1,142
Views
32
CrossRef citations to date
0
Altmetric
Reviews

Embedded Nanoparticles in Schottky and Ohmic Contacts: A Review

&

REFERENCES

  • S. S. Cohen and G. S. Gildenblat, Metal - Semiconductor Contacts and Devices, Acadenic Press, Orlando (1986).
  • P. B. Ghate, Metallization for very-large-scale integrated circuits, Thin Solid Films, 93, 359 (1982).
  • B. L. Anderson and R. L. Anderson, Fundamentals of Semiconductor Devices, 1st ed., McGraw-Hill, New York (2005).
  • N. Mott, The theory of crystal rectifiers. Proc. Roy. Soc. London Ser. A. Mathemat. Phys. Sci. 171, 27 (1939).
  • W. Schottky, Zur Halbleitertheorie der Sperrschicht- und Spitzengleichrichter, Z. Physik, 113, 367 (1939).
  • L. M. Porter and R. F. Davis, A critical review of ohmic and rectifying contacts for silicon carbide, Mater. Sci. Eng. B 34, 83 (1995).
  • J. Bardeen, Surface states and rectification at a metal semi-conductor contact, Phys. Rev. 71, 717 (1947).
  • J. P. Colinge and C. A. Colinge, Physics of Semiconductor Devices, Springer Verlag, (2005).
  • L. J. Brillson, Contacts to semiconductors: Fundamentals and technology, Park Ridge, New Jersey, Noyes (1993).
  • R. T. Tung, Chemical bonding and fermi level pinning at metal-semiconductor interfaces, Phys. Rev. Lett. 84, 6078 (2000).
  • R. T. Tung, Recent advances in Schottky barrier concepts, Mater. Sci. Eng. R 35 (2001).
  • J. P. Sullivan, R. T. Tung, M. R. Pinto, and W. R. Graham, Electron transport of inhomogeneous Schottky barriers: A numerical study, J. Appl. Phys. 70, 7403 (1991).
  • R. T. Tung, The physics and chemistry of the Schottky barrier height. Appl. Phys. Rev. 1, 011304 (2014).
  • Y. Jia and G. Qin, Effects of hydrogen on Al/p-Si Schottky barrier diodes. Appl. Phys. Lett. 56, 641 (1990).
  • M. Tao, S. Agarwal, D. Udeshi, N. Basit, E. Maldonado, and W. P. Kirk, Low Schottky barriers on n-type silicon (001). Appl. Phys. Lett. 83, 2593 (2003).
  • M. Siad, A. Keffous, S. Mamma, Y. Belkacem, and H. Menari, Correlation between series resistance and parameters of Al/n-Si and Al/p-Si Schottky barrier diodes. Appl. Surf. Sci. 236, 366 (2004).
  • Ş. Altindal, İ. Dökme, M. M. Bülbül, N. Yalçın, and T. Serin, The role of the interface insulator layer and interface states on the current-transport mechanism of Schottky diodes in wide temperature range. Microelectron. Eng. 83, 499 (2006).
  • M. Miyawaki, S. Yoshitake, and T. Ohmi, Improvement of aluminum-Si contact performance in native-oxide-free processing. IEEE Trans. Electron Devices, 11, 448 (1990).
  • M. Soylu, I. Yahia, F. Yakuphanoglu, and W. Farooq, Modification of electrical properties of Al/p-Si Schottky barrier device based on 2′-7′-dichlorofluorescein. J. Appl. Phys. 110, 074514 (2011).
  • O. Pakma, N. Serin, T. Serin, and Ş. Altindal, The influence of series resistance and interface states on intersecting behavior of I–V characteristics of Al/TiO2/p-Si (MIS) structures at low temperatures. Semicond. Sci. Technol. 23, 105014 (2008).
  • Z. Wang, S. Tsukimoto, M. Saito, K. Ito, M. Murakami, and Y. Ikuhara, Ohmic contacts on silicon carbide: The first monolayer and its electronic effect. Phys. Rev. B, 80 (2009).
  • S. Zheng, Q.-Q. Sun, W. Yang, P. Zhou, H.-L. Lu, and D. W. Zhang, Modulation in current density of metal/n-SiC contact by inserting Al2O3 interfacial layer. Nanoscale Res. Lett. 8, 1 (2013).
  • R. Tredgold and Z. El-Badawy, Increase of Schottky barrier height at GaAs surfaces by carboxylic acid monolayers and multilayers. J. Phys. D, 18, 103 (1985).
