Zant, and G.A. Steele, Laser-thinning of MoS2: on demand generation of a single-layer semiconductor, Nano Lett. 12, 3187 (2012).
  • A.M. Zande, P.Y. Huang, D.A. Chenet, T.C. Berkelbach, Y.M. You, G.H. Lee, T.F. Heinz, D.R. Reichman, D.A. Muller, and J.C. Hone, Grains and grain boundaries in highly crystalline monolayer molybdenum disulphide, Nat. Mat. 12, 554 (2013).
  • S. Najmaei, Z. Liu, W. Zhou, X. Zou, G. Shi, S. Lei, B.I. Yakobson, H.-C. Idrobo, P.M. Ajayan, and J. Lou, Vapor phase growth and grain boundary structure of molybdenum disulphide atomic layers, Nat. Mat. 12, 754 (2013).
  • J.N. Coleman, M. Lotya, A. O’Neill, S.D. Bergin, P.J. King, U. Khan, K. Young, A. Gaucher, S. De, R.J. Smith, et al. Two-dimensional nanosheets produced by liquid exfoliation of layered materials, Science 331, 568 (2011).
  • Y.T. Qian, Y.Y. Peng, Z.Y. Meng, C. Zhong, J. Lu, W.C. Yu, and Y.B. Jia, Hydrothermal synthesis and characterization of single-molecular-layer MoS2 and MoSe2, Chem. Lett. 30, 772 (2001).
  • Y.-H. Lee, X.-Q. Zhang, W. Zhang, M.-T. Chang, C.-T. Lin, K.-D. Chang, Y.-C. Yu, J.T.-W. Wang, C.-S. Chang, L.-J. Li, et al. Synthesis of large-area MoS2 atomic layers with chemical vapor deposition, Adv. Mater. 24, 2320 (2012).
  • G. Eda, T. Fujita, H. Yamaguchi, D. Voiry, M. Chen, and M. Chhowalla, Coherent atomic and electronic heterostructures of single-layer MoS2, ACS Nano 6, 7311 (2012).
  • C. Ataca, H. Sahin, E. Aktcurk, and S. Ciraci, Mechanical and electronic properties of MoS2 nanoribbons and their defects, J. Phys. Chem. C 115, 3934 (2011).
  • M.V. Bollinger, K.W. Jacobsen, and J.K. Norskov, Atomic and electronic structure of MoS2 nanoparticles, Phys. Rev. B 67, 085410 (2003).
  • Y. Ding, Y. Wang, J. Ni, L. Shi, S. Shi, and W. Tang, First principles study of structural, vibrational and electronic properties of graphene-like MX2 (M = Mo, Nb, W, Ta; X = S, Se, Te) monolayers, Physica B 406, 2254 (2011).
  • K. Kobayashi and J. Yamauchi, Electronic structure and scanning-tunneling microscopy image of molybdenum dichalcogenide surfaces, Phys. Rev. B 51, 17085 (1995).
  • A. Kuc, N. Zibouche, and T. Heine, Influence of quantum confinement on the electronic structure of the transition metal sulfide TS2, Phys. Rev. B 83, 245213 (2011).
  • S. Lebegue and O. Eriksson, Electronic structure of two-dimensional crystals from ab initio theory, Phys. Rev. B 79, 115409 (2009).
  • L. Liu, S. Kumar, Y. Ouyang, and J. Guo, Performance limits of monolayer transition metal dichalcogenide transistors, IEEE T. Electron Dev. 58, 3042 (2011).
  • Y. Ma, Y. Dai, M. Guo, C. Niu, J. Lu, and B. Huang, Electronic and magnetic properties of perfect, vacancy-doped, and nonmetal adsorbed MoSe2, MoTe2 and WS2 monolayers, Phys. Chem. Chem. Phys. 13, 15546 (2011).
  • Q.H. Wang, K. Kalantar-Zadeh, A. Kis, Jonathan, N. Coleman, and M.S. Strano, Electronics and optoelectronics of two-dimensional transition metal dichalcogenides, Nat. Nanotechnol. 7, 69 (2012).
  • F. Wypych and R. Schollhorn, 1T-MoS2, a new metallic modification of molybdenum disulfide, J. Chem. Soc. Chem. Commun. 19, 1386 (1992).
  • J. Brivio, D.T. L. Alexander, and A. Kis, Ripples and layers in ultrathin MoS2 membranes, Nano Lett. 11, 5148 (2011).
  • A. Fasolino, J.H. Los, and M.I. Katsnelson, Intrinsic ripples in graphene, Nat. Mater. 6, 858 (2007).
  • E.P. F. de Lausanne, 3d ripples in a 2d layer, http://actu.epfl.ch/news/ 3d-ripples-in-a-2d-layer-2/ (2011).
  • K. Mak, C. Lee, J. Hane, J. Shan, and T. Heinz, Atomically thin MoS2: a new direct-gap semiconductor, Phys. Rev. Lett. 105, 136805 (2010).
  • S. Tongay, J. Zhou, C. Ataca, K. Lo, T.S. Matthews, J. Li, J.C. Grossman, and J. Wu, Thermally driven crossover from indirect toward direct bandgap in 2D semiconductors: MoSe2 versus MoS2, Nano Lett. 12, 5576 (2012).
  • Y. Zhao, X. Luo, H. Li, J. Zhang, P.T. Araujo, C.K. Gan, J. Wu, H. Zhang, S.Y. Quek, and Q. Xiong, Interlayer breathing and shear modes in few-trilayer MoS2 and WSe2, Nano Lett. 13, 1007 (2013).
  • P.H. Tan, W.P. Han, W.J. Zhao, Z.H. Wu, K. Chang, H. Wang, Y.F. Wang, N. Bonini, N. Marzari, and N. Pugno, The shear mode of multilayer graphene, Nat. Mater. 11, 294 (2012).
