2,343
Views
128
CrossRef citations to date
0
Altmetric
Reviews

Carbon Nanotube Reinforced Titanium Metal Matrix Composites Prepared by Powder Metallurgy—A Review

, &

REFERENCES

  • A. Agarwal, S. R. Bakshi, and D. Lahiri, Carbon Nanotubes: Reinforced Metal Matric Composites, CRC Press, Boca Raton (2010).
  • S. Bakshi, D. Lahiri, and A. Agarwal, Carbon nanotube reinforced metal matrix composites- a review, Int. Mater. Rev. 55, 41 (2010).
  • S. Iijima, C. Brabec, A. Maiti, and J. Bernholc, Structural flexibility of carbon nanotubes, J. Chem. Phys. 104, 2089 (1996).
  • O. Breuer and U. Sundararaj, Big returns from small fibers: a review of polymer/carbon nanotube composites, Polym. Compos. 25, 630 (2004).
  • J. N. Coleman, U. Khan, and Y. K. Gun’ko, Mechanical reinforcement of polymers using carbon nanotubes, Adv. Mater. 18, 689 (2006).
  • X. Chen, J. Xia, J. Peng, W. Li, and S. Xie, Mechanical behavior of phenolic-based composites reinforced with multi-walled carbon nanotubes, Carbon 44, 1 (2006).
  • M. A. Imam, Q. Zeng, Y. Bayazitoglu, K. Wilson, E. V. Barrera, and J. Luna, Metal coated functionalized single-walled carbon nanotubes for composites application, Mater. Sci. Forum 561, 655 (2007).
  • R. H. Baughman, A. A. Zakhidov, and W. A. de Heer, Carbon nanotubes-the route toward applications, Science 297, 787 (2002).
  • M. S. Dresselhaus and P. Avouris, Introduction to Carbon Materials Research. Carbon Nanotubes. Springer US, 1–9 (2001).
  • D. Miracle, Metal matrix composites–from science to technological significance, Compos. Sci. Technol. 65, 2526 (2005).
  • C. Leyens, J. Hausmann, and J. Kumpfert, Continuous fiber reinforced titanium matrix composites: fabrication, properties, and applications, Adv. Eng. Mater. 5, 399 (2003).
  • M. Treacy, T. Ebbesen, and J. Gibson, Exceptionally high Young's modulus observed for individual carbon nanotubes, Nature 381, 678 (1996).
  • J. Sun, L. Gao, and W. Li, Colloidal processing of carbon nanotube/alumina composites, Chem. Mater. 14, 5169 (2002).
  • R. S. Ruoff, D. Qian, and W. K. Liu, Mechanical properties of carbon nanotubes: theoretical predictions and experimental measurements, CR. Physique 4, 993 (2003).
  • W. A. De Heer, Nanotubes and the pursuit of applications, MRS Bull. 29, 281 (2004).
  • B. Demczyk, Y. Wang, J. Cumings, M. Hetman, W. Han, A. Zettl, and R. Ritchie, Direct mechanical measurement of the tensile strength and elastic modulus of multiwalled carbon nanotubes, Mater. Sci. Eng., A 334, 173 (2002).
  • P. J. Harris and P. J. P. J. F. Harris, Carbon Nanotubes and Related Structures: New Materials for the Twenty-First Century, Cambridge University Press (2001).
  • T. Kuzumaki, K. Miyazawa, H. Ichinose, and K. Ito, Processing of carbon nanotube reinforced aluminum composite, J. Mater. Res. 13, 2445 (1998).
  • T. Kuzumaki, O. Ujiie, H. Ichinose, and K. Ito, Mechanical characteristics and preparation of carbon nanotube fiber-reinforced Ti composite, Adv. Eng. Mater. 2, 416 (2000).
  • K. Kondoh, T. Threrujirapapong, H. Imai, J. Umeda, and B. Fugetsu, Characteristics of powder metallurgy pure titanium matrix composite reinforced with multi-wall carbon nanotubes, Compos. Sci. Technol. 69, 1077 (2009).
  • C. He, N. Zhao, C. Shi, X. Du, J. Li, H. Li, and Q. Cui, An approach to obtaining homogeneously dispersed carbon nanotubes in Al powders for preparing reinforced Al-matrix composites, J. Adv. Mater. 19, 1128 (2007).