  • B. Dobbs, P. Hemenger, and S. Smith, Ohmic contacts on high purity P-type silicon. J. Electron. Mater. 6, 705 (1977).
  • T. Blank and Y. Goldberg, Mechanisms of current flow in metal-semiconductor ohmic contacts. Semiconductors, 41, 1263 (2007).
  • P. B. Ghate, J. C. Blair, and C. R. Fuller, Metallization in microelectronics. Thin Solid Films, 45, 69 (1977).
  • J. C. Blair and P. B. Ghate, Effect of vacuum ambience on Al–Si contacts. J. Vac. Sci. Technol. 14, 79 (1977).
  • J. McCarthy, Failure of aluminium contacts to silicon in shallow diffused transistors. Microelectron. Reliab. 9, 187 (1970).
  • S. Vaidya and A. Sinha, Electromigration induced leakage at shallow junction contacts metallized with aluminum/poly-silicon. In Reliability Physics Symposium, 1982. 20th Annual: IEEE 50 (1982).
  • A. Olbrich, J. Vancea, F. Kreupl, and H. Hoffmann, The origin of the integral barrier height in inhomogeneous Au/Co/GaAs 67P 33-Schottky contacts: A ballistic electron emission microscopy study. J. Appl. Phys. 83, 358 (1998).
  • V. Narayanan, Z. Liu, Y. M. N. Shen, M. Kim, and E. C. Kan, Reduction of metal-semiconductor contact resistance by embedded nanocrystals. In Electron Devices Meeting, 2000. IEDM Technical Digest. International 87 (2000).
  • F. Léonard and A. A. Talin, Electrical contacts to one-and two-dimensional nanomaterials. Nat Nanotechnol. 6, 773 (2011).
  • R. T. Tung, Electron transport of inhomogeneous Schottky barriers. Appl. Phys. Lett. 58, 2821 (1991).
  • M. S. Gorji, K. A. Razak, and K. Y. Cheong, Gold nanoparticles deposited on linker-free silicon substrate and embedded in aluminum Schottky contact. J. Colloid Interface Sci. 408, 220 (2013).
  • V. P. Kishore, P. Paramahans, S. Sadana, U. Ganguly, and S. Lodha, Nanocrystal-based Ohmic contacts on n and p-type germanium. Appl. Phys. Lett. 100, 142107 (2012).
  • S. K. Lee, C. M. Zetterling, M. Östling, I. Åberg, M. H. Magnusson, K. Deppert, L. E. Wernersson, L. Samuelson, and A. Litwin, Reduction of the Schottky barrier height on silicon carbide using Au nano-particles. Solid-State Electron. 46, 1433 (2002).
  • A. Olbrich, J. Vancea, F. Kreupl, and H. Hoffmann, Potential pinch-off effect in inhomogeneous Au/Co/GaAs67P33(100)-Schottky contacts. Appl. Phys. Lett. 70, 2559 (1997).
  • F. Ruffino, I. Crupi, A. Irrera, and M. G. Grimaldi, Pd/Au/SiC nanostructured diodes for nanoelectronics: Room temperature electrical properties. IEEE Trans. Nanotechnol. 9, 414 (2010).
  • E. C. Kan, Z. Liu, and V. Narayanan, Embedded metal nanocrystals. Google Patents (2004).
  • M. S. Kang, J. J. Ahn, K. S. Moon, and S. M. Koo, Metal work-function-dependent barrier height of ni contacts with metal-embedded nanoparticles to 4H-SIC. Nanoscale Res. Lett. 7, 1 (2012).
  • H. G. Kim, P. Deb, and T. Sands, High-reflectivity Al-Pt nanostructured Ohmic contact to p-GaN. IEEE Trans. Electron Dev. 53, 2448 (2006).
  • K. R. Brown, D. G. Walter, and M. J. Natan, Seeding of colloidal Au nanoparticle solutions. 2. Improved control of particle size and shape. Chem. Mater. 12, 306 (2000).
  • J. I. Sohn, J. O. Song, D. S. Leem, S. Lee, and T. Y. Seong, Formation of nonalloyed low resistance Ni/Au ohmic contacts to p-type GaN using Au nanodots. Electrochem. Solid-State Lett. 7, G179 (2004).
  • J. I. Sohn, J. O. Song, D. S. Leem, S. Lee, and T. Y. Seong, Nano-dot addition effect on the electrical properties of Ni contacts to p-type GaN. Phys. Stat. Sol. (c), 1, 2524 (2004).