  • C. Lee, H. Yan, L.E. Brus, T.F. Heinz, J. Hone, and S. Ryu, Anomalous lattice vibrations of single- and few-layer MoS2, ACS Nano 4, 2695 (2010).
  • T. Wieting and J. Verble, Infrared and Raman studies of long-wavelength optical phonons in hexagonal MoS2, Phys. Rev. B 3, 4286 (1971).
  • J. Verble, T. Wietling, and P. Reed, Lattice mode degeneracy in MoS2 and other layer compounds, Phys. Rev. Lett. 25, 362 (1970).
  • P.N. Ghosh and C. Maiti, Interlayer force and Davydov splitting in 2H-MoS2, Phys. Rev. B 28, 2237 (1983).
  • X. Luo, Y. Zhao, J. Zhang, Q. Xiong, and S.Y. Quek, Anomalous frequency trends in MoS2 thin films attributed to surface effects, Phys. Rev. B 88, 075320 (2013).
  • B. Mrstik, R. Kaplan, T. Reinecke, M.V. Hove, and S. Tong, Surface-structure determination of the layered compounds MoS2 and NbSe2 by low-energy electron diffraction, Phys. Rev. B 15, 897 (1977).
  • A.C. Ferrari and D.M. Basko, Raman spectroscopy as a versatile tool for studying the properties of graphene, Nat. Nanotechnol. 8, 235 (2013).
  • H. Zeng, B. Zhu, K. Liu, J. Fan, X. Cui, and Q.M. Zhang, Low-frequency Raman modes and electronic excitations in atomically thin MoS2 films, Phys. Rev. B 86, 241301 (2012).
  • C. Ataca, M. Topsakal, E. Akturk, and S. Cirac, A comparative study of lattice dynamics of three- and two-dimensional MoS2, J. Phys. Chem. C 115, 16354 (2011).
  • A. Molina-Sanchez and L. Wirtz, Phonons in single-layer and few-layer MoS2 and WS2, Phys. Rev. B 84, 155413 (2011).
  • C. Ataca and S. Ciraci, Functionalization of single-layer MoS2 honeycomb structures, J. Phys. Chem. C 115, 13303 (2011).
  • H.-P. Komsa, J. Kotakoski, S. Kurasch, O. Lehtinen, U. Kaiser, and A.V. Krasheninnikov, Two-dimensional transition metal dichalcogenides under electron Irradiation: Defect production and doping, Phys. Rev. Lett. 109, 035503 (2012).
  • H.-P. Komsa, S. Kurasch, O. Lehtinen, U. Kaiser, and A.V. Krasheninnikov, From point to extended defects in two-dimensional MoS2: Evolution of atomic structure under electron irradiation, Phys. Rev. B 88, 035301 (2013).
  • X. Zou, Y. Liu, and B.I. Yakobson, Predicting dislocations and grain boundaries in two-dimensional metal-disulfides from the first principles, Nano Lett. 13, 253 (2013).
  • P.Y. Huang, C.S. Ruiz-Vargas, A.M. van der Zande, W.S. Whitney, M.P. Levendorf, J.W. Kevek, S. Garg, J.S. Alden, C.J. Hustedt and Y. Zhu, Grains and grain boundaries in single-layer graphene atomic patchwork quilt, Nature 469, 389 (2011).
  • T. Li, Ideal strength and phonon instability in single-layer MoS2, Phys. Rev. B 85, 235407 (2012).
  • Q. Yue, J. Kang, Z. Shao, X. Zhang, S. Chang, G. Wang, S. Qina, and J. Li, Mechanical and electronic properties of monolayer MoS2 under elastic strain, Phys. Lett. A 376, 1166 (2012).
  • S. Bertolazzi, J. Brivio, and A. Kis, Stretching and Breaking of Ultrathin MoS2, ACS Nano, 5, 9703 (2011).
  • A. Castellanos-Gomez, M. Poot, G.A. Steele, H.S. J. van der Zant, N. Agrait, and G. Rubio-Bollinger, Elastic properties of freely suspended MoS2 nanosheets, Adv. Mater. 24, 772 (2012).
  • J. Feldman, Elastic constants of 2H-MoS2 and 2H-NbSe2 extracted from measured dispersion curves and linear compressibilities, J. Phys. Chem. Solids 37, 1141 (1976).
  • T. Lorenz, D. Teich, J.-O. Joswig, and G. Seifert, Theoretical study of the mechanical behavior of individual TiS2 and MoS2 nanotubes, J. Phys. Chem. C 116, 11714 (2012).
  • G. Seifert, H. Terrones, M. Terrones, G. Jungnickel, and T. Frauenheim, Structure and electronic properties of MoS2 nanotubes, Phys. Rev. Lett. 85, 146 (2000).
  • A. Castellanos-Gomez, M. Poot, G. Steele, H. van der Zant, N. Agrait, and G. Rubio-Bollinger, Mechanical properties of freely suspended semiconducting graphene-like layers based on MoS2, Nanoscale Res. Lett. 7, 233 (2012).
  • J.R. Davis, Stainless Steel, ASM International: Technology and Engineering Academic, New York (1994).
  • J.W. Suk, R.D. Piner, J. An, and R.S. Ruoff, Mechanical properties of monolayer graphene oxide, ACS Nano 4, 6557 (2010).
  • Q. Peng, W. Ji, and S. De, Mechanical properties of the hexagonal boron nitride monolayer: Ab-initio study, Comput. Mater. Sci. 56, 11 (2012).
  • C. Lee, X. Wei, J.W. Kysar, and J. Hone, Measurement of the elastic properties and intrinsic strength of monolayer graphene, Science 321, 385 (2008).