  • L. Vaisman, H. D. Wagner, and G. Marom, The role of surfactants in dispersion of carbon nanotubes, Adv. Colloid Interface Sci. 128, 37 (2006).
  • J. Yu, N. Grossiord, C. E. Koning, and J. Loos, Controlling the dispersion of multi-wall carbon nanotubes in aqueous surfactant solution, Carbon 45, 618 (2007).
  • R. Andrews, D. Jacques, M. Minot, and T. Rantell, Multiwall carbon nanotubes: synthesis and application, Macromol. Mater. Eng. 287, 395 (2002).
  • P. Harris, Carbon nanotube composites, Int. Mater. Rev. 49, 31 (2004).
  • W. Huang, Y. Lin, S. Taylor, J. Gaillard, A. M. Rao, and Y.-P. Sun, Sonication-assisted functionalization and solubilization of carbon nanotubes, Nano Lett. 2, 231 (2002).
  • T. Saito, K. Matsushige, and K. Tanaka, Chemical treatment and modification of multi-walled carbon nanotubes, Phys. B Condens. Matt. 323, 280 (2002).
  • F. H. Gojny, J. Nastalczyk, Z. Roslaniec, and K. Schulte, Surface modified multi-walled carbon nanotubes in CNT/epoxy-composites, Chem. Phys. Lett. 370, 820 (2003).
  • V. Datsyuk, M. Kalyva, K. Papagelis, J. Parthenios, D. Tasis, A. Siokou, I. Kallitsis, and C. Galiotis, Chemical oxidation of multiwalled carbon nanotubes, Carbon 46, 833 (2008).
  • L. Bokobza and J. Zhang, Raman spectroscopic characterization of multiwall carbon nanotubes and of composites, Express. Polym. Lett. 6, 601 (2012).
  • T. Belin and F. Epron, Characterization methods of carbon nanotubes: a review, Mater. Sci. Eng. B 119, 105 (2005).
  • S. Costa, E. Borowiak-Palen, M. Kruszyńska, A. Bachmatiuk, and R. Kaleńzuk, Characterization of carbon nanotubes by Raman spectroscopy, Mater. Sci. 26, 433 (2008).
  • K. A. Wepasnick, B. A. Smith, J. L. Bitter, and D. H. Fairbrother, Chemical and structural characterization of carbon nanotube surfaces, Anal. Bioanal. Chem. 396, 1003 (2010).
  • M. E. Itkis, D. E. Perea, R. Jung, S. Niyogi, and R. C. Haddon, Comparison of analytical techniques for purity evaluation of single-walled carbon nanotubes, J. Amer. Chem. Soc. 127, 3439 (2005).
  • R. A. DiLeo, B. J. Landi, and R. P. Raffaelle, Purity assessment of multiwalled carbon nanotubes by Raman spectroscopy, J. Appl. Phys. 101, 064307 (2007).
  • B. Fugetsu, W. Han, N. Endo, Y. Kamiya, and T. Okuhara, Disassembling single-walled carbon nanotube bundles by dipole/dipole electrostatic interactions, Chem. Lett. 34, 1218 (2005).
  • F. Xue, S. Jiehe, F. Yan, and C. Wei, Preparation and elevated temperature compressive properties of multi-walled carbon nanotube reinforced Ti composites, Mater. Sci. Eng. A 527, 1586 (2010).
  • Y. Zhang, T. Ichihashi, E. Landree, F. Nihey, and S. Iijima, Heterostructures of single-walled carbon nanotubes and carbide nanorods, Science 285, 1719 (1999).
  • J.-O. Lee, C. Park, J.-J. Kim, J. Kim, J. W. Park, and K.-H. Yoo, Formation of low-resistance ohmic contacts between carbon nanotube and metal electrodes by a rapid thermal annealing method, J. Phys. D: Appl. Phys. 33, 1953 (2000).
  • S. Li, B. Sun, H. Imai, T. Mimoto, and K. Kondoh, Powder metallurgy titanium metal matrix composites reinforced with carbon nanotubes and graphite, Composites Part A 48, 57 (2013).
  • M. Reihanian, E. Bagherpour, and M. Paydar, A model for volume fraction and particle size selection in tri-modal metal matrix composites, Mater. Sci. Eng. A 513, 172 (2009).