  • L. D. Bell and W. J. Kaiser, Observation of interface band structure by ballistic-electron-emission microscopy. Phys. Rev. Lett. 61, 2368 (1988).
  • J. O. Song, J. S. Kwak, and T. Y. Seong, Improvement of the ohmic characteristics of Pd contacts to p-type GaN using an Ag interlayer. Semicond. Sci. Technol. 21, L7 (2006).
  • D. Xia and S. R. J. Brueck, A Facile Approach to Directed Assembly of Patterns of Nanoparticles Using Interference Lithography and Spin Coating. Nano Lett. 4, 1295 (2004).
  • C. L. Haynes and R. P. Van Duyne, Nanosphere Lithography: A Versatile Nanofabrication Tool for Studies of Size-Dependent Nanoparticle Optics. J. Phys. Chem. B, 105, 5599 (2001).
  • T. Wen, R. A. Booth, and S. A. Majetich, Ten-Nanometer Dense Hole Arrays Generated by Nanoparticle Lithography. Nano Lett. 12, 5873 (2012).
  • V. Ramaswamy, T. E. Haynes, C. W. White, W. J. MoberlyChan, S. Roorda, and M. J. Aziz, Synthesis of Nearly Monodisperse Embedded Nanoparticles by Separating Nucleation and Growth in Ion Implantation. Nano Lett. 5, 373 (2005).
  • S. Anand, S. B. Carlsson, K. Deppert, L. Montelius, and L. Samuelson, Electron transport at Au/InP interface with nanoscopic exclusions. J. Vac. Sci. Technol. B, 14, 2794 (1996).
  • P. Malinský, P. Slepička, V. Hnatowicz, and V. Švorčik, Early stages of growth of gold layers sputter deposited on glass and silicon substrates. Nanoscale Res. Lett. 7, 1 (2012).
  • S. Pal, M. Sanyal, S. Hazra, S. Kundu, F. Schreiber, J. Pflaum, E. Barrena, and H. Dosch, Morphology and transport properties of nanostructural gold on silicon. J. Appl. Phys. 95, 1430 (2004).
  • M. Hövel, B. Gompf, and M. Dressel, Dielectric properties of ultrathin metal films around the percolation threshold. Phys. Rev. B 81, 035402 (2010).
  • M. Hövel, B. Gompf, and M. Dressel, Electrodynamics of ultrathin gold films at the insulator-to-metal transition. Thin Solid Films, 519, 2955 (2011).
  • M. H. Magnusson, K. Deppert, J.-O. Malm, J.-O. Bovin, and L. Samuelson, Gold Nanoparticles: Production, Reshaping, and Thermal Charging. J. Nanopart. Res. 1, 243 (1999).
  • H. Masuda and M. Satoh, Fabrication of gold nanodot array using anodic porous alumina as an evaporation mask. Jpn. J. Appl. Phys. Part 2 Lett. 35, L126 (1996).
  • F. Ruffino, I. Crupi, A. Irrera, and M. Grimaldi, Room-temperature electrical characteristics of Pd∕ SiC diodes with embedded Au nanoparticles at the interface. in AIP Conf. Proc. 103 (2010).
  • P. Fau, V. Latour, C. Barriere, J. Carrey, J. Dugay, M. Respaud, and B. Chaudret, Self deposition and spin coating of metal nanoparticles on silicon substrates. (2005).
  • Y. Wang and W. Zhou, A review on inorganic nanostructure self-assembly. J. Nanosci. Nanotechnol. 10, 1563 (2010).
  • D. Buttard, F. Oelher, and T. David, Gold colloidal nanoparticle electrodeposition on a silicon surface in a uniform electric field. Nanoscale Res. Lett. 6, 1 (2011).
  • A. J. O’Reilly, C. Francis, and N. J. Quitoriano, Gold nanoparticle deposition on Si by destabilising gold colloid with HF. J. Colloid Interface Sci. 370, 46 (2012).
  • T. Kamins, X. Li, R. S. Williams, and X. Liu, Growth and structure of chemically vapor deposited Ge nanowires on Si substrates. Nano Lett. 4, 503 (2004).
  • I. Ohdomari and K. N. Tu, Parallel silicide contacts. J. Appl. Phys. 51, 3735 (1980).
  • S. J. Pearton, Processing of’Wide Band Gap Semiconductors, Noyes, Norwich, New York 85 (2000).