  • N. Lindahl, D. Midtvedt, J. Svensson, O.A. Nerushev, N. Lindvall, A. Isacsson, and E.E. B. Campbell, Determination of the bending rigidity of graphene via electrostatic actuation of buckled membranes, Nano Lett. 12, 3526 (2012).
  • K.N. Kudin, G.E. Scuseria, and B.I. Yakobson, C2F, BN, and C nanoshell elasticity from ab initio computations, Phys. Rev. B 64, 235406 (2001).
  • A. Griffith, The phenomenon of rupture and flow in solids, Philos. Trans. Roy. Soc. 221, 163 (1920).
  • C.A. Marianetti and H.G. Yevick, Failure mechanisms of graphene under tension, Phys. Rev. Lett. 105, 245502 (2010).
  • M. Dallavalle, N. Sandig, and F. Zerbetto, Stability, dynamics, and lubrication of MoS2 platelets and nanotubes, Langmuir 28, 7393 (2012).
  • S. Cahangirov, C. Ataca, M. Topsakal, H. Sahin, and S. Ciraci, Frictional figures of merit for single layered nanostructures, Phys. Rev. Lett. 108, 126103 (2012).
  • A. Socoliuc, R. Bennewitz, E. Gnecco, and E. Meyer, Transition from stick-slip to continuous sliding in atomic friction: entering a new regime of ultralow friction, Phys. Rev. Lett. 92, 134301 (2004).
  • L. Prandtl, Ein Gedankenmodell zur kinetischen Theorie der festen Korper, J. Appl. Mater. Mech. 8, 85 (1928).
  • G.A. Tomlinson, A molecular theory of friction, Phil. Mag. 7, 905 (1929).
  • C. Lee, Q. Li, W. Kalb, X.-Z. Liu, H. Berger, R.W. Carpick, and J. Hone, Frictional characteristics of atomically thin sheets, Science 328, 76 (2010).
  • V. Varshney, S.S. Patnaik, C. Muratore, A.K. Roy, A.A. Voevodin, and B.L. Farmer, MD simulations of molybdenum disulphide (MoS2): force-field parameterization and thermal transport behavior, Computat. Mater. Sci. 48, 101 (2010).
  • A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C.-Y. Chim, G. Galli, and F. Wang, Emerging photoluminescence in monolayer MoS2, Nano Lett. 10, 1271 (2010).
  • N. Zibouche, A. Kuca, and T. Heine, From layers to nanotubes: transition metal disulfides TMS2, Eur. Phys. J. B 85, 49 (2012).
  • A. Kumar and P. Ahluwalia, Electronic structure of transition metal dichalcogenides monolayers 1H-MX2 (M = Mo, W; X = S, Se, Te) from ab-initio theory: new direct band gap semiconductors, Eur. Phys. J. B 85, 186 (2012).
  • A. Klein, S. Tiefenbacher, V. Eyert, C. Pettenkofer, and W. Jaegermann, Electronic band structure of single-crystal and single-layer WS2: influence of interlayer van der Waals interactions, Phys. Rev. B 64, 205416 (2001).
  • K. Kam and B. Parkinson, Detailed photocurrent spectroscopy of the semiconducting group VIB transition metal dichalcogenides, J. Phys. Chem. 86, 463 (1982).
  • T. Böker, R. Severin, A. Muller, C. Janowitz, R. Manzke, D. Vob, P. Kruger, A. Mazur, and J. Pollmann, Band structure of MoS2, MoSe2, and α-MoTe2: angle-resolved photoelectron spectroscopy and ab-initio calculations, Phys. Rev. B 64, 235305 (2001).
  • A.K. Geim and I.V. Grigorieva, Van der Waals heterostructures, Nature 499, 419 (2013).
  • P. Johari and V. Shenoy, Tuning the electronic properties of semiconducting transition metal dichalcogenides by applying mechanical strains, ACS Nano 6, 5449 (2012).
  • E. Scalise, M. Houssa, G. Pourtois, V. Afanasev, and A. Stesmans, Strain-induced semiconductor to metal transition in the two-dimensional honeycomb structure of MoS2, Nano Res. 5, 43 (2012).
  • H. Shi, H. Pan, Y.-W. Zhang, and B.I. Yakobson, Quasiparticle band structures and optical properties of strained monolayer MoS2 and WS2, Phys. Rev. B 87, 155304 (2013).
  • W.S. Yun, S.W. Han, S.C. Hong, I.G. Kim, and J.D. Lee, Thickness and strain effects on electronic structures of transition metal dichalcogenides: 2H-MX2 semiconductors (M = Mo, W; X = S, Se, Te), Phys. Rev. B 85, 033305 (2012).
  • T. Cheiwchanchamnangij and W.R. L. Lambrecht, Quasiparticle band structure calculation of monolayer, bi-layer, and bulk MoS2, Phys. Rev. B 85, 205302 (2012).
  • R. Fivaz and E. Mooser, Mobility of charge carriers in semiconducting layer structures, Phys. Rev. 163, 743 (1967).
  • K. Kaasbjerg, K.S. Thygesen, and K.W. Jacobsen, Phonon-limited mobility in n-type single-layer MoS2 from first principles, Phys. Rev. B 85, 115317 (2012).
  • S.-M. Choi, S.-H. Jhi, and Y.-W. Son, Controlling energy gap of bilayer graphene by strain, Nano Lett. 10, 3486 (2010).
  • M. Farjam and H. Rai-Tabar, Band structure engineering of graphene by strain: first-principles, Phys. Rev. B 80, 167401 (2009).
  • V.M. Pereira, A.H. Neto, and N.M. Peres, Tight-binding approach to uniaxial strain in graphene, Phys. Rev. B 80, 045401 (2009).