  • A. Desai and M. Haque, Mechanics of the interface for carbon nanotube–polymer composites, Thin Wall Struct. 43, 1787 (2005).
  • T. Hertel, R. Martel, and P. Avouris, Manipulation of individual carbon nanotubes and their interaction with surfaces, J. Phys. Chem. B 102, 910 (1998).
  • L. Jiang, Y. Huang, H. Jiang, G. Ravichandran, H. Gao, K. Hwang, and B. Liu, A cohesive law for carbon nanotube/polymer interfaces based on the van der Waals force, J. Mech. Phys. Solids 54, 2436 (2006).
  • X. Zeng, G. Zhou, Q. Xu, Y. Xiong, C. Luo, and J. Wu, A new technique for dispersion of carbon nanotube in a metal melt, Mater. Sci. Eng. A 527, 5335 (2010).
  • J. Liao and M.-J. Tan, Mixing of carbon nanotubes (CNTs) and aluminum powder for powder metallurgy use, Powder Technol. 208, 42 (2011).
  • F. Akhtar, An investigation on the solid state sintering of mechanically alloyed nano-structured 90W–Ni–Fe tungsten heavy alloy, Int. J. Refract. Met. Hard Mater. 26, 145 (2008).
  • I. Hussainova, Effect of microstructure on the erosive wear of titanium carbide-based cermets, Wear 255, 121 (2003).
  • F. Akhtar, I. S. Humail, S. Askari, J. Tian, and G. Shiju, Effect of WC particle size on the microstructure, mechanical properties and fracture behavior of WC–(W, Ti, Ta) C–6wt% Co cemented carbides, Int. J. Refract. Met. Hard Mater. 25, 405 (2007).
  • A. Farid, S. Guo, F.-e. Cui, P. Feng, and T. Lin, TiB2 and TiC stainless steel matrix composites. Mater. Lett. 61, 189 (2007).
  • E. Carreño-Morelli, J. Yang, E. Couteau, K. Hernadi, J. W. Seo, C. Bonjour, L. Forro, and R. Schaller, Carbon nanotube/magnesium composites, Phys. Status Solidi 201, R53 (2004).
  • J. S. Benjamin, Mechanical alloying—A perspective, Met. Powder Rep. 45, 122 (1990).
  • B. Prabhu, C. Suryanarayana, L. An, and R. Vaidyanathan, Synthesis and characterization of high volume fraction Al–Al2O3 nanocomposite powders by high-energy milling, Mater. Sci. Eng. A 425, 192 (2006).
  • A. Esawi and K. Morsi, Dispersion of carbon nanotubes (CNTs) in aluminum powder, Composites. Part A 38, 646 (2007).
  • D. Maurice and T. Courtney, Modeling of mechanical alloying: Part I. deformation, coalescence, bdand fragmentation mechanisms, Metall. Mater. Trans. A 25, 147 (1994).
  • K. Kudaka, K. Iizumi, H. Izumi, and T. Sasaki, Synthesis of titanium carbide and titanium diboride by mechanochemical displacement reaction, J. Mater. Sci. Lett. 20, 1619 (2001).
  • G. Kakuk, I. Zsoldos, Á. Csanády, and I. Oldal, Contributions to the modelling of the milling process in a planetrary ball mill, Rev. Adv. Mater. Sci. 22, 21 (2009).
  • S. Tjong and H. Chen, Nanocrystalline materials and coatings, Mater. Sci. Eng. R 45, 1 (2004).
  • Q. Mei and K. Lu, Melting and superheating of crystalline solids: from bulk to nanocrystals, Prog. Mater Sci. 52, 1175 (2007).
  • Á. Kukovecz, T. Kanyó, Z. Kónya, and I. Kiricsi, Long-time low-impact ball milling of multi-wall carbon nanotubes, Carbon 43, 994 (2005).
  • Y. Kim, T. Hayashi, Y. Fukai, M. Endo, T. Yanagisawa, and M. Dresselhaus, Effect of ball milling on morphology of cup-stacked carbon nanotubes, Chem. Phys. Lett. 355, 279 (2002).
  • J. A. Schey, Introduction to Manufacturing Processes, McGraw-Hill, New York, 2 (1987).
  • F. Padella, E. Paradiso, N. Burgio, M. Magini, S. Martelli, W. Guo, and A. Iasonna, Mechanical alloying of the Pd-Si system in controlled conditions of energy transfer, J. Less-Common Me. 175, 79 (1991).