  • A. Y. C. Yu, Electron tunneling and contact resistance of metal-silicon contact barriers. Solid-State Electron. 13, 239 (1970).
  • R. C. Rossi, M. X. Tan, and N. S. Lewis, Size-dependent electrical behavior of spatially inhomogeneous barrier height regions on silicon. Appl. Phys. Lett. 77, 2698 (2000).
  • R. T. Tung, Electron transport at metal-semiconductor interfaces: General theory. Phys. Rev. B 45, 13509 (1992).
  • J. Osvald, Numerical study of electrical transport in inhomogeneous Schottky diodes. J. Appl. Phys. 85, 1935 (1999).
  • R. T. Tung, Comment on ``Numerical study of electrical transport in homogeneous Schottky diodes’’ [J. Appl. Phys. [bold 85], 1935 (1999)]. J. Appl. Phys. 88, 7366 (2000).
  • J. Osvald, Response to ``Comment on `Numerical study of electrical transport in inhomogeneous Schottky diodes’ ‘‘ [J. Appl. Phys. [bold 88], 7366 (2000)]. J. Appl. Phys. 88, 7368 (2000).
  • S. Hara, Characterization of the 6H-SiC(0001) surface and the interface with Ti layer with the Schottky limit. Appl. Surf. Sci. 162–163, 19 (2000).
  • V. Narayanamurti and M. Kozhevnikov, BEEM imaging and spectroscopy of buried structures in semiconductors. Phys. Rep. 349, 447 (2001).
  • H. J. Im, Y. Ding, J. P. Pelz, and W. J. Choyke, Nanometer-scale test of the Tung model of Schottky-barrier height inhomogeneity. Phys. Rev. B 64, 075310 (2001).
  • K. Hirose, First-Principles Calculations in Real-Space Formalism: Electronic Configurations and Transport Properties of Nanostructures, Imperial College Press, London (2005).
  • G. Smit, S. Rogge, and T. Klapwijk, Enhanced tunneling across nanometer-scale metal–semiconductor interfaces. Appl. Phys. Lett. 80, 2568 (2002).
  • J. Q. Song, T. Ding, J. Li, and Q. Cai, Scanning tunneling microscope study of nanosized metal–semiconductor contacts between ErSi2 nanoislands and Si(0 0 1) substrate. Surf. Sci. 604, 361 (2010).
  • F. Ruffino, M. Grimaldi, F. Giannazzo, F. Roccaforte, and V. Raineri, Size-dependent Schottky Barrier Height in self-assembled gold nanoparticles. Appl. Phys. Lett. 89, 243113 (2006).
  • F. Ruffino, A. Canino, M. Grimaldi, F. Giannazzo, F. Roccaforte, and V. Raineri, Electrical properties of self-assembled nano-Schottky diodes. J. Nano Mat. 2008 (2008).
  • F. Iucolano, F. Roccaforte, F. Giannazzo, and V. Raineri, Temperature behavior of inhomogeneous Pt/GaN Schottky contacts. Appl. Phys. Lett. 90, 092119 (2007).
  • G. Smit, S. Rogge, and T. Klapwijk, Scaling of nano-Schottky-diodes. Appl. Phys. Lett. 81, 3852 (2002).
  • M. S. Kang, J. H. Lee, A. Hallén, C. M. Zetterling, W. Bahng, N. K. Kim, and S. M. Koo, Metal work-function and doping-concentration dependent barrier height of Ni-contacts to 4H-SiC with metal-embedded nano-particles. Mater. Sci. Forum 717–720, 857 (2012).
  • J. S. Kwak, J. Song, T. Seong, B. Kim, J. Cho, C. Sone, and Y. Park, Nanoparticle embedded p-type electrodes for GaN-based flip-chip light emitting diodes. J. Nanosci. Nanotechnol. 6, 3547 (2006).
  • J. Yanfeng, Y. Bing, Z. Xiaobo, and J. Jiaxin, Research of mechanism on the improvement of silicon carbide ohmic contact property influenced by nanometer metal particles. in Nanoelectronics Conference, 2008. INEC 2008. 2nd IEEE International: IEEE (2008), 708.
  • M. S. Kang, J. H. Lee, A. Hallen, C. M. Zetterling, and S. M. Koo, Effect of annealing temperature on the barrier height of nano-particle embedded Ni-contacts to 4H-SiC. In Semiconductor Device Research Symposium (ISDRS), 2011 International, IEEE, p 1. (2011).