  • K.S. Kim, Y. Zhao, H. Jang, S.Y. Lee, J.M. Kim, J.H. Ahn, P. Kim, J.Y. Choi, and B.H. Hong, Growth of graphene films for stretchable transparent electrodes, Nature 457, 706 (2009).
  • Z.H. Ni, T. Yu, Y.H. Lu, Y.Y. Wang, Y.P. Feng, and Z.X. Shen, Uniaxial strain on graphene: Raman spectroscopy study and band-gap opening, ACS Nano 2, 2301 (2008).
  • K. He, C. Poole, K.F. Mak, and J. Shan, Experimental demonstration of continuous electronic structure tuning via strain in atomically thin MoS2, Nano Lett. 13, 2931 (2013).
  • Y.Y. Hui, X. Liu, W. Jie, N.Y. Chan, J. Hao, Y.-T. Hsu, L.-J. Li, W. Guo, and S.P. Lau, Exceptional tunability of band energy in a compressively strained trilayer MoS2 sheet, ASC Nano, 7, 7126 (2013).
  • A. Ramasubramaniam, D. Naveh, and E. Towe, Tunable band gaps in bilayer transition-metal Dichalcogenides, Phys. Rev. B 84, 205325 (2011).
  • J. He, K. Wu, R. Sa, Q. Li, and Y. Wei, Magnetic properties of nonmetal atoms absorbed MoS2 monolayers, Appl. Phys. Lett. 96, 082504 (2010).
  • E.W. K. Koh, C.H. Chiu, Y.L. Y. W. Zhang, and H. Pan, Hydrogen adsorption on and diffusion through MoS2 monolayer: first-principles study, Int. J. Hydro. Ener, 37, 14323 (2012).
  • Q. Yue, S. Chang, S. Qin, and J. Li, Functionalization of monolayer MoS2 by substitutional doping, Phys. Lett. A 377, 1362 (2013).
  • K. Dolui, I. Rungger, C.D. Pemmaraju, and S. Sanvito, Possible doping strategies for MoS2 monolayers: An ab initio study, Phys. Rev. B 88, 075420 (2013).
  • S. Iijima, Helical microtubules of graphitic carbon, Nature 354, 56 (1991).
  • P. Harris, Carbon Nanotubes and Related Structures, 1st ed., Cambridge University Press, Cambridge (2002).
  • R. Tenne, L. Margulis, M. Genut, and G. Hodes, Polyhedral and cylindrical structures of tungsten disulphide, Nature 360, 444 (1992).
  • R.R. Chianelli, E.B. Prestridge, T.A. Pecorano, and J.P. DeNeufville, Molybdenum disulfide in the poorly crystalline “rag” structure, Science 203, 1105 (1979).
  • J.V. Sanders, High-resolution electron microscopy of some catalytic particles, Chem. Scr. 14, 141 (1979).
  • N. Hamada, S. Sawada, and A. Oshiyama, New one-dimensional conductors: Graphitic microtubules, Phys. Rev. Lett. 68, 1579 (1992).
  • R. Tenne, M. Homyonfer, and Y. Feldman, Nanoparticles of layered compounds with hollow cage structures (inorganic fullerene-like structures), Chem. Mater. 10, 3225 (1998).
  • S.S. Alexandre, M.S. C. Mazzoni, and H. Chacham, Stability, geometry, and electronic structure of the boron nitride B36N36 fullerene, Appl. Phys. Lett. 75, 61 (1999).
  • X. Blase, A.D. Vita, J.C. Charlier, and R. Car, Frustration effects and microscopic growth mechanisms for BN nanotubes, Phys. Rev. Lett. 80, 1666 (1998).
  • M. Terrones, W.K. Hsu, H. Terrones, and J.P. Zhang, Metal particle catalysed production of nanoscale BN structures, Chem. Phys. Lett. 259, 568 (1996).
  • K. Tibbets, R. Doe, and G. Ceder, Polygonal model for layered inorganic nanotubes, Phys. Rev. B 80, 014102 (2009).
  • P. Santiago, J.A. Ascencio, D. Mendoza, M. Perez-Alvarez, A. Espinosa, C. Reza-Sangerman, P. Shabes-Retchkimansc, G.A. Camacho-Bragado, and M. Jose-Yacaman, Synthesis and structural determination of twisted MoS2 nanotubes, Appl. Phys. A 78, 513 (2004).
  • D. Teich, T. Lorenz, J.-O. Joswig, G. Seifert, D.-B. Zhang, and T. Dumitric, Structural and electronic properties of helical TiS2 nanotubes studied with objective molecular dynamics, J. Phys. Chem. C 115, 6392 (2011).
  • A. Johansson, G. Sambandamurthy, D. Shahar, N. Jacobson, and R. Tenne, Nanowire acting as a superconducting quantum interference device, Phys. Rev. Lett. 95, 116805 (2005).
  • I. Kaplan-Ashiri, S.R. Cohen, K. Gartsman, V. Ivanovskaya, T. Heine, G. Seifert, I. Wiesel, H.D. Wagner, and R. Tenne, On the mechanical behavior of WS2 nanotubes under axial tension and compression, Proc. Natl. Acad. Sci. U.S.A. 103, 523 (2006).
  • I. Kaplan-Ashiri and R. Tenne, Mechanical properties of WS2 nanotubes, J. Cluster Sci. 18, 549 (2007).
  • M.B. Sadan, L. Houben, A.N. Enyashin, G. Seifert, and R. Tenne, Atom by atom: HRTEM insights into inorganic nanotubes and fullerene-like structures, Proc. Natl. Acad. Sci. U.S.A. 41, 15643 (2008).