  • M. Zakeri, M. Ramezani, and A. Nazari, Effect of ball to powder weight ratio on the mechanochemical synthesis of MoSi2-TiC nanocomposite powder, J. Mater. Res. 15, 891 (2012).
  • M. S. El-Eskandarany, Mechanical Alloying: For Fabrication of Advanced Engineering Materials, William Andrew-Elsevier USA, 1 (2001).
  • M. Ramezani and T. Neitzert, Mechanical milling of aluminum powder using planetary ball milling process, JAMME 55(2), 790 (2012).
  • M. Tan and X. Zhang, Powder metal matrix composites: selection and processing, Mater. Sci. Eng. A 244, 80 (1998).
  • C. Koch, Synthesis of nanostructured materials by mechanical milling: problems and opportunities, Nanostruct. Mater. 9.1, 13 (1997).
  • M. Magini, A. Iasonna, and F. Padella, Ball milling: an experimental support to the energy transfer evaluated by the collision model, Scripta Mater. 34, 13 (1996).
  • L. Lü, Mechanical Alloying, Springer USA, 1 (1998).
  • L. Pang, K. Sun, S. Ren, C. Sun, and J. Bi, Microstructure, hardness, and bending strength of carbon nanotube—iron aluminide composites, J. Compos. Mater. 41, 2025 (2007).
  • D. M. Hulbert, A. Anders, J. Andersson, E. J. Lavernia, and A. K. Mukherjee, A discussion on the absence of plasma in spark plasma sintering, Scripta Mater. 60, 835 (2009).
  • H. Kessel, J. Hennicke, R. Kirchner, and T. Kessel, Rapid Sintering of Novel Materials by FAST/SPS—Further Development to the Point of an Industrial Production Process with High Cost Efficiency, FCT Systeme Germany (2010).
  • Z. Munir, U. Anselmi-Tamburini, and M. Ohyanagi, The effect of electric field and pressure on the synthesis and consolidation of materials: A review of the spark plasma sintering method, J. Mater. Sci. 41, 763 (2006).
  • Z. Zhang, F. Wang, S. Lee, Y. Liu, J. Cheng, and Y. Liang, Microstructure characteristic, mechanical properties and sintering mechanism of nanocrystalline copper obtained by SPS process, Mater. Sci. Eng. A 523, 134 (2009).
  • C. Deng, X. Zhang, Y. Ma, and D. Wang, Fabrication of aluminum matrix composite reinforced with carbon nanotubes, Rare Met. 26, 450 (2007).
  • C. Deng, Y. Ma, P. Zhang, X. Zhang, and D. Wang, Thermal expansion behaviors of aluminum composite reinforced with carbon nanotubes, Mater. Lett. 62, 2301 (2008).
  • R. George, K. Kashyap, R. Rahul, and S. Yamdagni, Strengthening in carbon nanotube/aluminium (CNT/Al) composites, Scripta Mater. 53, 1159 (2005).
  • C. Deng, X. Zhang, D. Wang, Q. Lin, and A. Li, Preparation and characterization of carbon nanotubes/aluminum matrix composites, Mater. Lett. 61, 1725 (2007).
  • H. Kwon, M. Estili, K. Takagi, T. Miyazaki, and A. Kawasaki, Combination of hot extrusion and spark plasma sintering for producing carbon nanotube reinforced aluminum matrix composites, Carbon, 47, 570 (2009).
  • K. T. Kim, S. I. Cha, S. H. Hong, and S. H. Hong, Microstructures and tensile behavior of carbon nanotube reinforced Cu matrix nanocomposites, Mater. Sci. Eng. A 430, 27 (2006).
  • S. Dong, J. Tu, and X. Zhang, An investigation of the sliding wear behavior of Cu-matrix composite reinforced by carbon nanotubes, Mater. Sci. Eng. A 313, 83 (2001).
  • A. M. Esawi, K. Morsi, A. Sayed, A. A. Gawad, and P. Borah, Fabrication and properties of dispersed carbon nanotube–aluminum composites, Mater. Sci. Eng. A 508, 167 (2009).
  • P. Wanjara, R. A. Drew, R. Donaberger, J. Root, and S. Yue, Titanium-based composites produced by powder metallurgy, Key Eng. Mater. 127, 415 (1996).