  • R. F. Schmitsdorf, T. U. Kampen, and W. Monch, Explanation of the Linear Correlation between Barrier Heights and Ideality Factors of Real Metal-Semiconductor Contacts by Laterally Nonuniform Schottky Barriers. AVS, Research Triangle Park, North Carolina, 1221 (1997).
  • B. L. Smith and E. H. Rhoderick, Schottky barriers on p-type silicon. Solid-State Electron. 14, 71 (1971).
  • A. Dimoulas, P. Tsipas, A. Sotiropoulos, and E. K. Evangelou, Fermi-level pinning and charge neutrality level in germanium. Appl. Phys. Lett. 89, 252110 (2006).
  • H. Tanaka, T. Isogai, T. Goto, A. Teramoto, S. Sugawa, and T. Ohmi, Low Contact resistivity with low silicide/p+-silicon Schottky barrier for high-performance p-channel metal–oxide–silicon field effect transistors. Jpn. J. Appl. Phys. 49, 04DA03 (2010).
  • A. Hattab, V. Aubry-Fortuna, F. Meyer, V. Yam, V. Le Thanh, D. Bouchier, and C. Clerc, Schottky-barrier height inhomogeneities controlled by buried Ge/Si quantum dots. Microelectron. Eng. 64, 435 (2002).
  • J.-O. Song, H. Kang, I. Ferguson, S.-P. Jung, H. Lee, H.-G. Hong, T. Lee, and T.-Y. Seong, Improvement of the electrical performance of near UV GaN-based light-emitting diodes using Ni nanodots. Solid-State Electron. 49, 1986 (2005).
  • H. G. Kim, P. Deb, and T. Sands, Nanopatterned contacts to GaN. J. Electron. Mater. 36, 359 (2007).
  • L. Chuah, Z. Hassan, and S. Teo, Effect of thermal annealing on the Ir/Ag contact to p-type GaN. J. Non Cryst. Solids 356, 1863 (2010).
  • H.-G. Hong, W.-K. Hong, K.-Y. Ban, T. Lee, T.-Y. Seong, J.-O. Song, I. Ferguson, and J. S. Kwak, Formation of high-quality Ag-based ohmic contact to p-type GaN for UV LEDs using a tin-zinc oxide interlayer. Electrochem. Solid-State Lett. 8, G280 (2005).
  • J. Yu, M. Shafiei, W. Wlodarski, Y. Li, and K. Kalantar-zadeh, Enhancement of electric field properties of Pt/nanoplatelet MoO3/SiC Schottky diode. J. Phys. D, 43, 025103 (2010).
  • S.-H. Kim, J.-T. Maeng, C.-J. Choi, J. H. Leem, M. S. Han, and T.-Y. Seong, Pt/indium tin oxide ohmic contacts to arsenic-doped p-type ZnO layers. Electrochem. Solid-State Lett. 8, G167 (2005).
  • L. C. Chen and S. F. Lu, Study of Au nanoparticles/ITO ohmic contacts to p-type GaN. Phys. Stat. Sol. (c) 203, 2451 (2006).
  • J.-O. Song, W.-K. Hong, Y. Park, J. Kwak, and T.-Y. Seong, Low-resistance Al-based reflectors for high-power GaN-based flip-chip light-emitting diodes. Appl. Phys. Lett. 86, 133503 (2005).
  • H. G. Hong, H. Na, T. Y. Seong, T. Lee, J. O. Song, and K. K. Kim, High-transmittance NiSc/Ag/ITO p-type ohmic electrode for near-UV GaN-based light-emitting diodes. J. Kor. Phys. Soc. 51, 159 (2007).
  • J.-O. Song, K.-K. Kim, H. Kim, Y.-H. Kim, H.-G. Hong, H. Na, and T.-Y. Seong, Formation of low-resistance and transparent indium tin oxide ohmic contact for high-brightness GaN-based light-emitting diodes using a Sn–Ag interlayer. Mater. Sci. Semicond. Process. 10, 211 (2007).
  • C. Huh, J.-H. Shin, K.-H. Kim, C.-J. Choi, K. S. Cho, J. Hong, and G. Y. Sung, Enhancement of performance of Si nanocrystal light-emitting diodes by using Ag nanodots. IEEE Photon Technol Lett. 18, 2068 (2006).
  • B. Downey, S. Datta, and S. Mohney, Numerical study of reduced contact resistance via nanoscale topography at metal/semiconductor interfaces. Semicond. Sci. Technol. 25, 015010 (2010).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.