  • D.-B. Zhang, T. Dumitrica, and G. Seifert, Helical nanotube structures of MoS2 with intrinsic twisting: an objective molecular dynamics study, Phys. Rev. Lett. 104, 065502 (2010).
  • N. Chopra and A. Zettl, Measurement of the elastic modulus of a multi-wall boron nitride nanotube, Solid State Commun. 105, 297 (1998).
  • D. Golberg, P. Costa, O. Lourie, M. Mitome, X. Bai, K. Kurashima, C. Zhi, C.C. Tang, and Y. Bando, Direct force measurements and kinking under elastic deformation of individual multi-walled boron nitride nanotubes, Nano Lett. 7, 2146 (2007).
  • A. Suryavanshi, M. Yu, J. Wen, C. Tang, and Y. Bando, Elastic modulus and resonance behavior of boron nitride nanotubes, Appl. Phys. Lett. 84, 2527 (2004).
  • C. Zhi, Y. Bando, C. Tang, and D. Goldberg, Boron nitride nanotubes, Mater. Sci. Eng. R 70, 92 (2010).
  • A. Kis, D. Mihailovic, M. Remskar, A. Mrzel, A. Jesih, I. Piwonsky, A. Kuli, W. Benoit, and L. Forro, Shear and Young's moduli of MoS2 nanotube ropes, Adv. Mater. 15, 733 (2003).
  • G.S. Brady, H.R. Clauser, and J.A. Vaccari, Materials Handbook, McGraw-Hill, New York (2002).
  • E.S. Penev, V.I. Artyukhov, F. Ding, and B.I. Yakobson, Unfolding the fullerene: nanotubes, graphene and polyelemental varieties by simulations, Adv. Mater. 24, 4956 (2012).
  • W.H. Duan, Q. Wang, K.M. Liew, and X. He, Molecular mechanics modeling of carbon nanotube fracture, Carbon 45, 1769 (2007).
  • Y. Zhu, T. Sekine, Y. Li, M. Fay, Y. Zhao, C.H. P. Poa, W. Wang, M. Roe, P. Brown, N. Fleischer, and R. Tenne, Shock-absorbing and failure mechanism of WS2 and MoS2 nanoparticles with fullerene-like structure under shockwave pressures, J. Amer. Chem. Soc. 127, 16263 (2005).
  • Y.Q. Zhu, T. Sekine, K. Brigatti, S. Firth, R. Tenne, R. Rosentsveig, H. Kroto, and D. Walton, Shock-wave resistance of WS2 nanotubes, J. Amer. Chem. Soc. 125, 1329 (2003).
  • G. Seifert, H. Terrones, M. Terrones, G. Jungnickel, and T. Frauenheim, On the electronic structure of WS2 nanotubes, Solid State Commun. 114, 245 (2000).
  • L. Scheffer, R. Rosentzveig, A. Margolin, R. Popovitz-Biro, G. Seifert, S.R. Cohen, and R. Tenne, Scanning tunneling microscopy study of WS2 nanotubes, Phys. Chem. Chem. Phys. 4, 2095 (2002).
  • T.W. Odom, J.-L. Huang, P. Kim, and C.M. Lieber, Atomic structure and electronic properties of single-walled carbon nanotubes, Nature 391, 62 (1998).
  • E. Cruz-Silva, F. Lopez, E. Munoz-Sandoval, B.G. Sumpter, H. Terrones, J.-C. Charlier, V. Meunier, and M. Terrones, Electronic transport and mechanical properties of phosphorus- and phosphorus nitrogen-doped carbon nanotubes, ASC Nano 3, 1913 (2009).
  • L. Xu, Electronic Structure of MoS2 nanotubes, . Ph.D. thesis, Clemson University, (2007).
  • V. Ivanovskaya, T. Heine, S. Gemming, and G. Seifert, Structure, stability and electronic properties of composite Mo1–xNbxS2 nanotubes, Phys. Statist. Solidi B 243, 1757 (2006).
  • Q. Li, J.T. Newberg, E. Walter, J. Hemminger, and R. Penner, Polycrystalline molybdenum disulfide (2H−MoS2) nano- and microribbons by electrochemical/chemical synthesis, Nano Lett. 4, 277 (2004).
  • X. Liu, T. Xu, X. Wu, Z. Zhang, J. Yu, H. Qiu, J.H. Hong, C.H. Jin, J.X. Li, X.R. Wang, L.T. Sun, and W. Guo, Top-down fabrication of sub-nanometre semiconducting nanoribbons derived from molybdenum disulfide sheets, Nat. Comm. 4, 1776 (2013)
  • H. Pan and Y.W. Zhang, Edge-dependent structural, electronic and magnetic properties of MoS2 nanoribbons, J. Mater. Chem. 22, 7280 (2012).
  • Y. Li, Z. Zhou, S. Zhang, and Z. Chen, MoS2 nanoribbons: high stability and unusual electronic and magnetic properties, J. Amer. Chem. Soc. 130, 16739 (2008).
  • A. Du, S.C. Smith, and G. Lu, First-principle studies of electronic structure and C-doping effect in boron nitride nanoribbon, Chem. Phys. Lett. 447, 181 (2007).
  • C.H. Park and S.G. Louie, Energy gaps and stark effect in boron nitride nanoribbons, Nano Lett. 8, 2200 (2008).
  • H. Pan and Y.-W. Zhang, Tuning the electronic and magnetic properties of MoS2 nanoribbons by strain engineering, J. Phys. Chem. C 116, 11752 (2012).
  • J. Zhang, J.M. Soon, K.P. Loh, J.H. Yin, J. Ding, M.B. Sullivian, and P. Wu, Magnetic Molybdenum Disulfide Nanosheet Films, Nano Lett. 7, 2370 (2007).