  • D. B. Miracle, S. L. Donaldson, and G. F. Vander Voort, ASM Handbook: Composites, ASM International Materials Park, USA (2001).
  • R. Andrews and M. Weisenberger, Carbon nanotube polymer composites, Curr. Opin. Solid State Mater. Sci. 8,31 (2004).
  • J. N. Coleman, U. Khan, W. J. Blau, and Y. K. Gun’ko, Small but strong: a review of the mechanical properties of carbon nanotube–polymer composites, Carbon 44, 1624 (2006).
  • L. Dilandro, A. DiBenedetto, and J. Groeger, The effect of fiber-matrix stress transfer on the strength of fiber-reinforced composite materials, Polym. Compos. 9, 209 (1988).
  • H. Jia, Z. Zhang, Z. Qi, G. Liu, and X. Bian, Formation of nanocrystalline TiC from titanium and different carbon sources by mechanical alloying, J. Alloys Compd. 472, 97 (2009).
  • Z. Liu, K. Tsuchiya, and M. Umemoto, Mechanical milling of fullerene with carbide forming elements, J. Mater. Sci. 37, 1229 (2002).
  • M. Razavi, M. R. Rahimipour, and A. H. Rajabi-Zamani, Synthesis of nanocrystalline TiC powder from impure Ti chips via mechanical alloying, J. Alloys Compd. 436, 142 (2007).
  • J. Holt and Z. Munir, Combustion synthesis of titanium carbide: theory and experiment, J. Mater. Sci. 21, 251 (1986).
  • R. Asthana, Processing effects on the engineering properties of cast metal-matrix composites, Adv. Perform. Mater. 5, 213 (1998).
  • F. Delannay, L. Froyen, and A. Deruyttere, The wetting of solids by molten metals and its relation to the preparation of metal-matrix composites composites, J. Mater. Sci. 22, 1 (1987).
  • K. Allen, Physics and adhesion, Phys. Technol. 19, 234 (1988).
  • N. Sobczak, L. Stobierski, W. Radziwill, M. Ksiazek, and M. Warmuzek, Wettability and interfacial reactions in Al/TiO2, Surf. Interface Anal. 36, 1067 (2004).
  • W. Chen, J. Tu, L. Wang, H. Gan, Z. Xu, and X. Zhang, Tribological application of carbon nanotubes in a metal-based composite coating and composites, Carbon 41, 215 (2003).
  • O. Kubaschewski, C. Alcock, and P. Spencer, Materials Thermochemistry, Pergamon Press, Oxford UK, 6 (1993).
  • B. Lohse, A. Calka, and D. Wexler, Synthesis of TiC by controlled ball milling of titanium and carbon, J. Mater. Sci. 42, 669 (2007).
  • M. Sherif El-Eskandarany, T. Konno, K. Sumiyama, and K. Suzuki, Morphological and structural studies of mechanically alloyed Ti44C56 powders, Mater. Sci. Eng. A 217, 265, (1996).
  • M. S. El-Eskandarany, Thermally assisted and mechanically driven solid-state reactions for formation of amorphous AI33Ta67 alloy powders, Metall. Mater. Trans. A. 27, 3267 (1996).
  • Z. Liu, L. Ye, J. Guo, G. Li and Z. Hu, Self-propagating high-temperature synthesis of TiC and NbC by mechanical alloying, J. Mater. Res. 10, 3129 (1995).
  • R. Koc, C. Meng, and G. Swift, Sintering properties of submicron TiC powders from carbon coated titania precursor, J. Mater. Sci. 35, 3131 (2000).
  • M. Sherif El-Eskandarany, Structure and properties of nanocrystalline TiC full-density bulk alloy consolidated from mechanically reacted powders, J. Alloys Compd. 305, 225 (2000).
  • X. Feng, J. Sui, W. Cai, and A. Liu, Improving wear resistance of TiNi matrix composites reinforced by carbon nanotubes and in situ TiC, Scripta Mater. 64, 824 (2011).
  • A. Alpas and J. Zhang, Effect of microstructure (particulate size and volume fraction) and counterface material on the sliding wear resistance of particulate-reinforced aluminum matrix composites, Metall. Mater. Trans. A. 25, 969 (1994).