  • K.V. Bets and B.I. Yakobson, Spontaneous twist and intrinsic instabilities of pristine graphene nanoribbons, Nano Res. 2, 161 (2009).
  • V.B. Shenoy, C.D. Reddy, A. Ramasubramaniam, and Y.W. Zhang, Edge stress induced spontaneous twisting of graphene nanoribbons, Phys. Rev. Lett. 101, 245501 (2008).
  • J. Deng, I. Fampiou, J.Z. Liu, and A. Ramasubramaniam, Edge stresses of non-stoichiometric edges in two-dimensional crystals, Appl. Phys. Lett. 100, 251906 (2012).
  • K. Albe and A. Klein, Density functional theory calculations of electronic band structure of single crystal and single-layer WS2, Phys. Rev. B 66, 073413 (2002).
  • K. Dolui, C.D. Pemmaraju, and S. Sanvito, Electric field effects on armchair MoS2 nanoribbons, ACS Nano 6, 4823 (2012).
  • L. Kou, C. Tang, Y. Zhang, T. Heine, C. Chen, and T. Frauenheim, Tuning Magnetism and electronic phase transitions by strain and electric field in zigzag MoS2 banoribbons, J. Phys. Chem. Lett. 3, 2934 (2012).
  • Y. Cheng, Z. Zhu, W.B. Mi, Z.B. Guo, and U. Schwingenschlsogl, Prediction of two-dimensional diluted magnetic semiconductors: doped monolayer MoS2 systems, Phys. Rev. B 87, 100401(R) (2013).
  • N. Bertram, J. Cordes, Y. Kim, G. Gantefo, S. Gemming, and G. Seifert, Nanoplatelets made from MoS2 and WS2, Chem. Phys. Lett. 418, 36 (2006).
  • S. Helveg, J.V. Lauritsen, E. Lagsgaard, I. Stensgaard, J.K. Norskov, B.S. Clausen, H. Topsoe, and F. Besenbacher, Atomic-scale structure of single-layer MoS2 nanoclusters, Phys. Rev. Lett. 84, 951 (2000).
  • J.V. Lauritsen, J. Kibsgaard, S. Helveg, H. Topsoe, B. Clausen, E. Laesgaard, and F. Besenbacher, Size-dependent structure of MoS2 Nanocrystals, Nat. Nanotechnol. 2, 53 (2007).
  • L.S. Byskov, J. Norskov, B.S. Clausen, and H. Topsoe, Edge termination of MoS2 and CoMoS catalyst particles, Catal. Lett. 47, 177 (1997).
  • L.S. Byskov, J. Norskov, B.S. Clausen, and H. Topsoe, DFT calculations of unpromoted and promoted MoS2-based hydrodesulfurization catalysts, J. Catal. 187, 109 (1999).
  • M.V. Bollinger, J.V. Lauritsen, K.W. Jacobsen, J.K. Norskov, S. Helveg, and F. Besenbacher, One-dimensional metallic edge states in MoS2, Phys. Rev. Lett. 87, 196803 (2001).
  • H.R. Gutierrez, N. Perea-Lopez, A.L. Elias, A. Berkdemir, B. Wang, R. Lv, F. Lopez-Urias, V.H. Crespi, H. Terrones, and M. Terrones, Extraordinary room temperature photoluminescence in triangular WS2 monolayers, Nano Lett. 13, 3447 (2013).
  • M. Bar-Sadan, A.N. Enyashin, Gemming, R. Popovitz-Biro, S.Y. Hong, Y. Prior, R. Tenne, and G. Seifert, Structure and stability of molybdenum sulfide fullerenes, J. Phys. Chem. B 110, 25399 (2006).
  • A.N. Enyashin, S. Gemming, M. Bar-Sadan, R. Popovitz-Biro, S. You-Hong, Y. Prior, R. Tenne, and G. Seifert, Structure and stability of molybdenum sulfide fullerenes, Angew. Chem. Int. Ed. 46, 623 (2007).
  • A.N. Enyashin and G. Seifert, Structure, stability and electronic properties of TiO2 nanostructures, Phys. Status Solidi B 242, 1361 (2005).
  • P.A. Parilla, A.C. Dillon, K.M. Jones, G. Riker, D.L. Schulz, D.S. Ginley, and M.J. Heben, The first true inorganic fullerenes, Nature 397, 114 (1999).
  • N.G. Chopra, R.J. Luyken, K. Cherrey, V.H. Crespi, M.L. Cohen, S.G. Louie, and A. Zettl, Boron-nitride nanotubes, Science 269, 966 (1995).
  • P. Murugan, V. Kumar, Y. Kawazoe, and N. Ota, Atomic structures and magnetism in small MoS2 and WS2 clusters, Phys. Rev. A 71, 063203 (2005).
  • A. Albu-Yaron, M. Levy, R. Tenne, R. Popovitz-Biro, M. Weidenbach, M. Bar-Sadan, L. Houben, A.N. Enyashin, G. Seifert, D. Feuermann, E.A. Katz, and J.M. Gordon, MoS2 Hybrid nanostructures: from octahedral to quasi-spherical shells within individual nanoparticles, Angew. Chem. 123, 1850 (2011).
  • D.J. Srolovitz, S. Safran, M. Homyonfer, and R. Tenne, Morphology of nested fullerenes, Phys. Rev. Lett. 74, 1779 (1995).
  • D.J. Srolovitz, S. Safran, and R. Tenne, Elastic equilibrium of curved thin films, Phys. Rev. E 49, 5260 (1994).
  • M. Stefanov, A.N. Enyashin, T. Heine, and G. Seifert, Nanolubrication: How do MoS2-based nanostructures lubricate?, J. Phys. Chem. C 112, 17765 (2008).
  • L. Rapoport, Y. Bilik, Y. Feldman, M. Homyonfer, S.R. Cohen, and R. Tenne, Hollow nanoparticles of WS2 as potential solid-state lubricants, Nature 387, 791 (1997).
  • M. Chhowalla and G.A. J. Amaratung, Thin films of fullerene-like MoS2 nanoparticles with ultra-low friction and wear, Nature 407, 14 (2000).
  • C. Drummond, N. Alcantar, J. Israelachvili, R. Tenne, and Y. Golan, Microtribology and friction induced material transfer in WS2 nanoparticle additives, Adv. Funct. Mater. 11, 348 (2001).
  • L. Rapoport, Y. Feldman, M. Homyonfer, H. Cohen, J. Sloan, J.L. Hutchison, and R. Tenne, Inorganic fullerene-like material as additives to lubricants: structure–function relationship, Wear 229, 975 (1999).
  • L. Joly-Pottuz, J.M. Martin, F. Dassenoy, M. Belin, G. Montagna, B. Reynard, and N. Fleischer, Pressure induced exfoliation of inorganic fullerene-like WS2 particles in a Hertzian contact, J. Appl. Phys. 99, 023524 (2006).
  • J. Tannous, F. Dassenoy, A. Bruhacs, and W. Tremel, Pressure induced exfoliation of inorganic fullerene-like WS2 particles in a Hertzian contact, Trib. Lett. 37, 83 (2010).
  • I. Lahouij, B. Vacher, J. Martin, and F. Dassenoy, IF-MoS2 based lubricants: influence of size, shape and crystal structure, Wear 296, 558 (2012).
  • P. Niederhauser, H. Hintermann, and M. Maillat, Moisture-resistant MoS2-based composite lubricant films, Thin Solid Films 108, 209 (1983).
  • O. Eidelman, H. Friedman, Y. Feldman, A. Moshkovich, and V. Perfiliev, Fabrication of self-lubricating cobalt coatings on metal surfaces, Nanotechnology 18, 115703 (2007).
  • D.H. Kim, J. Ahn, W.M. Choi, H. Kim, T. Kim, J. Song, Y.Y. Huang, Z. Liu, C. Lu, and J.A. Rogers, Stretchable and foldable silicon integrated circuits, Science 320, 507 (2008).
  • Y. Yoon, K. Ganapathi, and S. Salahuddin, How good can monolayer MoS2 transistors be?, Nano Lett. 11, 3768 (2011).
  • B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, Single-layer MoS2 transistors, Nat. Nanotechhol. 6, 147 (2011).
  • B. Radisavljevic, M.B. Whitwick, and A. Kis, Integrated circuits and logic operations based on single-layer MoS2, ACS Nano 5, 9934 (2011).
  • L. Britnell, R.V. Gorbachev, R. Jalil, B.D. Belle, F. Schedin, A. Mishchenko, T. Georgiou, M.I. Katsnelson, L. Eaves, S.V. Morozov, N.M. R. Peres, J. Leist, A.K. Geim, K.S. Novoselov, and L.A. Ponomarenko, Field-effect tunneling transistor based on vertical graphene heterostructures, Science 335, 947 (2012).
  • D.J. Late, B. Liu, H.S. S. R. Matte, V.P. Dravid, and C.N. R. Rao, Hysteresis in single-layer MoS2 field effect transistors, ACS Nano 6, 5635 (2012).
  • R.H. Friend and A.D. Yoffe, Electronic properties of intercalation complexes of the transition metal dichalcogenides, Adv. Phys. 36, 1 (1987).
  • M. Shanmugam, T. Bansal, C.A. Durcan, and B. Yu, Molybdenum disulphide/titanium dioxide nanocomposite-poly 3-hexylthiophene bulk heterojunction solar cell, Appl. Phys. Lett. 100, 153901 (2012).
  • H.S. Lee, S.-W. Min, Y.-G. Chang, M.K. Park, T. Nam, H. Kim, J.H. Kim, S. Ryu, and S. Im, MoS2 nanosheet phototransistors with thickness modulated optical energy gap, Nano Lett. 12, 446 (2012).
  • R. Chianelli, M. Siadati, M.D. la Rosa, G. Berhault, J. Wilcoxon, and R. Bearden, Catalytic properties of single layers of transition metal sulfide catalytic materials, Catal. Rev. 48, 1 (2006).
  • W. Vielstich, H.A. Gasteiger, and H. Yokokawa, Handbook of Fuel Cells: Advances in Electrocatalysis, Materials, Diagnostics and Durability (vol. 5–6), Wiley, New York (2009).
  • W. Jaegermann and H. Tributsch, Interfacial properties of semiconducting transition metal chalcogenides, Prog. Surf. Sci. 29, 1 (1988).
  • F. Jaramillo, K.P. Jorgensen, J. Bonde, J.H. Nielsen, S. Horch, and I. Chorkendorff, Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts, Science 317, 100 (2007).
  • T.F. Jaramillo, J. Bonde, J. Zhang, B.-L. Ooi, K. Andersson, J. Ulstrup, and I.J. Chorkendorff, Hydrogen evolution on supported incomplete cubane-type [Mo3S4]4+ electrocatalysts, Phys. Chem. C 112, 17492 (2008).
  • Y. Li, H. Wang, L. Xie, Y. Liang, G. Hong, and H. Dai, MoS2 Nanoparticles grown on graphene: an advanced catalyst for the hydrogen evolution reaction, J. Amer. Chem. Soc. 133, 7296 (2011).
  • C. Ataca and S. Ciraci, Dissociation of H2O at the vacancies of single-layer MoS2, Phys. Rev. B 85, 195410 (2012).