  • A. Esawi, K. Morsi, A. Sayed, M. Taher, and S. Lanka, Effect of carbon nanotube (CNT) content on the mechanical properties of CNT-reinforced aluminium composites, Compos. Sci. Technol. 70, 2237 (2010).
  • M. Emara, Consolidation of 2124 aluminum alloy–carbon nanotube reinforced metal matrix composites, Adv. Mater. Res. 748, 28 (2013).
  • V. Viswanathan, T. Laha, K. Balani, A. Agarwal, and S. Seal, Challenges and advances in nanocomposite processing techniques, Mater. Sci. Eng. R 54, 121 (2006).
  • S. C. Tjong, Carbon nanotube reinforced composites, Wiley VCH Verlag, Germany, 1 (2009).
  • T. Matsunaga, K. Matsuda, T. Hatayama, K. Shinozaki, and M. Yoshida, Fabrication of continuous carbon fiber-reinforced aluminum–magnesium alloy composite wires using ultrasonic infiltration method, Composites Part A 38, 1902 (2007).
  • C. Goh, J. Wei, L. Lee, and M. Gupta, Simultaneous enhancement in strength and ductility by reinforcing magnesium with carbon nanotubes, Mater. Sci. Eng. A 423, 153 (2006).
  • W. D. Callister and D. G. Rethwisch, Fundamentals of Materials Science and Engineering: An Integrated Approach, John Wiley & Sons, Inc., 4 (2008).
  • T. Lewis and L. Nielsen, Dynamic mechanical properties of particulate-filled composites, J. Appl. Polym. Sci. 14, 1449 (1970).
  • S.-Y. Fu, G. Xu, and Y.-W. Mai, On the elastic modulus of hybrid particle/short-fiber/polymer composites, Composites Part B 33, 291 (2002).
  • S.-C. Kwon, T. Adachi, W. Araki, and A. Yamaji, Thermo-viscoelastic properties of silica particulate-reinforced epoxy composites: considered in terms of the particle packing model, Acta Mater. 54, 3369 (2006).
  • M. Hussain, A. Nakahira, S. Nishijima, and K. Niihara, Effects of coupling agents on the mechanical properties improvement of the TiO reinforced epoxy system, Mater. Lett. 26, 299 (1996).
  • K. K. Chawla and N. Chawla, Metal-Matrix Composites, Springer USA (2006).
  • K. Srinivasan, Composite Materials: Production, Properties, Testing and Applications, Alpha Science International Limited, Oxford, 1 (2009).
  • B. Derby and P. M. Mummery, Fracture Behavior of Metal Matrix Composites. Fundamentals of Metal-Matrix Composites, Butterworth-Heinemann, Stoneham, MA (1993).
  • J. Lewandowski, C. Liu, and W. Hunt, Effects of matrix microstructure and particle distribution on fracture of an aluminum metal matrix composite, Mater. Sci. Eng. .A 107, 241 (1989).
  • J. N. Coleman, M. Cadek, K. P. Ryan, A. Fonseca, J. B. Nagy, W. J. Blau, and M. S. Ferreira, Reinforcement of polymers with carbon nanotubes. The role of an ordered polymer interfacial region. Experiment and modeling, Polymer 47, 8556 (2006).
  • M. G. R. D.V. Rosato, Plastics Design Handbook, Springer USA, 1 (2001).
  • A. Rabiei, L. Vendra, and T. Kishi, Fracture behavior of particle reinforced metal matrix composites, Composites Part A 39, 294 (2008).
  • J. Rattray and S. Mall, Tensile fracture behavior of notched fiber reinforced titanium metal matrix composite, Compos. Struct. 28, 471 (1994).
  • G. Cooper and A. Kelly, Tensile properties of fibre-reinforced metals: fracture mechanics, J. Mech. Phys. Solids 15, 279 (1967).
  • F. Wredenberg and P.-L. Larsson, Scratch testing of metals and polymers: experiments and numerics, Wear 266, 76 (2009).
  • S. Sharma, The sliding wear behavior of Al6061–garnet particulate composites, Wear 249, 1036 (2001).
  • W. H. Kim and C. Laird, Crack nucleation and stage I propagation in high strain fatigue—II. Mechanism, Acta Metall. 26, 789 (1978).
  • Z. Xia and W. Curtin, Life prediction of titanium MMCs under low-cycle fatigue, Acta Materialia 49, 1633 (2001).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.