  • J. Yang, A. Sudik, C. Wolverton, and D. Siegel, High capacity hydrogen storage materials: attributes for automotive applications and techniques for materials discovery, Chem. Soc. Rev. 39, 656 (2010).
  • P. Benard, R. Chahine, P. Chandonia, D. Cossement, G. Dorval-Douville, L. Lafi, P. Lachance, and R. Paggiaro, Comparison of hydrogen adsorption on nanoporous materials, J. Alloy Compd. 380, 446 (2007).
  • A. Dillion and M. Heben, Hydrogen storage using carbon adsorbents: past, present and future, Appl. Phys. A 72, 133 (2001).
  • R. Ding, G. Lu, Z. Yan, and M. Wilson, Recent advances in the preparation and utilization of carbon nanotubes for hydrogen storage, J. Nanosci. Nanotechnol. 1, 7 (2001).
  • M. Hirscher, M. Becher, M. Haluska, U. Dettlaff-Weglikowska, A. Quintel, G.S. Duesberg, Y.-M. Choi, P. Downes, M. Hulman, S. Roth, I. Stepanek, and P. Bernier, Hydrogen storage in sonicated carbon materials, Appl. Phys. A 72, 129 (2001).
  • V. Meregalli and M. Parrinello, Review of theoretical calculations of hydrogen storage in carbon-based materials, Appl. Phys. A 72, 143 (2001).
  • L. Schlapbach and A. Zuttel, Hydrogen storage materials for mobile applications, Nature 414, 353 (2001).
  • J. Chen and W. Fu, Review of hydrogen storage in inorganic fullerene-like nanotubes, Appl. Phys. A 78, 989 (2004).
  • J. Chen, S.-L. Li, Z.-L. Tao, Y.-T. Shen, and C.-X. Cui, Titanium disulfide nanotubes as hydrogen storage materials, J. Amer. Chem. Soc. 125, 5284 (2003).
  • M. Osada and T. Sasaki, Exfoliated oxide nanosheets: new solution to nanoelectronics, J. Mater. Chem. 19, 2503 (2009).
  • M. Osada and T. Sasaki, Two-dimensional dielectric nanosheets: novel nanoelectronics from nanocrystal building blocks, Adv. Mater. 24, 210 (2012).
  • G. Kickelbick, Synthesis and tribological performance of novel MoWS2 inorganic fullerenes, Prog. Polym. Sci. 28, 83 (2003).
  • M. Naffakh, Z. Martin, N. Fanegas, C. Marco, M.A. Gomez, and I. Jimenez, Influence of inorganic fullerene-like WS2 nanoparticles on the thermal behavior of isotactic polypropylene, J. Polym. Sci. Pol. Phys. 45, 2309 (2007).
  • L. Rapoport, O. Nepomnyashchy, A. Verdyan, R.P.-B. and Y. Volovik, and B. Ittah, Polymer Nanocomposites with Fullerene-like Solid Lubricant, Adv. Eng. Mater. 6, 44 (2004).
  • X. Hou, C.X. Shan, and K.L. Choy, Microstructures and tribological properties of PEEK-based nanocomposites coatings incorporating inorganic fullerene-like nanoparticle, Surf. Coat. Technol. 202, 2287 (2008).
  • Q. Tang and Z. Zhou, Graphene analogous low-dimensional materials, Prog. Mater. Sci. 58, 1244 (2013).
  • S. Cahangirov, M. Topsakal, E. Akturk, H. Sahin, and S. Ciraci, Two- and one-dimensional honeycomb structures of silicon and germanium, Phys. Rev. Lett. 102, 236804 (2009).
  • Z. Ni, Q. Liu, K. Tang, J. Zheng, J. Zhou, R. Qin, Z. Gao, D. Yu, and J. Lu, Tunable bandgap in silicene and germanene, Nano Lett. 12, 113 (2012).
  • A. Ueno, T. Fujita, M. Matsue, H. Yanagisawa, C. Oshima, F. Patthey, H.C. Ploigt, W.D. Schneider, and S. Otani, Scanning tunneling microscopy study on a BC3 covered NbB2(0001) surface, Surf. Sci. 600, 3518 (2006).
  • M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J. Niu, H. Heon, L. Hultman, Y. Gogotsi, and M.W. Barsoum, Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2, Adv. Mater. 23, 4248 (2011).
  • P. Amo-Ochoa, L. Welte, R. Gonzalez-Prieto, P.J. S. Miguel, C.J. Gomez-Garcia, E. Mateo-Marti, S. Delgado, J. Gomez-Herrerob, and F. Zamora, Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2, Chem. Comm. 46, 3262 (2010).
  • H. Zhang, C.-X. Liu, X.-L. Qi, X. Dai, Z. Fang, and S.-C. Zhang, Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface, Nat. Phys. 5, 438 (2009).
  • S. Souma, K. Eto, M. Nomura, K. Nakayama, T. Sato, T. Takahashi, K. Segawa, and Y. Ando, Direct observation of the topological surface states in lead-based ternary telluride Pb(Bi1-xSbx)2Te4, Phys. Rev. Lett. 108, 116801 (2012).
  • Z. Wang, Z. Liu, and F. Liu, Organic topological insulators in organometallic lattices, Nat. Commun. doi:10.1038/ncomms2451, (2013).
  • Z.F. Wang, N. Su, and F. Liu, Prediction of a two-dimensional organic topological insulator, Nano Lett. 13, 2842 (2013).
  • Z.F. Wang, Z. Liu, and F. Liu, Quantum anomalous hall effect in 2D organic topological insulators, Phys. Rev. Lett. 110, 196801 (2013).
  • Z. Liu, Z.F. Wang, J.W. Mei, Y.S. Wu, and F. Liu, Flat chern band in a two-dimensional organometallic framework, Phys. Rev. Lett. 110, 106804 (2013).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.